Properties

Label 475.2.bc.a.6.19
Level $475$
Weight $2$
Character 475.6
Analytic conductor $3.793$
Analytic rank $0$
Dimension $1152$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.bc (of order \(45\), degree \(24\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(1152\)
Relative dimension: \(48\) over \(\Q(\zeta_{45})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{45}]$

Embedding invariants

Embedding label 6.19
Character \(\chi\) \(=\) 475.6
Dual form 475.2.bc.a.396.19

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.730424 - 0.456420i) q^{2} +(-0.0193247 + 0.00554125i) q^{3} +(-0.551542 - 1.13083i) q^{4} +(2.18285 - 0.484947i) q^{5} +(0.0166443 + 0.00477268i) q^{6} +(-1.43830 + 2.49120i) q^{7} +(-0.293334 + 2.79088i) q^{8} +(-2.54380 + 1.58954i) q^{9} +O(q^{10})\) \(q+(-0.730424 - 0.456420i) q^{2} +(-0.0193247 + 0.00554125i) q^{3} +(-0.551542 - 1.13083i) q^{4} +(2.18285 - 0.484947i) q^{5} +(0.0166443 + 0.00477268i) q^{6} +(-1.43830 + 2.49120i) q^{7} +(-0.293334 + 2.79088i) q^{8} +(-2.54380 + 1.58954i) q^{9} +(-1.81574 - 0.642078i) q^{10} +(-3.60347 + 4.00206i) q^{11} +(0.0169246 + 0.0187966i) q^{12} +(-0.125533 - 3.59480i) q^{13} +(2.18760 - 1.16317i) q^{14} +(-0.0394956 + 0.0214671i) q^{15} +(-0.0611315 + 0.0782447i) q^{16} +(-5.24372 + 0.366677i) q^{17} +2.58355 q^{18} +(0.594850 + 4.31812i) q^{19} +(-1.75232 - 2.20096i) q^{20} +(0.0139902 - 0.0561115i) q^{21} +(4.45868 - 1.27851i) q^{22} +(2.99557 - 0.421000i) q^{23} +(-0.00979642 - 0.0555583i) q^{24} +(4.52965 - 2.11713i) q^{25} +(-1.54904 + 2.68302i) q^{26} +(0.0807055 - 0.0896325i) q^{27} +(3.61040 + 0.252464i) q^{28} +(-0.511373 - 0.0357587i) q^{29} +(0.0386465 + 0.00234643i) q^{30} +(-5.07994 + 2.26173i) q^{31} +(5.35440 - 1.94884i) q^{32} +(0.0474594 - 0.0973061i) q^{33} +(3.99750 + 2.12551i) q^{34} +(-1.93148 + 6.13541i) q^{35} +(3.20051 + 1.99990i) q^{36} +(-1.40573 + 4.32640i) q^{37} +(1.53638 - 3.42556i) q^{38} +(0.0223456 + 0.0687726i) q^{39} +(0.713127 + 6.23433i) q^{40} +(0.686032 - 0.878080i) q^{41} +(-0.0358292 + 0.0345998i) q^{42} +(-0.503268 - 2.85417i) q^{43} +(6.51311 + 1.86760i) q^{44} +(-4.78189 + 4.70334i) q^{45} +(-2.38019 - 1.05973i) q^{46} +(-9.90282 - 0.692472i) q^{47} +(0.000747770 - 0.00185080i) q^{48} +(-0.637385 - 1.10398i) q^{49} +(-4.27487 - 0.521020i) q^{50} +(0.0993013 - 0.0361427i) q^{51} +(-3.99586 + 2.12464i) q^{52} +(0.270621 + 0.554856i) q^{53} +(-0.0998593 + 0.0286342i) q^{54} +(-5.92504 + 10.4834i) q^{55} +(-6.53075 - 4.74487i) q^{56} +(-0.0354231 - 0.0801499i) q^{57} +(0.357198 + 0.259520i) q^{58} +(3.60708 + 8.92784i) q^{59} +(0.0460591 + 0.0328227i) q^{60} +(-0.622108 + 0.0874316i) q^{61} +(4.74281 + 0.666558i) q^{62} +(-0.301134 - 8.62335i) q^{63} +(-4.60622 - 0.979083i) q^{64} +(-2.01730 - 7.78602i) q^{65} +(-0.0790779 + 0.0494134i) q^{66} +(-1.23554 - 4.95548i) q^{67} +(3.30678 + 5.72751i) q^{68} +(-0.0555555 + 0.0247349i) q^{69} +(4.21112 - 3.59988i) q^{70} +(9.96193 + 9.62012i) q^{71} +(-3.69005 - 7.56572i) q^{72} +(0.267579 - 7.66246i) q^{73} +(3.00143 - 2.51850i) q^{74} +(-0.0758024 + 0.0660128i) q^{75} +(4.55497 - 3.05430i) q^{76} +(-4.78708 - 14.7331i) q^{77} +(0.0150674 - 0.0604321i) q^{78} +(6.42532 - 1.84243i) q^{79} +(-0.0954962 + 0.200442i) q^{80} +(3.94375 - 8.08588i) q^{81} +(-0.901867 + 0.328253i) q^{82} +(14.9484 - 6.65544i) q^{83} +(-0.0711687 + 0.0151274i) q^{84} +(-11.2684 + 3.34333i) q^{85} +(-0.935102 + 2.31446i) q^{86} +(0.0100803 - 0.00214262i) q^{87} +(-10.1123 - 11.2308i) q^{88} +(4.87579 + 6.24073i) q^{89} +(5.63950 - 1.25289i) q^{90} +(9.13591 + 4.85765i) q^{91} +(-2.12826 - 3.15528i) q^{92} +(0.0856352 - 0.0718565i) q^{93} +(6.91720 + 5.02564i) q^{94} +(3.39253 + 9.13733i) q^{95} +(-0.0926729 + 0.0673308i) q^{96} +(2.07869 - 8.33719i) q^{97} +(-0.0383183 + 1.09729i) q^{98} +(2.80507 - 15.9083i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9} - 33 q^{10} - 9 q^{12} - 18 q^{13} - 18 q^{14} + 27 q^{15} - 30 q^{16} - 36 q^{17} - 144 q^{18} - 18 q^{19} - 54 q^{20} + 9 q^{21} + 6 q^{22} - 24 q^{23} - 120 q^{24} - 90 q^{25} - 24 q^{26} - 9 q^{27} + 54 q^{28} + 9 q^{30} - 45 q^{31} - 138 q^{32} + 54 q^{33} - 18 q^{34} + 45 q^{35} - 72 q^{36} - 36 q^{37} + 93 q^{38} - 36 q^{39} + 57 q^{40} - 18 q^{41} + 36 q^{42} - 252 q^{43} - 42 q^{44} - 90 q^{45} - 69 q^{46} - 18 q^{47} + 6 q^{48} - 486 q^{49} + 21 q^{50} + 12 q^{51} - 36 q^{53} - 120 q^{54} - 3 q^{55} + 234 q^{56} + 90 q^{57} + 180 q^{58} + 18 q^{59} + 69 q^{60} - 90 q^{61} - 144 q^{62} - 27 q^{63} + 93 q^{64} - 72 q^{65} + 42 q^{66} + 54 q^{67} - 48 q^{68} - 57 q^{69} + 12 q^{70} - 60 q^{71} - 318 q^{72} - 36 q^{73} - 66 q^{74} - 132 q^{75} - 48 q^{76} + 222 q^{77} - 39 q^{78} + 6 q^{79} + 129 q^{80} - 84 q^{81} + 120 q^{82} + 45 q^{83} - 63 q^{84} - 18 q^{85} + 72 q^{86} - 33 q^{87} - 45 q^{88} + 18 q^{89} + 57 q^{90} + 45 q^{91} + 324 q^{92} - 78 q^{93} - 24 q^{94} + 81 q^{95} - 132 q^{96} - 96 q^{97} - 153 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.730424 0.456420i −0.516488 0.322737i 0.246508 0.969141i \(-0.420717\pi\)
−0.762996 + 0.646403i \(0.776272\pi\)
\(3\) −0.0193247 + 0.00554125i −0.0111571 + 0.00319924i −0.281211 0.959646i \(-0.590736\pi\)
0.270054 + 0.962845i \(0.412958\pi\)
\(4\) −0.551542 1.13083i −0.275771 0.565414i
\(5\) 2.18285 0.484947i 0.976199 0.216875i
\(6\) 0.0166443 + 0.00477268i 0.00679502 + 0.00194844i
\(7\) −1.43830 + 2.49120i −0.543624 + 0.941585i 0.455068 + 0.890457i \(0.349615\pi\)
−0.998692 + 0.0511283i \(0.983718\pi\)
\(8\) −0.293334 + 2.79088i −0.103709 + 0.986726i
\(9\) −2.54380 + 1.58954i −0.847934 + 0.529848i
\(10\) −1.81574 0.642078i −0.574189 0.203043i
\(11\) −3.60347 + 4.00206i −1.08649 + 1.20667i −0.109362 + 0.994002i \(0.534881\pi\)
−0.977125 + 0.212664i \(0.931786\pi\)
\(12\) 0.0169246 + 0.0187966i 0.00488570 + 0.00542612i
\(13\) −0.125533 3.59480i −0.0348166 0.997017i −0.883590 0.468261i \(-0.844881\pi\)
0.848774 0.528756i \(-0.177341\pi\)
\(14\) 2.18760 1.16317i 0.584660 0.310869i
\(15\) −0.0394956 + 0.0214671i −0.0101977 + 0.00554279i
\(16\) −0.0611315 + 0.0782447i −0.0152829 + 0.0195612i
\(17\) −5.24372 + 0.366677i −1.27179 + 0.0889322i −0.689642 0.724151i \(-0.742232\pi\)
−0.582148 + 0.813083i \(0.697788\pi\)
\(18\) 2.58355 0.608949
\(19\) 0.594850 + 4.31812i 0.136468 + 0.990644i
\(20\) −1.75232 2.20096i −0.391831 0.492149i
\(21\) 0.0139902 0.0561115i 0.00305291 0.0122445i
\(22\) 4.45868 1.27851i 0.950594 0.272578i
\(23\) 2.99557 0.421000i 0.624620 0.0877846i 0.180240 0.983623i \(-0.442313\pi\)
0.444381 + 0.895838i \(0.353424\pi\)
\(24\) −0.00979642 0.0555583i −0.00199969 0.0113408i
\(25\) 4.52965 2.11713i 0.905931 0.423426i
\(26\) −1.54904 + 2.68302i −0.303792 + 0.526184i
\(27\) 0.0807055 0.0896325i 0.0155318 0.0172498i
\(28\) 3.61040 + 0.252464i 0.682301 + 0.0477112i
\(29\) −0.511373 0.0357587i −0.0949596 0.00664022i 0.0221976 0.999754i \(-0.492934\pi\)
−0.117157 + 0.993113i \(0.537378\pi\)
\(30\) 0.0386465 + 0.00234643i 0.00705586 + 0.000428398i
\(31\) −5.07994 + 2.26173i −0.912384 + 0.406219i −0.808585 0.588379i \(-0.799766\pi\)
−0.103798 + 0.994598i \(0.533100\pi\)
\(32\) 5.35440 1.94884i 0.946533 0.344510i
\(33\) 0.0474594 0.0973061i 0.00826162 0.0169388i
\(34\) 3.99750 + 2.12551i 0.685566 + 0.364522i
\(35\) −1.93148 + 6.13541i −0.326480 + 1.03707i
\(36\) 3.20051 + 1.99990i 0.533419 + 0.333317i
\(37\) −1.40573 + 4.32640i −0.231101 + 0.711256i 0.766514 + 0.642228i \(0.221990\pi\)
−0.997615 + 0.0690278i \(0.978010\pi\)
\(38\) 1.53638 3.42556i 0.249234 0.555699i
\(39\) 0.0223456 + 0.0687726i 0.00357815 + 0.0110124i
\(40\) 0.713127 + 6.23433i 0.112755 + 0.985733i
\(41\) 0.686032 0.878080i 0.107140 0.137133i −0.731452 0.681893i \(-0.761157\pi\)
0.838592 + 0.544760i \(0.183379\pi\)
\(42\) −0.0358292 + 0.0345998i −0.00552856 + 0.00533887i
\(43\) −0.503268 2.85417i −0.0767476 0.435257i −0.998834 0.0482736i \(-0.984628\pi\)
0.922087 0.386984i \(-0.126483\pi\)
\(44\) 6.51311 + 1.86760i 0.981888 + 0.281552i
\(45\) −4.78189 + 4.70334i −0.712842 + 0.701133i
\(46\) −2.38019 1.05973i −0.350940 0.156249i
\(47\) −9.90282 0.692472i −1.44447 0.101007i −0.674119 0.738623i \(-0.735477\pi\)
−0.770355 + 0.637615i \(0.779921\pi\)
\(48\) 0.000747770 0.00185080i 0.000107931 0.000267139i
\(49\) −0.637385 1.10398i −0.0910550 0.157712i
\(50\) −4.27487 0.521020i −0.604558 0.0736834i
\(51\) 0.0993013 0.0361427i 0.0139050 0.00506099i
\(52\) −3.99586 + 2.12464i −0.554126 + 0.294634i
\(53\) 0.270621 + 0.554856i 0.0371727 + 0.0762153i 0.916572 0.399869i \(-0.130944\pi\)
−0.879399 + 0.476085i \(0.842056\pi\)
\(54\) −0.0998593 + 0.0286342i −0.0135891 + 0.00389662i
\(55\) −5.92504 + 10.4834i −0.798933 + 1.41358i
\(56\) −6.53075 4.74487i −0.872708 0.634059i
\(57\) −0.0354231 0.0801499i −0.00469190 0.0106161i
\(58\) 0.357198 + 0.259520i 0.0469024 + 0.0340766i
\(59\) 3.60708 + 8.92784i 0.469602 + 1.16231i 0.957249 + 0.289265i \(0.0934108\pi\)
−0.487647 + 0.873041i \(0.662145\pi\)
\(60\) 0.0460591 + 0.0328227i 0.00594620 + 0.00423739i
\(61\) −0.622108 + 0.0874316i −0.0796528 + 0.0111945i −0.178887 0.983870i \(-0.557250\pi\)
0.0992341 + 0.995064i \(0.468361\pi\)
\(62\) 4.74281 + 0.666558i 0.602337 + 0.0846530i
\(63\) −0.301134 8.62335i −0.0379393 1.08644i
\(64\) −4.60622 0.979083i −0.575778 0.122385i
\(65\) −2.01730 7.78602i −0.250216 0.965737i
\(66\) −0.0790779 + 0.0494134i −0.00973382 + 0.00608237i
\(67\) −1.23554 4.95548i −0.150945 0.605409i −0.997342 0.0728564i \(-0.976789\pi\)
0.846397 0.532552i \(-0.178767\pi\)
\(68\) 3.30678 + 5.72751i 0.401006 + 0.694563i
\(69\) −0.0555555 + 0.0247349i −0.00668810 + 0.00297773i
\(70\) 4.21112 3.59988i 0.503325 0.430269i
\(71\) 9.96193 + 9.62012i 1.18226 + 1.14170i 0.986962 + 0.160955i \(0.0514575\pi\)
0.195302 + 0.980743i \(0.437431\pi\)
\(72\) −3.69005 7.56572i −0.434876 0.891629i
\(73\) 0.267579 7.66246i 0.0313178 0.896823i −0.877487 0.479601i \(-0.840781\pi\)
0.908804 0.417222i \(-0.136996\pi\)
\(74\) 3.00143 2.51850i 0.348910 0.292770i
\(75\) −0.0758024 + 0.0660128i −0.00875291 + 0.00762250i
\(76\) 4.55497 3.05430i 0.522490 0.350352i
\(77\) −4.78708 14.7331i −0.545538 1.67899i
\(78\) 0.0150674 0.0604321i 0.00170605 0.00684259i
\(79\) 6.42532 1.84243i 0.722905 0.207290i 0.106044 0.994361i \(-0.466182\pi\)
0.616861 + 0.787072i \(0.288404\pi\)
\(80\) −0.0954962 + 0.200442i −0.0106768 + 0.0224101i
\(81\) 3.94375 8.08588i 0.438194 0.898431i
\(82\) −0.901867 + 0.328253i −0.0995946 + 0.0362495i
\(83\) 14.9484 6.65544i 1.64080 0.730530i 0.641468 0.767150i \(-0.278326\pi\)
0.999329 + 0.0366200i \(0.0116591\pi\)
\(84\) −0.0711687 + 0.0151274i −0.00776514 + 0.00165053i
\(85\) −11.2684 + 3.34333i −1.22223 + 0.362635i
\(86\) −0.935102 + 2.31446i −0.100835 + 0.249575i
\(87\) 0.0100803 0.00214262i 0.00108072 0.000229713i
\(88\) −10.1123 11.2308i −1.07797 1.19721i
\(89\) 4.87579 + 6.24073i 0.516833 + 0.661516i 0.973651 0.228045i \(-0.0732332\pi\)
−0.456818 + 0.889560i \(0.651011\pi\)
\(90\) 5.63950 1.25289i 0.594456 0.132066i
\(91\) 9.13591 + 4.85765i 0.957704 + 0.509220i
\(92\) −2.12826 3.15528i −0.221887 0.328961i
\(93\) 0.0856352 0.0718565i 0.00887995 0.00745117i
\(94\) 6.91720 + 5.02564i 0.713455 + 0.518355i
\(95\) 3.39253 + 9.13733i 0.348066 + 0.937470i
\(96\) −0.0926729 + 0.0673308i −0.00945839 + 0.00687192i
\(97\) 2.07869 8.33719i 0.211059 0.846513i −0.767584 0.640948i \(-0.778541\pi\)
0.978644 0.205565i \(-0.0659031\pi\)
\(98\) −0.0383183 + 1.09729i −0.00387073 + 0.110843i
\(99\) 2.80507 15.9083i 0.281920 1.59885i
\(100\) −4.89240 3.95457i −0.489240 0.395457i
\(101\) −13.4660 + 4.90122i −1.33992 + 0.487689i −0.909786 0.415078i \(-0.863754\pi\)
−0.430129 + 0.902767i \(0.641532\pi\)
\(102\) −0.0890283 0.0189235i −0.00881511 0.00187371i
\(103\) −8.09253 3.60303i −0.797380 0.355017i −0.0327319 0.999464i \(-0.510421\pi\)
−0.764649 + 0.644448i \(0.777087\pi\)
\(104\) 10.0695 + 0.704127i 0.987394 + 0.0690453i
\(105\) 0.00332733 0.129267i 0.000324714 0.0126152i
\(106\) 0.0555788 0.528797i 0.00539829 0.0513613i
\(107\) −5.91677 + 10.2481i −0.571995 + 0.990725i 0.424366 + 0.905491i \(0.360497\pi\)
−0.996361 + 0.0852341i \(0.972836\pi\)
\(108\) −0.145871 0.0418279i −0.0140365 0.00402490i
\(109\) −18.2508 2.56499i −1.74811 0.245681i −0.808640 0.588304i \(-0.799796\pi\)
−0.939473 + 0.342623i \(0.888685\pi\)
\(110\) 9.11262 4.95301i 0.868854 0.472251i
\(111\) 0.00319161 0.0913957i 0.000302934 0.00867489i
\(112\) −0.106998 0.264830i −0.0101104 0.0250241i
\(113\) −4.91880 + 15.1385i −0.462722 + 1.42411i 0.399103 + 0.916906i \(0.369322\pi\)
−0.861825 + 0.507206i \(0.830678\pi\)
\(114\) −0.0107081 + 0.0747112i −0.00100291 + 0.00699735i
\(115\) 6.33472 2.37167i 0.590715 0.221160i
\(116\) 0.241607 + 0.597997i 0.0224326 + 0.0555227i
\(117\) 6.03342 + 8.94491i 0.557790 + 0.826957i
\(118\) 1.44014 8.16745i 0.132576 0.751875i
\(119\) 6.62856 13.5906i 0.607639 1.24584i
\(120\) −0.0483269 0.116525i −0.00441162 0.0106372i
\(121\) −1.88167 17.9029i −0.171061 1.62753i
\(122\) 0.494308 + 0.220080i 0.0447526 + 0.0199251i
\(123\) −0.00839165 + 0.0207701i −0.000756650 + 0.00187277i
\(124\) 5.35943 + 4.49710i 0.481291 + 0.403851i
\(125\) 8.86085 6.81801i 0.792539 0.609822i
\(126\) −3.71591 + 6.43615i −0.331040 + 0.573378i
\(127\) −4.50414 5.76503i −0.399677 0.511564i 0.545505 0.838108i \(-0.316338\pi\)
−0.945182 + 0.326544i \(0.894116\pi\)
\(128\) −5.28002 5.09886i −0.466692 0.450679i
\(129\) 0.0255412 + 0.0523672i 0.00224878 + 0.00461067i
\(130\) −2.08020 + 6.60783i −0.182446 + 0.579545i
\(131\) −1.82959 + 0.127938i −0.159852 + 0.0111780i −0.149458 0.988768i \(-0.547753\pi\)
−0.0103940 + 0.999946i \(0.503309\pi\)
\(132\) −0.136212 −0.0118558
\(133\) −11.6129 4.72884i −1.00696 0.410042i
\(134\) −1.35931 + 4.18353i −0.117427 + 0.361402i
\(135\) 0.132701 0.234792i 0.0114211 0.0202077i
\(136\) 0.514808 14.7422i 0.0441444 1.26413i
\(137\) 5.45512 + 2.90054i 0.466062 + 0.247810i 0.685857 0.727737i \(-0.259428\pi\)
−0.219795 + 0.975546i \(0.570539\pi\)
\(138\) 0.0518686 + 0.00728966i 0.00441535 + 0.000620537i
\(139\) 1.55831 + 1.99455i 0.132174 + 0.169175i 0.849545 0.527517i \(-0.176877\pi\)
−0.717371 + 0.696692i \(0.754655\pi\)
\(140\) 8.00338 1.19976i 0.676409 0.101398i
\(141\) 0.195206 0.0414922i 0.0164393 0.00349428i
\(142\) −2.88562 11.5736i −0.242156 0.971234i
\(143\) 14.8389 + 12.4514i 1.24090 + 1.04123i
\(144\) 0.0311329 0.296210i 0.00259441 0.0246842i
\(145\) −1.13359 + 0.169933i −0.0941396 + 0.0141122i
\(146\) −3.69274 + 5.47472i −0.305614 + 0.453091i
\(147\) 0.0184347 + 0.0178022i 0.00152047 + 0.00146830i
\(148\) 5.66773 0.796548i 0.465885 0.0654759i
\(149\) −6.46253 2.35217i −0.529431 0.192697i 0.0634532 0.997985i \(-0.479789\pi\)
−0.592884 + 0.805288i \(0.702011\pi\)
\(150\) 0.0854974 0.0136196i 0.00698084 0.00111204i
\(151\) −15.6294 −1.27190 −0.635952 0.771728i \(-0.719392\pi\)
−0.635952 + 0.771728i \(0.719392\pi\)
\(152\) −12.2259 + 0.393508i −0.991648 + 0.0319177i
\(153\) 12.7561 9.26788i 1.03127 0.749264i
\(154\) −3.22788 + 12.9463i −0.260110 + 1.04325i
\(155\) −9.99191 + 7.40052i −0.802570 + 0.594424i
\(156\) 0.0654455 0.0632000i 0.00523983 0.00506005i
\(157\) 0.355370 + 2.01540i 0.0283616 + 0.160847i 0.995699 0.0926449i \(-0.0295321\pi\)
−0.967338 + 0.253491i \(0.918421\pi\)
\(158\) −5.53413 1.58689i −0.440272 0.126246i
\(159\) −0.00830426 0.00922281i −0.000658570 0.000731416i
\(160\) 10.7428 6.85063i 0.849290 0.541590i
\(161\) −3.25972 + 8.06809i −0.256902 + 0.635855i
\(162\) −6.57116 + 4.10612i −0.516279 + 0.322607i
\(163\) −0.519988 + 0.110527i −0.0407286 + 0.00865713i −0.228231 0.973607i \(-0.573294\pi\)
0.187502 + 0.982264i \(0.439961\pi\)
\(164\) −1.37133 0.291486i −0.107083 0.0227612i
\(165\) 0.0564083 0.235420i 0.00439138 0.0183274i
\(166\) −13.9563 1.96143i −1.08322 0.152237i
\(167\) −3.44106 + 3.32299i −0.266277 + 0.257141i −0.815795 0.578341i \(-0.803700\pi\)
0.549518 + 0.835482i \(0.314811\pi\)
\(168\) 0.152497 + 0.0555043i 0.0117654 + 0.00428225i
\(169\) 0.0615246 0.00430222i 0.00473266 0.000330940i
\(170\) 9.75670 + 2.70109i 0.748304 + 0.207164i
\(171\) −8.37702 10.0389i −0.640607 0.767694i
\(172\) −2.95001 + 2.14331i −0.224936 + 0.163426i
\(173\) −2.88886 1.80516i −0.219636 0.137244i 0.415640 0.909529i \(-0.363558\pi\)
−0.635275 + 0.772286i \(0.719113\pi\)
\(174\) −0.00834080 0.00303580i −0.000632314 0.000230144i
\(175\) −1.24078 + 14.3293i −0.0937944 + 1.08320i
\(176\) −0.0928545 0.526604i −0.00699917 0.0396943i
\(177\) −0.119177 0.152540i −0.00895789 0.0114656i
\(178\) −0.713004 6.78378i −0.0534419 0.508466i
\(179\) 13.0162 + 5.79517i 0.972874 + 0.433151i 0.830718 0.556693i \(-0.187930\pi\)
0.142156 + 0.989844i \(0.454597\pi\)
\(180\) 7.95608 + 2.81341i 0.593011 + 0.209699i
\(181\) 1.69409 + 6.79462i 0.125921 + 0.505040i 0.999821 + 0.0189347i \(0.00602745\pi\)
−0.873900 + 0.486106i \(0.838417\pi\)
\(182\) −4.45596 7.71796i −0.330298 0.572093i
\(183\) 0.0115375 0.00513685i 0.000852880 0.000379727i
\(184\) 0.296260 + 8.48379i 0.0218406 + 0.625433i
\(185\) −0.970428 + 10.1256i −0.0713473 + 0.744447i
\(186\) −0.0953467 + 0.0134001i −0.00699116 + 0.000982543i
\(187\) 17.4281 22.3070i 1.27447 1.63125i
\(188\) 4.67875 + 11.5803i 0.341233 + 0.844581i
\(189\) 0.107214 + 0.329971i 0.00779869 + 0.0240019i
\(190\) 1.69247 8.22254i 0.122785 0.596526i
\(191\) 0.831159 2.55804i 0.0601406 0.185094i −0.916473 0.400097i \(-0.868976\pi\)
0.976613 + 0.215004i \(0.0689763\pi\)
\(192\) 0.0944390 0.00660382i 0.00681555 0.000476590i
\(193\) 11.9838 + 4.36175i 0.862613 + 0.313965i 0.735172 0.677881i \(-0.237101\pi\)
0.127441 + 0.991846i \(0.459324\pi\)
\(194\) −5.32358 + 5.14093i −0.382211 + 0.369097i
\(195\) 0.0821280 + 0.139284i 0.00588131 + 0.00997431i
\(196\) −0.896871 + 1.32967i −0.0640622 + 0.0949762i
\(197\) −1.44100 13.7102i −0.102667 0.976808i −0.917668 0.397349i \(-0.869930\pi\)
0.815001 0.579459i \(-0.196736\pi\)
\(198\) −9.30976 + 10.3395i −0.661616 + 0.734799i
\(199\) 8.63085 + 7.24214i 0.611825 + 0.513382i 0.895222 0.445621i \(-0.147017\pi\)
−0.283397 + 0.959003i \(0.591461\pi\)
\(200\) 4.57996 + 13.2628i 0.323852 + 0.937819i
\(201\) 0.0513360 + 0.0889165i 0.00362096 + 0.00627169i
\(202\) 12.0729 + 2.56617i 0.849446 + 0.180555i
\(203\) 0.824587 1.22250i 0.0578747 0.0858028i
\(204\) −0.0956400 0.0923585i −0.00669614 0.00646639i
\(205\) 1.07168 2.24941i 0.0748494 0.157105i
\(206\) 4.26649 + 6.32533i 0.297260 + 0.440706i
\(207\) −6.95094 + 5.83253i −0.483124 + 0.405389i
\(208\) 0.288948 + 0.209933i 0.0200349 + 0.0145562i
\(209\) −19.4249 13.1796i −1.34365 0.911651i
\(210\) −0.0614306 + 0.0929014i −0.00423911 + 0.00641081i
\(211\) −16.7017 10.4364i −1.14979 0.718470i −0.185327 0.982677i \(-0.559334\pi\)
−0.964466 + 0.264207i \(0.914890\pi\)
\(212\) 0.478187 0.612052i 0.0328420 0.0420359i
\(213\) −0.245818 0.130704i −0.0168432 0.00895569i
\(214\) 8.99920 4.78496i 0.615173 0.327093i
\(215\) −2.48268 5.98617i −0.169317 0.408253i
\(216\) 0.226480 + 0.251532i 0.0154100 + 0.0171146i
\(217\) 1.67202 15.9082i 0.113504 1.07992i
\(218\) 12.1601 + 10.2036i 0.823588 + 0.691073i
\(219\) 0.0372888 + 0.149557i 0.00251974 + 0.0101061i
\(220\) 15.1228 + 0.918185i 1.01958 + 0.0619040i
\(221\) 1.97639 + 18.8041i 0.132946 + 1.26490i
\(222\) −0.0440460 + 0.0653009i −0.00295617 + 0.00438271i
\(223\) 16.9758 9.02621i 1.13679 0.604440i 0.209134 0.977887i \(-0.432935\pi\)
0.927651 + 0.373447i \(0.121824\pi\)
\(224\) −2.84625 + 16.1419i −0.190173 + 1.07853i
\(225\) −8.15727 + 12.5856i −0.543818 + 0.839043i
\(226\) 10.5023 8.81250i 0.698604 0.586199i
\(227\) 5.77330 + 17.7684i 0.383187 + 1.17933i 0.937787 + 0.347212i \(0.112872\pi\)
−0.554599 + 0.832118i \(0.687128\pi\)
\(228\) −0.0710985 + 0.0842634i −0.00470861 + 0.00558048i
\(229\) −15.5828 + 11.3216i −1.02974 + 0.748150i −0.968257 0.249958i \(-0.919583\pi\)
−0.0614836 + 0.998108i \(0.519583\pi\)
\(230\) −5.70951 1.15896i −0.376474 0.0764197i
\(231\) 0.174148 + 0.258186i 0.0114581 + 0.0169874i
\(232\) 0.249801 1.41669i 0.0164003 0.0930105i
\(233\) 6.98216 14.3156i 0.457417 0.937843i −0.538066 0.842903i \(-0.680845\pi\)
0.995483 0.0949407i \(-0.0302662\pi\)
\(234\) −0.324321 9.28735i −0.0212016 0.607133i
\(235\) −21.9522 + 3.29078i −1.43200 + 0.214667i
\(236\) 8.10640 9.00307i 0.527681 0.586050i
\(237\) −0.113958 + 0.0712087i −0.00740235 + 0.00462550i
\(238\) −11.0447 + 6.90147i −0.715919 + 0.447356i
\(239\) 9.13140 10.1414i 0.590661 0.655996i −0.371514 0.928427i \(-0.621161\pi\)
0.962175 + 0.272432i \(0.0878279\pi\)
\(240\) 0.000734732 0.00440264i 4.74267e−5 0.000284189i
\(241\) 0.881822 + 25.2521i 0.0568032 + 1.62663i 0.609177 + 0.793034i \(0.291500\pi\)
−0.552374 + 0.833596i \(0.686278\pi\)
\(242\) −6.79680 + 13.9355i −0.436915 + 0.895809i
\(243\) −0.0942380 + 0.534450i −0.00604537 + 0.0342850i
\(244\) 0.441989 + 0.655275i 0.0282954 + 0.0419497i
\(245\) −1.92669 2.10073i −0.123092 0.134211i
\(246\) 0.0156093 0.0113408i 0.000995215 0.000723066i
\(247\) 15.4481 2.68043i 0.982938 0.170552i
\(248\) −4.82212 14.8410i −0.306205 0.942402i
\(249\) −0.251993 + 0.211447i −0.0159694 + 0.0133999i
\(250\) −9.58406 + 0.935775i −0.606149 + 0.0591836i
\(251\) −4.20627 + 23.8550i −0.265498 + 1.50571i 0.502116 + 0.864800i \(0.332555\pi\)
−0.767614 + 0.640912i \(0.778556\pi\)
\(252\) −9.58544 + 5.09667i −0.603826 + 0.321060i
\(253\) −9.10959 + 13.5055i −0.572715 + 0.849085i
\(254\) 0.658656 + 6.26669i 0.0413278 + 0.393207i
\(255\) 0.199232 0.127050i 0.0124764 0.00795617i
\(256\) 3.80792 + 15.2727i 0.237995 + 0.954546i
\(257\) 12.8234 + 10.7601i 0.799900 + 0.671195i 0.948174 0.317751i \(-0.102928\pi\)
−0.148275 + 0.988946i \(0.547372\pi\)
\(258\) 0.00524552 0.0499077i 0.000326572 0.00310712i
\(259\) −8.75607 9.72460i −0.544076 0.604257i
\(260\) −7.69202 + 6.57554i −0.477039 + 0.407798i
\(261\) 1.35767 0.721887i 0.0840378 0.0446837i
\(262\) 1.39477 + 0.741614i 0.0861693 + 0.0458171i
\(263\) −12.8427 + 16.4379i −0.791915 + 1.01361i 0.207460 + 0.978244i \(0.433480\pi\)
−0.999375 + 0.0353614i \(0.988742\pi\)
\(264\) 0.257649 + 0.160997i 0.0158572 + 0.00990866i
\(265\) 0.859800 + 1.07993i 0.0528171 + 0.0663395i
\(266\) 6.32399 + 8.75440i 0.387748 + 0.536767i
\(267\) −0.128804 0.0935819i −0.00788270 0.00572712i
\(268\) −4.92235 + 4.13034i −0.300680 + 0.252301i
\(269\) 0.283382 + 0.420131i 0.0172781 + 0.0256159i 0.837578 0.546318i \(-0.183971\pi\)
−0.820300 + 0.571934i \(0.806193\pi\)
\(270\) −0.204092 + 0.110930i −0.0124206 + 0.00675101i
\(271\) 2.89100 + 2.79180i 0.175616 + 0.169590i 0.777271 0.629165i \(-0.216603\pi\)
−0.601656 + 0.798755i \(0.705492\pi\)
\(272\) 0.291866 0.432709i 0.0176970 0.0262368i
\(273\) −0.203466 0.0432480i −0.0123143 0.00261749i
\(274\) −2.66069 4.60844i −0.160738 0.278406i
\(275\) −7.84959 + 25.7570i −0.473348 + 1.55320i
\(276\) 0.0586121 + 0.0491814i 0.00352804 + 0.00296037i
\(277\) 3.18469 3.53695i 0.191349 0.212515i −0.639834 0.768513i \(-0.720997\pi\)
0.831184 + 0.555998i \(0.187664\pi\)
\(278\) −0.227877 2.16811i −0.0136672 0.130034i
\(279\) 9.32723 13.8282i 0.558407 0.827872i
\(280\) −16.5566 7.19026i −0.989448 0.429700i
\(281\) 7.47754 7.22097i 0.446072 0.430767i −0.437388 0.899273i \(-0.644096\pi\)
0.883460 + 0.468506i \(0.155207\pi\)
\(282\) −0.161521 0.0587888i −0.00961842 0.00350082i
\(283\) −5.61763 + 0.392823i −0.333933 + 0.0233509i −0.235739 0.971816i \(-0.575751\pi\)
−0.0981942 + 0.995167i \(0.531307\pi\)
\(284\) 5.38429 16.5711i 0.319499 0.983316i
\(285\) −0.116192 0.157777i −0.00688260 0.00934589i
\(286\) −5.15568 15.8676i −0.304862 0.938268i
\(287\) 1.20076 + 2.97198i 0.0708785 + 0.175430i
\(288\) −10.5228 + 13.4685i −0.620060 + 0.793640i
\(289\) 10.5276 1.47956i 0.619272 0.0870330i
\(290\) 0.905563 + 0.393270i 0.0531765 + 0.0230936i
\(291\) 0.00602843 + 0.172632i 0.000353393 + 0.0101199i
\(292\) −8.81251 + 3.92358i −0.515713 + 0.229610i
\(293\) 10.1998 + 17.6666i 0.595881 + 1.03210i 0.993422 + 0.114511i \(0.0365302\pi\)
−0.397541 + 0.917584i \(0.630136\pi\)
\(294\) −0.00533989 0.0214171i −0.000311428 0.00124907i
\(295\) 12.2032 + 17.7389i 0.710500 + 1.03280i
\(296\) −11.6621 5.19231i −0.677847 0.301797i
\(297\) 0.0678948 + 0.645976i 0.00393966 + 0.0374833i
\(298\) 3.64681 + 4.66771i 0.211254 + 0.270393i
\(299\) −1.88945 10.7156i −0.109270 0.619701i
\(300\) 0.116457 + 0.0493107i 0.00672366 + 0.00284696i
\(301\) 7.83417 + 2.85140i 0.451554 + 0.164352i
\(302\) 11.4161 + 7.13358i 0.656923 + 0.410491i
\(303\) 0.233067 0.169333i 0.0133893 0.00972791i
\(304\) −0.374234 0.217429i −0.0214638 0.0124704i
\(305\) −1.31557 + 0.492539i −0.0753292 + 0.0282027i
\(306\) −13.5474 + 0.947329i −0.774455 + 0.0541552i
\(307\) 20.4872 + 7.45674i 1.16927 + 0.425579i 0.852400 0.522891i \(-0.175146\pi\)
0.316868 + 0.948469i \(0.397369\pi\)
\(308\) −14.0203 + 13.5393i −0.798883 + 0.771472i
\(309\) 0.176351 + 0.0247845i 0.0100322 + 0.00140994i
\(310\) 10.6761 0.845014i 0.606361 0.0479936i
\(311\) 28.7553 + 6.11212i 1.63056 + 0.346587i 0.930158 0.367160i \(-0.119670\pi\)
0.700404 + 0.713746i \(0.253003\pi\)
\(312\) −0.198491 + 0.0421906i −0.0112373 + 0.00238857i
\(313\) −6.97490 + 4.35840i −0.394244 + 0.246351i −0.712527 0.701645i \(-0.752449\pi\)
0.318283 + 0.947996i \(0.396894\pi\)
\(314\) 0.660299 1.63430i 0.0372628 0.0922287i
\(315\) −4.83920 18.6774i −0.272658 1.05235i
\(316\) −5.62731 6.24976i −0.316561 0.351576i
\(317\) 23.1232 + 6.63047i 1.29873 + 0.372404i 0.852600 0.522564i \(-0.175025\pi\)
0.446129 + 0.894969i \(0.352802\pi\)
\(318\) 0.00185616 + 0.0105268i 0.000104088 + 0.000590313i
\(319\) 1.98583 1.91769i 0.111185 0.107370i
\(320\) −10.5295 + 0.0965830i −0.588617 + 0.00539915i
\(321\) 0.0575519 0.230828i 0.00321223 0.0128836i
\(322\) 6.06342 4.40533i 0.337901 0.245499i
\(323\) −4.70259 22.4249i −0.261659 1.24776i
\(324\) −11.3189 −0.628827
\(325\) −8.17927 16.0174i −0.453705 0.888486i
\(326\) 0.430258 + 0.156601i 0.0238298 + 0.00867334i
\(327\) 0.366904 0.0515650i 0.0202898 0.00285155i
\(328\) 2.24938 + 2.17220i 0.124201 + 0.119940i
\(329\) 15.9683 23.6739i 0.880359 1.30519i
\(330\) −0.148652 + 0.146210i −0.00818304 + 0.00804862i
\(331\) 0.824885 7.84826i 0.0453398 0.431379i −0.948181 0.317730i \(-0.897079\pi\)
0.993521 0.113649i \(-0.0362540\pi\)
\(332\) −15.7708 13.2333i −0.865536 0.726271i
\(333\) −3.30110 13.2400i −0.180899 0.725546i
\(334\) 4.03011 0.856627i 0.220518 0.0468726i
\(335\) −5.10014 10.2179i −0.278651 0.558263i
\(336\) 0.00353519 + 0.00452484i 0.000192860 + 0.000246850i
\(337\) −17.8979 2.51538i −0.974960 0.137022i −0.366338 0.930482i \(-0.619389\pi\)
−0.608622 + 0.793460i \(0.708278\pi\)
\(338\) −0.0469027 0.0249386i −0.00255117 0.00135648i
\(339\) 0.0111678 0.319803i 0.000606550 0.0173693i
\(340\) 9.99574 + 10.8987i 0.542095 + 0.591064i
\(341\) 9.25381 28.4803i 0.501122 1.54229i
\(342\) 1.53683 + 11.1561i 0.0831021 + 0.603252i
\(343\) −16.4691 −0.889250
\(344\) 8.11329 0.567337i 0.437439 0.0305887i
\(345\) −0.109274 + 0.0809340i −0.00588312 + 0.00435734i
\(346\) 1.28618 + 2.63706i 0.0691455 + 0.141769i
\(347\) 17.7580 + 17.1487i 0.953298 + 0.920589i 0.996917 0.0784594i \(-0.0250001\pi\)
−0.0436197 + 0.999048i \(0.513889\pi\)
\(348\) −0.00798262 0.0102173i −0.000427913 0.000547704i
\(349\) −5.30919 + 9.19578i −0.284194 + 0.492239i −0.972413 0.233264i \(-0.925059\pi\)
0.688219 + 0.725503i \(0.258393\pi\)
\(350\) 7.44649 9.90017i 0.398031 0.529186i
\(351\) −0.332342 0.278868i −0.0177391 0.0148849i
\(352\) −11.4950 + 28.4512i −0.612688 + 1.51646i
\(353\) −5.77073 2.56930i −0.307145 0.136750i 0.247376 0.968920i \(-0.420432\pi\)
−0.554521 + 0.832170i \(0.687098\pi\)
\(354\) 0.0174277 + 0.165813i 0.000926271 + 0.00881288i
\(355\) 26.4106 + 16.1683i 1.40173 + 0.858122i
\(356\) 4.36799 8.95570i 0.231503 0.474651i
\(357\) −0.0527858 + 0.299363i −0.00279372 + 0.0158440i
\(358\) −6.86229 10.1738i −0.362683 0.537700i
\(359\) −3.95115 9.77943i −0.208533 0.516138i 0.786278 0.617873i \(-0.212005\pi\)
−0.994812 + 0.101734i \(0.967561\pi\)
\(360\) −11.7238 14.7253i −0.617898 0.776094i
\(361\) −18.2923 + 5.13727i −0.962753 + 0.270383i
\(362\) 1.86380 5.73617i 0.0979589 0.301487i
\(363\) 0.135567 + 0.335540i 0.00711542 + 0.0176113i
\(364\) 0.454331 13.0103i 0.0238134 0.681927i
\(365\) −3.13180 16.8558i −0.163926 0.882271i
\(366\) −0.0107719 0.00151389i −0.000563054 7.91321e-5i
\(367\) −22.9115 6.56978i −1.19597 0.342940i −0.382176 0.924090i \(-0.624825\pi\)
−0.813796 + 0.581150i \(0.802603\pi\)
\(368\) −0.150183 + 0.260124i −0.00782881 + 0.0135599i
\(369\) −0.349381 + 3.32414i −0.0181881 + 0.173048i
\(370\) 5.33034 6.95305i 0.277111 0.361472i
\(371\) −1.77149 0.123875i −0.0919711 0.00643125i
\(372\) −0.128489 0.0572068i −0.00666183 0.00296604i
\(373\) 6.20041 + 1.31794i 0.321045 + 0.0682403i 0.365616 0.930766i \(-0.380859\pi\)
−0.0445702 + 0.999006i \(0.514192\pi\)
\(374\) −22.9113 + 8.33903i −1.18471 + 0.431201i
\(375\) −0.133453 + 0.180856i −0.00689146 + 0.00933936i
\(376\) 4.83744 27.4345i 0.249472 1.41483i
\(377\) −0.0643510 + 1.84277i −0.00331424 + 0.0949075i
\(378\) 0.0722936 0.289954i 0.00371838 0.0149136i
\(379\) −14.3802 + 10.4478i −0.738660 + 0.536668i −0.892291 0.451460i \(-0.850903\pi\)
0.153631 + 0.988128i \(0.450903\pi\)
\(380\) 8.46163 8.87598i 0.434072 0.455328i
\(381\) 0.118986 + 0.0864486i 0.00609586 + 0.00442890i
\(382\) −1.77464 + 1.48910i −0.0907985 + 0.0761890i
\(383\) 9.21530 + 13.6622i 0.470880 + 0.698108i 0.987414 0.158159i \(-0.0505557\pi\)
−0.516534 + 0.856267i \(0.672778\pi\)
\(384\) 0.130289 + 0.0692757i 0.00664876 + 0.00353521i
\(385\) −17.5942 29.8387i −0.896685 1.52072i
\(386\) −6.76247 8.65557i −0.344201 0.440557i
\(387\) 5.81705 + 6.46049i 0.295697 + 0.328405i
\(388\) −10.5744 + 2.24766i −0.536834 + 0.114108i
\(389\) 9.84588 24.3694i 0.499206 1.23558i −0.441777 0.897125i \(-0.645652\pi\)
0.940983 0.338453i \(-0.109904\pi\)
\(390\) 0.00358354 0.139221i 0.000181459 0.00704973i
\(391\) −15.5536 + 3.30602i −0.786578 + 0.167192i
\(392\) 3.26806 1.45503i 0.165062 0.0734902i
\(393\) 0.0346473 0.0126106i 0.00174773 0.000636120i
\(394\) −5.20505 + 10.6719i −0.262226 + 0.537644i
\(395\) 13.1320 7.13769i 0.660744 0.359136i
\(396\) −19.5367 + 5.60205i −0.981755 + 0.281514i
\(397\) 1.53156 6.14275i 0.0768667 0.308296i −0.919540 0.392997i \(-0.871438\pi\)
0.996406 + 0.0847017i \(0.0269937\pi\)
\(398\) −2.99872 9.22912i −0.150312 0.462614i
\(399\) 0.250618 + 0.0270333i 0.0125466 + 0.00135336i
\(400\) −0.111250 + 0.483845i −0.00556251 + 0.0241922i
\(401\) 29.4324 24.6967i 1.46978 1.23329i 0.553445 0.832886i \(-0.313313\pi\)
0.916337 0.400408i \(-0.131132\pi\)
\(402\) 0.00308621 0.0883776i 0.000153926 0.00440787i
\(403\) 8.76818 + 17.9774i 0.436774 + 0.895519i
\(404\) 12.9695 + 12.5245i 0.645256 + 0.623116i
\(405\) 4.68738 19.5628i 0.232918 0.972081i
\(406\) −1.16027 + 0.516586i −0.0575833 + 0.0256378i
\(407\) −12.2490 21.2159i −0.607160 1.05163i
\(408\) 0.0717417 + 0.287740i 0.00355174 + 0.0142453i
\(409\) −29.4328 + 18.3916i −1.45536 + 0.909407i −0.455540 + 0.890215i \(0.650554\pi\)
−0.999816 + 0.0191922i \(0.993891\pi\)
\(410\) −1.80945 + 1.15388i −0.0893626 + 0.0569863i
\(411\) −0.121491 0.0258237i −0.00599270 0.00127379i
\(412\) 0.388964 + 11.1385i 0.0191629 + 0.548753i
\(413\) −27.4291 3.85491i −1.34970 0.189688i
\(414\) 7.73922 1.08768i 0.380362 0.0534564i
\(415\) 29.4025 21.7770i 1.44331 1.06899i
\(416\) −7.67785 19.0033i −0.376437 0.931715i
\(417\) −0.0411661 0.0299089i −0.00201591 0.00146465i
\(418\) 8.17299 + 18.4926i 0.399754 + 0.904502i
\(419\) −19.1294 13.8984i −0.934534 0.678979i 0.0125644 0.999921i \(-0.496001\pi\)
−0.947099 + 0.320942i \(0.896001\pi\)
\(420\) −0.148014 + 0.0675338i −0.00722237 + 0.00329531i
\(421\) 37.9075 10.8698i 1.84750 0.529761i 0.847498 0.530799i \(-0.178108\pi\)
0.999999 + 0.00103740i \(0.000330215\pi\)
\(422\) 7.43596 + 15.2460i 0.361977 + 0.742162i
\(423\) 26.2915 13.9794i 1.27834 0.679704i
\(424\) −1.62792 + 0.592514i −0.0790587 + 0.0287750i
\(425\) −22.9759 + 12.7626i −1.11450 + 0.619075i
\(426\) 0.119896 + 0.207666i 0.00580897 + 0.0100614i
\(427\) 0.676966 1.67555i 0.0327607 0.0810855i
\(428\) 14.8522 + 1.03857i 0.717910 + 0.0502011i
\(429\) −0.355754 0.158392i −0.0171759 0.00764722i
\(430\) −0.918797 + 5.50559i −0.0443083 + 0.265503i
\(431\) 22.1815 + 6.36044i 1.06845 + 0.306372i 0.763373 0.645958i \(-0.223542\pi\)
0.305072 + 0.952329i \(0.401319\pi\)
\(432\) 0.00207962 + 0.0117941i 0.000100056 + 0.000567446i
\(433\) 26.7579 25.8398i 1.28590 1.24178i 0.331429 0.943480i \(-0.392469\pi\)
0.954472 0.298300i \(-0.0964195\pi\)
\(434\) −8.48209 + 10.8566i −0.407153 + 0.521132i
\(435\) 0.0209646 0.00956541i 0.00100518 0.000458626i
\(436\) 7.16554 + 22.0533i 0.343167 + 1.05616i
\(437\) 3.59985 + 12.6848i 0.172204 + 0.606797i
\(438\) 0.0410242 0.126259i 0.00196021 0.00603291i
\(439\) 6.81631 + 4.25930i 0.325325 + 0.203285i 0.682742 0.730659i \(-0.260787\pi\)
−0.357418 + 0.933945i \(0.616343\pi\)
\(440\) −27.5199 19.6112i −1.31196 0.934929i
\(441\) 3.37621 + 1.79516i 0.160772 + 0.0854840i
\(442\) 7.13895 14.6370i 0.339565 0.696212i
\(443\) −25.2230 + 9.18041i −1.19838 + 0.436174i −0.862658 0.505787i \(-0.831202\pi\)
−0.335721 + 0.941962i \(0.608980\pi\)
\(444\) −0.105113 + 0.0467994i −0.00498845 + 0.00222100i
\(445\) 13.6695 + 11.2581i 0.647998 + 0.533683i
\(446\) −16.5193 1.15514i −0.782211 0.0546975i
\(447\) 0.137920 + 0.00964431i 0.00652340 + 0.000456160i
\(448\) 9.06420 10.0668i 0.428243 0.475612i
\(449\) −17.8970 + 30.9985i −0.844611 + 1.46291i 0.0413477 + 0.999145i \(0.486835\pi\)
−0.885959 + 0.463764i \(0.846498\pi\)
\(450\) 11.7026 5.46972i 0.551666 0.257845i
\(451\) 1.04204 + 5.90968i 0.0490675 + 0.278276i
\(452\) 19.8320 2.78720i 0.932818 0.131099i
\(453\) 0.302033 0.0866066i 0.0141908 0.00406913i
\(454\) 3.89289 15.6135i 0.182702 0.732779i
\(455\) 22.2980 + 6.17308i 1.04535 + 0.289399i
\(456\) 0.234080 0.0753510i 0.0109618 0.00352863i
\(457\) 3.18149 0.148824 0.0744120 0.997228i \(-0.476292\pi\)
0.0744120 + 0.997228i \(0.476292\pi\)
\(458\) 16.5494 1.15725i 0.773304 0.0540747i
\(459\) −0.390331 + 0.499601i −0.0182191 + 0.0233194i
\(460\) −6.17582 5.85540i −0.287949 0.273009i
\(461\) −18.4745 + 9.82307i −0.860443 + 0.457506i −0.840192 0.542289i \(-0.817558\pi\)
−0.0202513 + 0.999795i \(0.506447\pi\)
\(462\) −0.00936121 0.268070i −0.000435523 0.0124717i
\(463\) 17.6698 + 19.6243i 0.821184 + 0.912017i 0.997380 0.0723382i \(-0.0230461\pi\)
−0.176197 + 0.984355i \(0.556379\pi\)
\(464\) 0.0340589 0.0378262i 0.00158115 0.00175604i
\(465\) 0.152082 0.198380i 0.00705264 0.00919966i
\(466\) −11.6338 + 7.26963i −0.538927 + 0.336759i
\(467\) −0.325128 + 3.09339i −0.0150451 + 0.143145i −0.999466 0.0326850i \(-0.989594\pi\)
0.984421 + 0.175830i \(0.0562609\pi\)
\(468\) 6.78747 11.7563i 0.313751 0.543433i
\(469\) 14.1222 + 4.04947i 0.652101 + 0.186987i
\(470\) 17.5364 + 7.61574i 0.808892 + 0.351288i
\(471\) −0.0180353 0.0369778i −0.000831021 0.00170385i
\(472\) −25.9746 + 7.44811i −1.19558 + 0.342827i
\(473\) 13.2361 + 8.27082i 0.608596 + 0.380293i
\(474\) 0.115739 0.00531605
\(475\) 11.8365 + 18.3002i 0.543095 + 0.839671i
\(476\) −19.0245 −0.871987
\(477\) −1.57037 0.981278i −0.0719025 0.0449296i
\(478\) −11.2986 + 3.23981i −0.516784 + 0.148185i
\(479\) 7.97367 + 16.3485i 0.364326 + 0.746980i 0.999681 0.0252403i \(-0.00803508\pi\)
−0.635355 + 0.772220i \(0.719146\pi\)
\(480\) −0.169639 + 0.191914i −0.00774293 + 0.00875965i
\(481\) 15.7290 + 4.51022i 0.717180 + 0.205648i
\(482\) 10.8814 18.8472i 0.495636 0.858467i
\(483\) 0.0182856 0.173976i 0.000832024 0.00791618i
\(484\) −19.2072 + 12.0020i −0.873057 + 0.545546i
\(485\) 0.494383 19.2069i 0.0224488 0.872139i
\(486\) 0.312767 0.347363i 0.0141874 0.0157567i
\(487\) 4.41103 + 4.89894i 0.199883 + 0.221992i 0.834750 0.550629i \(-0.185612\pi\)
−0.634867 + 0.772621i \(0.718945\pi\)
\(488\) −0.0615261 1.76188i −0.00278516 0.0797565i
\(489\) 0.00943613 0.00501728i 0.000426716 0.000226889i
\(490\) 0.448485 + 2.41380i 0.0202605 + 0.109045i
\(491\) −8.96488 + 11.4745i −0.404580 + 0.517838i −0.946549 0.322560i \(-0.895457\pi\)
0.541969 + 0.840398i \(0.317679\pi\)
\(492\) 0.0281157 0.00196604i 0.00126756 8.86361e-5i
\(493\) 2.69461 0.121359
\(494\) −12.5071 5.09296i −0.562719 0.229143i
\(495\) −1.59165 36.0858i −0.0715395 1.62193i
\(496\) 0.133575 0.535741i 0.00599771 0.0240555i
\(497\) −38.2938 + 10.9806i −1.71771 + 0.492547i
\(498\) 0.280570 0.0394315i 0.0125726 0.00176697i
\(499\) −4.20784 23.8638i −0.188369 1.06829i −0.921550 0.388259i \(-0.873077\pi\)
0.733182 0.680033i \(-0.238034\pi\)
\(500\) −12.5971 6.25968i −0.563361 0.279941i
\(501\) 0.0480837 0.0832835i 0.00214822 0.00372083i
\(502\) 13.9602 15.5044i 0.623076 0.691996i
\(503\) −35.6535 2.49314i −1.58971 0.111164i −0.752706 0.658357i \(-0.771252\pi\)
−0.837006 + 0.547193i \(0.815696\pi\)
\(504\) 24.1551 + 1.68909i 1.07595 + 0.0752380i
\(505\) −27.0174 + 17.2289i −1.20226 + 0.766676i
\(506\) 12.8180 5.70696i 0.569832 0.253705i
\(507\) −0.00116510 0.000424062i −5.17440e−5 1.88333e-5i
\(508\) −4.03504 + 8.27306i −0.179026 + 0.367058i
\(509\) −31.7815 16.8985i −1.40869 0.749015i −0.421242 0.906948i \(-0.638406\pi\)
−0.987450 + 0.157934i \(0.949517\pi\)
\(510\) −0.203512 + 0.00186674i −0.00901167 + 8.26606e-5i
\(511\) 18.7039 + 11.6875i 0.827410 + 0.517023i
\(512\) −0.347047 + 1.06810i −0.0153375 + 0.0472039i
\(513\) 0.435051 + 0.295178i 0.0192080 + 0.0130324i
\(514\) −4.45538 13.7123i −0.196519 0.604822i
\(515\) −19.4120 3.94041i −0.855396 0.173635i
\(516\) 0.0451313 0.0577654i 0.00198679 0.00254298i
\(517\) 38.4558 37.1364i 1.69129 1.63326i
\(518\) 1.95715 + 11.0995i 0.0859920 + 0.487685i
\(519\) 0.0658290 + 0.0188762i 0.00288957 + 0.000828571i
\(520\) 22.3216 3.34616i 0.978868 0.146739i
\(521\) 14.3473 + 6.38781i 0.628565 + 0.279855i 0.696192 0.717855i \(-0.254876\pi\)
−0.0676271 + 0.997711i \(0.521543\pi\)
\(522\) −1.32116 0.0923845i −0.0578256 0.00404356i
\(523\) 2.35143 5.82000i 0.102821 0.254491i −0.867000 0.498307i \(-0.833955\pi\)
0.969821 + 0.243817i \(0.0783995\pi\)
\(524\) 1.15377 + 1.99839i 0.0504028 + 0.0873002i
\(525\) −0.0554248 0.283785i −0.00241893 0.0123854i
\(526\) 16.8832 6.14498i 0.736143 0.267934i
\(527\) 25.8085 13.7226i 1.12423 0.597766i
\(528\) 0.00471243 + 0.00966191i 0.000205082 + 0.000420481i
\(529\) −13.3128 + 3.81739i −0.578818 + 0.165973i
\(530\) −0.135118 1.18124i −0.00586916 0.0513096i
\(531\) −23.3669 16.9770i −1.01404 0.736741i
\(532\) 1.05748 + 15.7403i 0.0458475 + 0.682429i
\(533\) −3.24264 2.35592i −0.140454 0.102046i
\(534\) 0.0513692 + 0.127143i 0.00222296 + 0.00550203i
\(535\) −7.94560 + 25.2394i −0.343518 + 1.09120i
\(536\) 14.1926 1.99464i 0.613027 0.0861553i
\(537\) −0.283645 0.0398638i −0.0122402 0.00172025i
\(538\) −0.0152330 0.436215i −0.000656740 0.0188066i
\(539\) 6.71501 + 1.42732i 0.289236 + 0.0614790i
\(540\) −0.338699 0.0205642i −0.0145753 0.000884943i
\(541\) 34.6913 21.6775i 1.49149 0.931989i 0.493430 0.869785i \(-0.335743\pi\)
0.998064 0.0622032i \(-0.0198127\pi\)
\(542\) −0.837420 3.35871i −0.0359703 0.144269i
\(543\) −0.0703884 0.121916i −0.00302066 0.00523193i
\(544\) −27.3624 + 12.1825i −1.17315 + 0.522321i
\(545\) −41.0827 + 3.25170i −1.75979 + 0.139288i
\(546\) 0.128877 + 0.124455i 0.00551543 + 0.00532619i
\(547\) 12.4847 + 25.5973i 0.533805 + 1.09446i 0.979902 + 0.199478i \(0.0639247\pi\)
−0.446097 + 0.894985i \(0.647186\pi\)
\(548\) 0.271284 7.76857i 0.0115887 0.331857i
\(549\) 1.44354 1.21128i 0.0616089 0.0516960i
\(550\) 17.4895 15.2308i 0.745755 0.649443i
\(551\) −0.149780 2.22944i −0.00638085 0.0949774i
\(552\) −0.0527359 0.162305i −0.00224459 0.00690814i
\(553\) −4.65164 + 18.6567i −0.197808 + 0.793365i
\(554\) −3.94051 + 1.12992i −0.167416 + 0.0480058i
\(555\) −0.0373552 0.201051i −0.00158564 0.00853413i
\(556\) 1.39602 2.86225i 0.0592042 0.121387i
\(557\) 9.53142 3.46915i 0.403859 0.146993i −0.132100 0.991236i \(-0.542172\pi\)
0.535960 + 0.844244i \(0.319950\pi\)
\(558\) −13.1243 + 5.84331i −0.555595 + 0.247367i
\(559\) −10.1970 + 2.16744i −0.431287 + 0.0916729i
\(560\) −0.361989 0.526195i −0.0152968 0.0222358i
\(561\) −0.213184 + 0.527649i −0.00900063 + 0.0222773i
\(562\) −8.75757 + 1.86148i −0.369416 + 0.0785217i
\(563\) −28.0542 31.1573i −1.18234 1.31313i −0.939295 0.343111i \(-0.888519\pi\)
−0.243048 0.970014i \(-0.578147\pi\)
\(564\) −0.154585 0.197859i −0.00650919 0.00833138i
\(565\) −3.39563 + 35.4304i −0.142855 + 1.49057i
\(566\) 4.28254 + 2.27707i 0.180009 + 0.0957123i
\(567\) 14.4713 + 21.4545i 0.607736 + 0.901006i
\(568\) −29.7708 + 24.9807i −1.24916 + 1.04817i
\(569\) 31.1258 + 22.6142i 1.30486 + 0.948038i 0.999991 0.00435483i \(-0.00138619\pi\)
0.304872 + 0.952393i \(0.401386\pi\)
\(570\) 0.0128567 + 0.168276i 0.000538509 + 0.00704831i
\(571\) 26.3138 19.1181i 1.10120 0.800067i 0.119943 0.992781i \(-0.461729\pi\)
0.981255 + 0.192713i \(0.0617287\pi\)
\(572\) 5.89604 23.6477i 0.246526 0.988762i
\(573\) −0.00188708 + 0.0540390i −7.88340e−5 + 0.00225751i
\(574\) 0.479408 2.71886i 0.0200101 0.113483i
\(575\) 12.6776 8.24900i 0.528692 0.344007i
\(576\) 13.2736 4.83120i 0.553067 0.201300i
\(577\) −15.5803 3.31170i −0.648617 0.137868i −0.128157 0.991754i \(-0.540906\pi\)
−0.520460 + 0.853886i \(0.674239\pi\)
\(578\) −8.36493 3.72431i −0.347935 0.154911i
\(579\) −0.255752 0.0178839i −0.0106287 0.000743231i
\(580\) 0.817388 + 1.18817i 0.0339402 + 0.0493361i
\(581\) −4.92013 + 46.8119i −0.204121 + 1.94208i
\(582\) 0.0743892 0.128846i 0.00308353 0.00534084i
\(583\) −3.19574 0.916364i −0.132354 0.0379519i
\(584\) 21.3065 + 2.99444i 0.881671 + 0.123911i
\(585\) 17.5078 + 16.5995i 0.723860 + 0.686305i
\(586\) 0.613192 17.5595i 0.0253307 0.725378i
\(587\) 3.89828 + 9.64858i 0.160899 + 0.398239i 0.986000 0.166746i \(-0.0533261\pi\)
−0.825101 + 0.564986i \(0.808882\pi\)
\(588\) 0.00996371 0.0306651i 0.000410896 0.00126461i
\(589\) −12.7882 20.5904i −0.526930 0.848412i
\(590\) −0.817167 18.5267i −0.0336422 0.762732i
\(591\) 0.103818 + 0.256959i 0.00427051 + 0.0105699i
\(592\) −0.252583 0.374470i −0.0103811 0.0153906i
\(593\) −1.07216 + 6.08054i −0.0440285 + 0.249698i −0.998876 0.0473981i \(-0.984907\pi\)
0.954848 + 0.297096i \(0.0960182\pi\)
\(594\) 0.245244 0.502825i 0.0100625 0.0206312i
\(595\) 7.87844 32.8806i 0.322984 1.34797i
\(596\) 0.904457 + 8.60533i 0.0370480 + 0.352488i
\(597\) −0.206919 0.0921261i −0.00846862 0.00377047i
\(598\) −3.51072 + 8.68934i −0.143564 + 0.355333i
\(599\) −4.46357 3.74538i −0.182377 0.153032i 0.547029 0.837114i \(-0.315759\pi\)
−0.729406 + 0.684082i \(0.760203\pi\)
\(600\) −0.161998 0.230919i −0.00661356 0.00942725i
\(601\) 6.82835 11.8270i 0.278534 0.482435i −0.692487 0.721431i \(-0.743485\pi\)
0.971021 + 0.238996i \(0.0768182\pi\)
\(602\) −4.42083 5.65840i −0.180179 0.230619i
\(603\) 11.0199 + 10.6418i 0.448766 + 0.433368i
\(604\) 8.62028 + 17.6742i 0.350754 + 0.719153i
\(605\) −12.7893 38.1667i −0.519960 1.55170i
\(606\) −0.247524 + 0.0173086i −0.0100550 + 0.000703113i
\(607\) −25.2435 −1.02460 −0.512301 0.858806i \(-0.671207\pi\)
−0.512301 + 0.858806i \(0.671207\pi\)
\(608\) 11.6004 + 21.9617i 0.470458 + 0.890663i
\(609\) −0.00916067 + 0.0281937i −0.000371209 + 0.00114246i
\(610\) 1.18573 + 0.240689i 0.0480087 + 0.00974520i
\(611\) −1.24617 + 35.6855i −0.0504145 + 1.44368i
\(612\) −17.5159 9.31338i −0.708039 0.376471i
\(613\) −3.09683 0.435231i −0.125080 0.0175788i 0.0763554 0.997081i \(-0.475672\pi\)
−0.201435 + 0.979502i \(0.564561\pi\)
\(614\) −11.5610 14.7974i −0.466563 0.597173i
\(615\) −0.00824533 + 0.0494074i −0.000332484 + 0.00199230i
\(616\) 42.5226 9.03846i 1.71328 0.364170i
\(617\) 6.57815 + 26.3835i 0.264826 + 1.06216i 0.944465 + 0.328613i \(0.106581\pi\)
−0.679638 + 0.733547i \(0.737863\pi\)
\(618\) −0.117499 0.0985930i −0.00472649 0.00396599i
\(619\) −1.69725 + 16.1483i −0.0682182 + 0.649053i 0.905974 + 0.423333i \(0.139140\pi\)
−0.974192 + 0.225720i \(0.927527\pi\)
\(620\) 13.8797 + 7.21744i 0.557421 + 0.289859i
\(621\) 0.204024 0.302478i 0.00818719 0.0121380i
\(622\) −18.2139 17.5889i −0.730309 0.705251i
\(623\) −22.5597 + 3.17056i −0.903836 + 0.127026i
\(624\) −0.00674711 0.00245575i −0.000270100 9.83085e-5i
\(625\) 16.0355 19.1797i 0.641421 0.767189i
\(626\) 7.08389 0.283129
\(627\) 0.448411 + 0.147053i 0.0179078 + 0.00587272i
\(628\) 2.08307 1.51344i 0.0831237 0.0603929i
\(629\) 5.78488 23.2019i 0.230658 0.925120i
\(630\) −4.99008 + 15.8512i −0.198810 + 0.631525i
\(631\) 20.7790 20.0660i 0.827197 0.798815i −0.154753 0.987953i \(-0.549458\pi\)
0.981950 + 0.189138i \(0.0605694\pi\)
\(632\) 3.25725 + 18.4728i 0.129566 + 0.734807i
\(633\) 0.380585 + 0.109131i 0.0151269 + 0.00433757i
\(634\) −13.8635 15.3969i −0.550589 0.611491i
\(635\) −12.6276 10.3999i −0.501110 0.412708i
\(636\) −0.00584927 + 0.0144775i −0.000231939 + 0.000574068i
\(637\) −3.88858 + 2.42986i −0.154071 + 0.0962745i
\(638\) −2.32577 + 0.494357i −0.0920780 + 0.0195718i
\(639\) −40.6328 8.63676i −1.60741 0.341665i
\(640\) −13.9982 8.56950i −0.553326 0.338739i
\(641\) −31.0617 4.36543i −1.22686 0.172424i −0.504176 0.863601i \(-0.668204\pi\)
−0.722686 + 0.691177i \(0.757093\pi\)
\(642\) −0.147392 + 0.142335i −0.00581709 + 0.00561750i
\(643\) 30.1976 + 10.9910i 1.19088 + 0.433444i 0.860032 0.510241i \(-0.170444\pi\)
0.330846 + 0.943685i \(0.392666\pi\)
\(644\) 10.9215 0.763706i 0.430367 0.0300942i
\(645\) 0.0811478 + 0.101923i 0.00319519 + 0.00401323i
\(646\) −6.80029 + 18.5260i −0.267554 + 0.728897i
\(647\) −32.1929 + 23.3895i −1.26564 + 0.919538i −0.999020 0.0442651i \(-0.985905\pi\)
−0.266616 + 0.963803i \(0.585905\pi\)
\(648\) 21.4099 + 13.3784i 0.841060 + 0.525553i
\(649\) −48.7278 17.7355i −1.91273 0.696177i
\(650\) −1.33632 + 15.4327i −0.0524149 + 0.605320i
\(651\) 0.0558401 + 0.316685i 0.00218855 + 0.0124119i
\(652\) 0.411782 + 0.527057i 0.0161266 + 0.0206411i
\(653\) −2.36060 22.4596i −0.0923774 0.878913i −0.938350 0.345686i \(-0.887646\pi\)
0.845973 0.533226i \(-0.179021\pi\)
\(654\) −0.291531 0.129798i −0.0113998 0.00507550i
\(655\) −3.93168 + 1.16652i −0.153624 + 0.0455799i
\(656\) 0.0267670 + 0.107357i 0.00104508 + 0.00419157i
\(657\) 11.4992 + 19.9171i 0.448625 + 0.777041i
\(658\) −22.4688 + 10.0038i −0.875927 + 0.389988i
\(659\) 0.0503530 + 1.44192i 0.00196147 + 0.0561693i 0.999977 0.00680107i \(-0.00216487\pi\)
−0.998015 + 0.0629704i \(0.979943\pi\)
\(660\) −0.297331 + 0.0660557i −0.0115736 + 0.00257122i
\(661\) 11.2537 1.58161i 0.437719 0.0615174i 0.0831280 0.996539i \(-0.473509\pi\)
0.354591 + 0.935021i \(0.384620\pi\)
\(662\) −4.18462 + 5.35606i −0.162640 + 0.208169i
\(663\) −0.142391 0.352431i −0.00553002 0.0136873i
\(664\) 14.1897 + 43.6714i 0.550667 + 1.69478i
\(665\) −27.6424 4.69071i −1.07192 0.181898i
\(666\) −3.63178 + 11.1775i −0.140729 + 0.433119i
\(667\) −1.54691 + 0.108170i −0.0598966 + 0.00418838i
\(668\) 5.65562 + 2.05848i 0.218823 + 0.0796449i
\(669\) −0.278035 + 0.268496i −0.0107495 + 0.0103806i
\(670\) −0.938382 + 9.79121i −0.0362528 + 0.378267i
\(671\) 1.89184 2.80477i 0.0730338 0.108277i
\(672\) −0.0344435 0.327708i −0.00132869 0.0126416i
\(673\) 12.4187 13.7924i 0.478705 0.531656i −0.454621 0.890685i \(-0.650225\pi\)
0.933327 + 0.359029i \(0.116892\pi\)
\(674\) 11.9250 + 10.0062i 0.459333 + 0.385426i
\(675\) 0.175804 0.576868i 0.00676670 0.0222037i
\(676\) −0.0387985 0.0672009i −0.00149225 0.00258465i
\(677\) −14.4606 3.07369i −0.555766 0.118132i −0.0785376 0.996911i \(-0.525025\pi\)
−0.477228 + 0.878780i \(0.658358\pi\)
\(678\) −0.154122 + 0.228495i −0.00591900 + 0.00877528i
\(679\) 17.7798 + 17.1698i 0.682327 + 0.658916i
\(680\) −6.02542 32.4296i −0.231064 1.24362i
\(681\) −0.210026 0.311377i −0.00804822 0.0119320i
\(682\) −19.7582 + 16.5791i −0.756580 + 0.634846i
\(683\) −25.0921 18.2305i −0.960121 0.697569i −0.00694251 0.999976i \(-0.502210\pi\)
−0.953179 + 0.302407i \(0.902210\pi\)
\(684\) −6.73199 + 15.0098i −0.257404 + 0.573916i
\(685\) 13.3143 + 3.68599i 0.508713 + 0.140834i
\(686\) 12.0295 + 7.51684i 0.459287 + 0.286994i
\(687\) 0.238396 0.305134i 0.00909539 0.0116416i
\(688\) 0.254089 + 0.135102i 0.00968707 + 0.00515071i
\(689\) 1.96062 1.04248i 0.0746937 0.0397154i
\(690\) 0.116756 0.00924129i 0.00444484 0.000351810i
\(691\) 17.8140 + 19.7844i 0.677676 + 0.752635i 0.979657 0.200679i \(-0.0643147\pi\)
−0.301981 + 0.953314i \(0.597648\pi\)
\(692\) −0.447998 + 4.26242i −0.0170303 + 0.162033i
\(693\) 35.5963 + 29.8688i 1.35219 + 1.13462i
\(694\) −5.14386 20.6309i −0.195258 0.783138i
\(695\) 4.36880 + 3.59809i 0.165718 + 0.136483i
\(696\) 0.00302294 + 0.0287613i 0.000114584 + 0.00109019i
\(697\) −3.27539 + 4.85596i −0.124064 + 0.183933i
\(698\) 8.07509 4.29360i 0.305647 0.162515i
\(699\) −0.0556017 + 0.315333i −0.00210305 + 0.0119270i
\(700\) 16.8884 6.50011i 0.638320 0.245681i
\(701\) −12.6120 + 10.5827i −0.476349 + 0.399704i −0.849104 0.528226i \(-0.822858\pi\)
0.372755 + 0.927930i \(0.378413\pi\)
\(702\) 0.115470 + 0.355379i 0.00435812 + 0.0134129i
\(703\) −19.5181 3.49656i −0.736139 0.131875i
\(704\) 20.5167 14.9063i 0.773254 0.561802i
\(705\) 0.405983 0.185236i 0.0152902 0.00697638i
\(706\) 3.04241 + 4.51055i 0.114502 + 0.169757i
\(707\) 7.15814 40.5958i 0.269210 1.52676i
\(708\) −0.106765 + 0.218901i −0.00401247 + 0.00822679i
\(709\) 1.31022 + 37.5197i 0.0492062 + 1.40908i 0.733408 + 0.679788i \(0.237928\pi\)
−0.684202 + 0.729292i \(0.739849\pi\)
\(710\) −11.9114 23.8640i −0.447029 0.895601i
\(711\) −13.4161 + 14.9001i −0.503144 + 0.558798i
\(712\) −18.8474 + 11.7771i −0.706335 + 0.441367i
\(713\) −14.2651 + 8.91384i −0.534233 + 0.333826i
\(714\) 0.175191 0.194570i 0.00655637 0.00728159i
\(715\) 38.4294 + 19.9833i 1.43718 + 0.747334i
\(716\) −0.625617 17.9153i −0.0233804 0.669527i
\(717\) −0.120265 + 0.246579i −0.00449137 + 0.00920867i
\(718\) −1.57751 + 8.94651i −0.0588722 + 0.333881i
\(719\) 22.7525 + 33.7320i 0.848527 + 1.25799i 0.964325 + 0.264720i \(0.0852794\pi\)
−0.115799 + 0.993273i \(0.536943\pi\)
\(720\) −0.0756876 0.661680i −0.00282071 0.0246593i
\(721\) 20.6153 14.9779i 0.767754 0.557806i
\(722\) 15.7059 + 4.59658i 0.584513 + 0.171067i
\(723\) −0.156969 0.483101i −0.00583775 0.0179667i
\(724\) 6.74919 5.66324i 0.250832 0.210473i
\(725\) −2.39205 + 0.920669i −0.0888384 + 0.0341928i
\(726\) 0.0541256 0.306962i 0.00200879 0.0113924i
\(727\) −35.5370 + 18.8953i −1.31799 + 0.700790i −0.971450 0.237244i \(-0.923756\pi\)
−0.346544 + 0.938034i \(0.612645\pi\)
\(728\) −16.2370 + 24.0724i −0.601783 + 0.892181i
\(729\) 2.81999 + 26.8304i 0.104444 + 0.993718i
\(730\) −5.40575 + 13.7413i −0.200076 + 0.508587i
\(731\) 3.68556 + 14.7820i 0.136315 + 0.546731i
\(732\) −0.0121723 0.0102138i −0.000449902 0.000377513i
\(733\) 4.29164 40.8323i 0.158515 1.50817i −0.569146 0.822237i \(-0.692726\pi\)
0.727661 0.685937i \(-0.240607\pi\)
\(734\) 13.7366 + 15.2560i 0.507026 + 0.563109i
\(735\) 0.0488733 + 0.0299196i 0.00180272 + 0.00110360i
\(736\) 15.2190 8.09210i 0.560981 0.298279i
\(737\) 24.2844 + 12.9122i 0.894526 + 0.475628i
\(738\) 1.77240 2.26857i 0.0652429 0.0835071i
\(739\) −25.0060 15.6255i −0.919862 0.574794i −0.0147147 0.999892i \(-0.504684\pi\)
−0.905147 + 0.425098i \(0.860240\pi\)
\(740\) 11.9855 4.48729i 0.440597 0.164956i
\(741\) −0.283676 + 0.137400i −0.0104211 + 0.00504752i
\(742\) 1.23740 + 0.899024i 0.0454264 + 0.0330042i
\(743\) −2.57376 + 2.15964i −0.0944221 + 0.0792296i −0.688777 0.724973i \(-0.741852\pi\)
0.594355 + 0.804203i \(0.297408\pi\)
\(744\) 0.175423 + 0.260076i 0.00643133 + 0.00953484i
\(745\) −15.2474 2.00044i −0.558621 0.0732906i
\(746\) −3.92740 3.79265i −0.143792 0.138859i
\(747\) −27.4466 + 40.6912i −1.00422 + 1.48881i
\(748\) −34.8377 7.40499i −1.27379 0.270753i
\(749\) −17.0201 29.4797i −0.621901 1.07716i
\(750\) 0.180023 0.0711912i 0.00657352 0.00259954i
\(751\) 16.1911 + 13.5860i 0.590823 + 0.495760i 0.888481 0.458913i \(-0.151761\pi\)
−0.297658 + 0.954673i \(0.596205\pi\)
\(752\) 0.659556 0.732511i 0.0240515 0.0267119i
\(753\) −0.0509017 0.484297i −0.00185496 0.0176488i
\(754\) 0.888081 1.31663i 0.0323420 0.0479490i
\(755\) −34.1167 + 7.57944i −1.24163 + 0.275844i
\(756\) 0.314008 0.303234i 0.0114204 0.0110285i
\(757\) 47.7055 + 17.3634i 1.73389 + 0.631083i 0.998895 0.0469953i \(-0.0149646\pi\)
0.734990 + 0.678078i \(0.237187\pi\)
\(758\) 15.2722 1.06794i 0.554712 0.0387892i
\(759\) 0.101202 0.311468i 0.00367340 0.0113056i
\(760\) −26.4964 + 6.78786i −0.961124 + 0.246221i
\(761\) −11.4184 35.1421i −0.413916 1.27390i −0.913217 0.407473i \(-0.866410\pi\)
0.499302 0.866428i \(-0.333590\pi\)
\(762\) −0.0474536 0.117452i −0.00171906 0.00425483i
\(763\) 32.6400 41.7773i 1.18165 1.51244i
\(764\) −3.35113 + 0.470970i −0.121240 + 0.0170391i
\(765\) 23.3503 26.4164i 0.844232 0.955088i
\(766\) −0.495361 14.1853i −0.0178981 0.512535i
\(767\) 31.6410 14.0875i 1.14249 0.508669i
\(768\) −0.158217 0.274040i −0.00570916 0.00988855i
\(769\) −5.85521 23.4840i −0.211144 0.846853i −0.978603 0.205755i \(-0.934035\pi\)
0.767459 0.641098i \(-0.22