# Properties

 Label 475.2.bc.a.6.19 Level $475$ Weight $2$ Character 475.6 Analytic conductor $3.793$ Analytic rank $0$ Dimension $1152$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [475,2,Mod(6,475)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(475, base_ring=CyclotomicField(90))

chi = DirichletCharacter(H, H._module([36, 70]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("475.6");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$475 = 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 475.bc (of order $$45$$, degree $$24$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$3.79289409601$$ Analytic rank: $$0$$ Dimension: $$1152$$ Relative dimension: $$48$$ over $$\Q(\zeta_{45})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{45}]$

## Embedding invariants

 Embedding label 6.19 Character $$\chi$$ $$=$$ 475.6 Dual form 475.2.bc.a.396.19

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.730424 - 0.456420i) q^{2} +(-0.0193247 + 0.00554125i) q^{3} +(-0.551542 - 1.13083i) q^{4} +(2.18285 - 0.484947i) q^{5} +(0.0166443 + 0.00477268i) q^{6} +(-1.43830 + 2.49120i) q^{7} +(-0.293334 + 2.79088i) q^{8} +(-2.54380 + 1.58954i) q^{9} +O(q^{10})$$ $$q+(-0.730424 - 0.456420i) q^{2} +(-0.0193247 + 0.00554125i) q^{3} +(-0.551542 - 1.13083i) q^{4} +(2.18285 - 0.484947i) q^{5} +(0.0166443 + 0.00477268i) q^{6} +(-1.43830 + 2.49120i) q^{7} +(-0.293334 + 2.79088i) q^{8} +(-2.54380 + 1.58954i) q^{9} +(-1.81574 - 0.642078i) q^{10} +(-3.60347 + 4.00206i) q^{11} +(0.0169246 + 0.0187966i) q^{12} +(-0.125533 - 3.59480i) q^{13} +(2.18760 - 1.16317i) q^{14} +(-0.0394956 + 0.0214671i) q^{15} +(-0.0611315 + 0.0782447i) q^{16} +(-5.24372 + 0.366677i) q^{17} +2.58355 q^{18} +(0.594850 + 4.31812i) q^{19} +(-1.75232 - 2.20096i) q^{20} +(0.0139902 - 0.0561115i) q^{21} +(4.45868 - 1.27851i) q^{22} +(2.99557 - 0.421000i) q^{23} +(-0.00979642 - 0.0555583i) q^{24} +(4.52965 - 2.11713i) q^{25} +(-1.54904 + 2.68302i) q^{26} +(0.0807055 - 0.0896325i) q^{27} +(3.61040 + 0.252464i) q^{28} +(-0.511373 - 0.0357587i) q^{29} +(0.0386465 + 0.00234643i) q^{30} +(-5.07994 + 2.26173i) q^{31} +(5.35440 - 1.94884i) q^{32} +(0.0474594 - 0.0973061i) q^{33} +(3.99750 + 2.12551i) q^{34} +(-1.93148 + 6.13541i) q^{35} +(3.20051 + 1.99990i) q^{36} +(-1.40573 + 4.32640i) q^{37} +(1.53638 - 3.42556i) q^{38} +(0.0223456 + 0.0687726i) q^{39} +(0.713127 + 6.23433i) q^{40} +(0.686032 - 0.878080i) q^{41} +(-0.0358292 + 0.0345998i) q^{42} +(-0.503268 - 2.85417i) q^{43} +(6.51311 + 1.86760i) q^{44} +(-4.78189 + 4.70334i) q^{45} +(-2.38019 - 1.05973i) q^{46} +(-9.90282 - 0.692472i) q^{47} +(0.000747770 - 0.00185080i) q^{48} +(-0.637385 - 1.10398i) q^{49} +(-4.27487 - 0.521020i) q^{50} +(0.0993013 - 0.0361427i) q^{51} +(-3.99586 + 2.12464i) q^{52} +(0.270621 + 0.554856i) q^{53} +(-0.0998593 + 0.0286342i) q^{54} +(-5.92504 + 10.4834i) q^{55} +(-6.53075 - 4.74487i) q^{56} +(-0.0354231 - 0.0801499i) q^{57} +(0.357198 + 0.259520i) q^{58} +(3.60708 + 8.92784i) q^{59} +(0.0460591 + 0.0328227i) q^{60} +(-0.622108 + 0.0874316i) q^{61} +(4.74281 + 0.666558i) q^{62} +(-0.301134 - 8.62335i) q^{63} +(-4.60622 - 0.979083i) q^{64} +(-2.01730 - 7.78602i) q^{65} +(-0.0790779 + 0.0494134i) q^{66} +(-1.23554 - 4.95548i) q^{67} +(3.30678 + 5.72751i) q^{68} +(-0.0555555 + 0.0247349i) q^{69} +(4.21112 - 3.59988i) q^{70} +(9.96193 + 9.62012i) q^{71} +(-3.69005 - 7.56572i) q^{72} +(0.267579 - 7.66246i) q^{73} +(3.00143 - 2.51850i) q^{74} +(-0.0758024 + 0.0660128i) q^{75} +(4.55497 - 3.05430i) q^{76} +(-4.78708 - 14.7331i) q^{77} +(0.0150674 - 0.0604321i) q^{78} +(6.42532 - 1.84243i) q^{79} +(-0.0954962 + 0.200442i) q^{80} +(3.94375 - 8.08588i) q^{81} +(-0.901867 + 0.328253i) q^{82} +(14.9484 - 6.65544i) q^{83} +(-0.0711687 + 0.0151274i) q^{84} +(-11.2684 + 3.34333i) q^{85} +(-0.935102 + 2.31446i) q^{86} +(0.0100803 - 0.00214262i) q^{87} +(-10.1123 - 11.2308i) q^{88} +(4.87579 + 6.24073i) q^{89} +(5.63950 - 1.25289i) q^{90} +(9.13591 + 4.85765i) q^{91} +(-2.12826 - 3.15528i) q^{92} +(0.0856352 - 0.0718565i) q^{93} +(6.91720 + 5.02564i) q^{94} +(3.39253 + 9.13733i) q^{95} +(-0.0926729 + 0.0673308i) q^{96} +(2.07869 - 8.33719i) q^{97} +(-0.0383183 + 1.09729i) q^{98} +(2.80507 - 15.9083i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9}+O(q^{10})$$ 1152 * q - 18 * q^2 - 18 * q^3 - 18 * q^4 - 24 * q^5 - 18 * q^6 - 30 * q^7 - 9 * q^8 - 18 * q^9 $$1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9} - 33 q^{10} - 9 q^{12} - 18 q^{13} - 18 q^{14} + 27 q^{15} - 30 q^{16} - 36 q^{17} - 144 q^{18} - 18 q^{19} - 54 q^{20} + 9 q^{21} + 6 q^{22} - 24 q^{23} - 120 q^{24} - 90 q^{25} - 24 q^{26} - 9 q^{27} + 54 q^{28} + 9 q^{30} - 45 q^{31} - 138 q^{32} + 54 q^{33} - 18 q^{34} + 45 q^{35} - 72 q^{36} - 36 q^{37} + 93 q^{38} - 36 q^{39} + 57 q^{40} - 18 q^{41} + 36 q^{42} - 252 q^{43} - 42 q^{44} - 90 q^{45} - 69 q^{46} - 18 q^{47} + 6 q^{48} - 486 q^{49} + 21 q^{50} + 12 q^{51} - 36 q^{53} - 120 q^{54} - 3 q^{55} + 234 q^{56} + 90 q^{57} + 180 q^{58} + 18 q^{59} + 69 q^{60} - 90 q^{61} - 144 q^{62} - 27 q^{63} + 93 q^{64} - 72 q^{65} + 42 q^{66} + 54 q^{67} - 48 q^{68} - 57 q^{69} + 12 q^{70} - 60 q^{71} - 318 q^{72} - 36 q^{73} - 66 q^{74} - 132 q^{75} - 48 q^{76} + 222 q^{77} - 39 q^{78} + 6 q^{79} + 129 q^{80} - 84 q^{81} + 120 q^{82} + 45 q^{83} - 63 q^{84} - 18 q^{85} + 72 q^{86} - 33 q^{87} - 45 q^{88} + 18 q^{89} + 57 q^{90} + 45 q^{91} + 324 q^{92} - 78 q^{93} - 24 q^{94} + 81 q^{95} - 132 q^{96} - 96 q^{97} - 153 q^{98} - 6 q^{99}+O(q^{100})$$ 1152 * q - 18 * q^2 - 18 * q^3 - 18 * q^4 - 24 * q^5 - 18 * q^6 - 30 * q^7 - 9 * q^8 - 18 * q^9 - 33 * q^10 - 9 * q^12 - 18 * q^13 - 18 * q^14 + 27 * q^15 - 30 * q^16 - 36 * q^17 - 144 * q^18 - 18 * q^19 - 54 * q^20 + 9 * q^21 + 6 * q^22 - 24 * q^23 - 120 * q^24 - 90 * q^25 - 24 * q^26 - 9 * q^27 + 54 * q^28 + 9 * q^30 - 45 * q^31 - 138 * q^32 + 54 * q^33 - 18 * q^34 + 45 * q^35 - 72 * q^36 - 36 * q^37 + 93 * q^38 - 36 * q^39 + 57 * q^40 - 18 * q^41 + 36 * q^42 - 252 * q^43 - 42 * q^44 - 90 * q^45 - 69 * q^46 - 18 * q^47 + 6 * q^48 - 486 * q^49 + 21 * q^50 + 12 * q^51 - 36 * q^53 - 120 * q^54 - 3 * q^55 + 234 * q^56 + 90 * q^57 + 180 * q^58 + 18 * q^59 + 69 * q^60 - 90 * q^61 - 144 * q^62 - 27 * q^63 + 93 * q^64 - 72 * q^65 + 42 * q^66 + 54 * q^67 - 48 * q^68 - 57 * q^69 + 12 * q^70 - 60 * q^71 - 318 * q^72 - 36 * q^73 - 66 * q^74 - 132 * q^75 - 48 * q^76 + 222 * q^77 - 39 * q^78 + 6 * q^79 + 129 * q^80 - 84 * q^81 + 120 * q^82 + 45 * q^83 - 63 * q^84 - 18 * q^85 + 72 * q^86 - 33 * q^87 - 45 * q^88 + 18 * q^89 + 57 * q^90 + 45 * q^91 + 324 * q^92 - 78 * q^93 - 24 * q^94 + 81 * q^95 - 132 * q^96 - 96 * q^97 - 153 * q^98 - 6 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/475\mathbb{Z}\right)^\times$$.

 $$n$$ $$77$$ $$401$$ $$\chi(n)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{7}{9}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.730424 0.456420i −0.516488 0.322737i 0.246508 0.969141i $$-0.420717\pi$$
−0.762996 + 0.646403i $$0.776272\pi$$
$$3$$ −0.0193247 + 0.00554125i −0.0111571 + 0.00319924i −0.281211 0.959646i $$-0.590736\pi$$
0.270054 + 0.962845i $$0.412958\pi$$
$$4$$ −0.551542 1.13083i −0.275771 0.565414i
$$5$$ 2.18285 0.484947i 0.976199 0.216875i
$$6$$ 0.0166443 + 0.00477268i 0.00679502 + 0.00194844i
$$7$$ −1.43830 + 2.49120i −0.543624 + 0.941585i 0.455068 + 0.890457i $$0.349615\pi$$
−0.998692 + 0.0511283i $$0.983718\pi$$
$$8$$ −0.293334 + 2.79088i −0.103709 + 0.986726i
$$9$$ −2.54380 + 1.58954i −0.847934 + 0.529848i
$$10$$ −1.81574 0.642078i −0.574189 0.203043i
$$11$$ −3.60347 + 4.00206i −1.08649 + 1.20667i −0.109362 + 0.994002i $$0.534881\pi$$
−0.977125 + 0.212664i $$0.931786\pi$$
$$12$$ 0.0169246 + 0.0187966i 0.00488570 + 0.00542612i
$$13$$ −0.125533 3.59480i −0.0348166 0.997017i −0.883590 0.468261i $$-0.844881\pi$$
0.848774 0.528756i $$-0.177341\pi$$
$$14$$ 2.18760 1.16317i 0.584660 0.310869i
$$15$$ −0.0394956 + 0.0214671i −0.0101977 + 0.00554279i
$$16$$ −0.0611315 + 0.0782447i −0.0152829 + 0.0195612i
$$17$$ −5.24372 + 0.366677i −1.27179 + 0.0889322i −0.689642 0.724151i $$-0.742232\pi$$
−0.582148 + 0.813083i $$0.697788\pi$$
$$18$$ 2.58355 0.608949
$$19$$ 0.594850 + 4.31812i 0.136468 + 0.990644i
$$20$$ −1.75232 2.20096i −0.391831 0.492149i
$$21$$ 0.0139902 0.0561115i 0.00305291 0.0122445i
$$22$$ 4.45868 1.27851i 0.950594 0.272578i
$$23$$ 2.99557 0.421000i 0.624620 0.0877846i 0.180240 0.983623i $$-0.442313\pi$$
0.444381 + 0.895838i $$0.353424\pi$$
$$24$$ −0.00979642 0.0555583i −0.00199969 0.0113408i
$$25$$ 4.52965 2.11713i 0.905931 0.423426i
$$26$$ −1.54904 + 2.68302i −0.303792 + 0.526184i
$$27$$ 0.0807055 0.0896325i 0.0155318 0.0172498i
$$28$$ 3.61040 + 0.252464i 0.682301 + 0.0477112i
$$29$$ −0.511373 0.0357587i −0.0949596 0.00664022i 0.0221976 0.999754i $$-0.492934\pi$$
−0.117157 + 0.993113i $$0.537378\pi$$
$$30$$ 0.0386465 + 0.00234643i 0.00705586 + 0.000428398i
$$31$$ −5.07994 + 2.26173i −0.912384 + 0.406219i −0.808585 0.588379i $$-0.799766\pi$$
−0.103798 + 0.994598i $$0.533100\pi$$
$$32$$ 5.35440 1.94884i 0.946533 0.344510i
$$33$$ 0.0474594 0.0973061i 0.00826162 0.0169388i
$$34$$ 3.99750 + 2.12551i 0.685566 + 0.364522i
$$35$$ −1.93148 + 6.13541i −0.326480 + 1.03707i
$$36$$ 3.20051 + 1.99990i 0.533419 + 0.333317i
$$37$$ −1.40573 + 4.32640i −0.231101 + 0.711256i 0.766514 + 0.642228i $$0.221990\pi$$
−0.997615 + 0.0690278i $$0.978010\pi$$
$$38$$ 1.53638 3.42556i 0.249234 0.555699i
$$39$$ 0.0223456 + 0.0687726i 0.00357815 + 0.0110124i
$$40$$ 0.713127 + 6.23433i 0.112755 + 0.985733i
$$41$$ 0.686032 0.878080i 0.107140 0.137133i −0.731452 0.681893i $$-0.761157\pi$$
0.838592 + 0.544760i $$0.183379\pi$$
$$42$$ −0.0358292 + 0.0345998i −0.00552856 + 0.00533887i
$$43$$ −0.503268 2.85417i −0.0767476 0.435257i −0.998834 0.0482736i $$-0.984628\pi$$
0.922087 0.386984i $$-0.126483\pi$$
$$44$$ 6.51311 + 1.86760i 0.981888 + 0.281552i
$$45$$ −4.78189 + 4.70334i −0.712842 + 0.701133i
$$46$$ −2.38019 1.05973i −0.350940 0.156249i
$$47$$ −9.90282 0.692472i −1.44447 0.101007i −0.674119 0.738623i $$-0.735477\pi$$
−0.770355 + 0.637615i $$0.779921\pi$$
$$48$$ 0.000747770 0.00185080i 0.000107931 0.000267139i
$$49$$ −0.637385 1.10398i −0.0910550 0.157712i
$$50$$ −4.27487 0.521020i −0.604558 0.0736834i
$$51$$ 0.0993013 0.0361427i 0.0139050 0.00506099i
$$52$$ −3.99586 + 2.12464i −0.554126 + 0.294634i
$$53$$ 0.270621 + 0.554856i 0.0371727 + 0.0762153i 0.916572 0.399869i $$-0.130944\pi$$
−0.879399 + 0.476085i $$0.842056\pi$$
$$54$$ −0.0998593 + 0.0286342i −0.0135891 + 0.00389662i
$$55$$ −5.92504 + 10.4834i −0.798933 + 1.41358i
$$56$$ −6.53075 4.74487i −0.872708 0.634059i
$$57$$ −0.0354231 0.0801499i −0.00469190 0.0106161i
$$58$$ 0.357198 + 0.259520i 0.0469024 + 0.0340766i
$$59$$ 3.60708 + 8.92784i 0.469602 + 1.16231i 0.957249 + 0.289265i $$0.0934108\pi$$
−0.487647 + 0.873041i $$0.662145\pi$$
$$60$$ 0.0460591 + 0.0328227i 0.00594620 + 0.00423739i
$$61$$ −0.622108 + 0.0874316i −0.0796528 + 0.0111945i −0.178887 0.983870i $$-0.557250\pi$$
0.0992341 + 0.995064i $$0.468361\pi$$
$$62$$ 4.74281 + 0.666558i 0.602337 + 0.0846530i
$$63$$ −0.301134 8.62335i −0.0379393 1.08644i
$$64$$ −4.60622 0.979083i −0.575778 0.122385i
$$65$$ −2.01730 7.78602i −0.250216 0.965737i
$$66$$ −0.0790779 + 0.0494134i −0.00973382 + 0.00608237i
$$67$$ −1.23554 4.95548i −0.150945 0.605409i −0.997342 0.0728564i $$-0.976789\pi$$
0.846397 0.532552i $$-0.178767\pi$$
$$68$$ 3.30678 + 5.72751i 0.401006 + 0.694563i
$$69$$ −0.0555555 + 0.0247349i −0.00668810 + 0.00297773i
$$70$$ 4.21112 3.59988i 0.503325 0.430269i
$$71$$ 9.96193 + 9.62012i 1.18226 + 1.14170i 0.986962 + 0.160955i $$0.0514575\pi$$
0.195302 + 0.980743i $$0.437431\pi$$
$$72$$ −3.69005 7.56572i −0.434876 0.891629i
$$73$$ 0.267579 7.66246i 0.0313178 0.896823i −0.877487 0.479601i $$-0.840781\pi$$
0.908804 0.417222i $$-0.136996\pi$$
$$74$$ 3.00143 2.51850i 0.348910 0.292770i
$$75$$ −0.0758024 + 0.0660128i −0.00875291 + 0.00762250i
$$76$$ 4.55497 3.05430i 0.522490 0.350352i
$$77$$ −4.78708 14.7331i −0.545538 1.67899i
$$78$$ 0.0150674 0.0604321i 0.00170605 0.00684259i
$$79$$ 6.42532 1.84243i 0.722905 0.207290i 0.106044 0.994361i $$-0.466182\pi$$
0.616861 + 0.787072i $$0.288404\pi$$
$$80$$ −0.0954962 + 0.200442i −0.0106768 + 0.0224101i
$$81$$ 3.94375 8.08588i 0.438194 0.898431i
$$82$$ −0.901867 + 0.328253i −0.0995946 + 0.0362495i
$$83$$ 14.9484 6.65544i 1.64080 0.730530i 0.641468 0.767150i $$-0.278326\pi$$
0.999329 + 0.0366200i $$0.0116591\pi$$
$$84$$ −0.0711687 + 0.0151274i −0.00776514 + 0.00165053i
$$85$$ −11.2684 + 3.34333i −1.22223 + 0.362635i
$$86$$ −0.935102 + 2.31446i −0.100835 + 0.249575i
$$87$$ 0.0100803 0.00214262i 0.00108072 0.000229713i
$$88$$ −10.1123 11.2308i −1.07797 1.19721i
$$89$$ 4.87579 + 6.24073i 0.516833 + 0.661516i 0.973651 0.228045i $$-0.0732332\pi$$
−0.456818 + 0.889560i $$0.651011\pi$$
$$90$$ 5.63950 1.25289i 0.594456 0.132066i
$$91$$ 9.13591 + 4.85765i 0.957704 + 0.509220i
$$92$$ −2.12826 3.15528i −0.221887 0.328961i
$$93$$ 0.0856352 0.0718565i 0.00887995 0.00745117i
$$94$$ 6.91720 + 5.02564i 0.713455 + 0.518355i
$$95$$ 3.39253 + 9.13733i 0.348066 + 0.937470i
$$96$$ −0.0926729 + 0.0673308i −0.00945839 + 0.00687192i
$$97$$ 2.07869 8.33719i 0.211059 0.846513i −0.767584 0.640948i $$-0.778541\pi$$
0.978644 0.205565i $$-0.0659031\pi$$
$$98$$ −0.0383183 + 1.09729i −0.00387073 + 0.110843i
$$99$$ 2.80507 15.9083i 0.281920 1.59885i
$$100$$ −4.89240 3.95457i −0.489240 0.395457i
$$101$$ −13.4660 + 4.90122i −1.33992 + 0.487689i −0.909786 0.415078i $$-0.863754\pi$$
−0.430129 + 0.902767i $$0.641532\pi$$
$$102$$ −0.0890283 0.0189235i −0.00881511 0.00187371i
$$103$$ −8.09253 3.60303i −0.797380 0.355017i −0.0327319 0.999464i $$-0.510421\pi$$
−0.764649 + 0.644448i $$0.777087\pi$$
$$104$$ 10.0695 + 0.704127i 0.987394 + 0.0690453i
$$105$$ 0.00332733 0.129267i 0.000324714 0.0126152i
$$106$$ 0.0555788 0.528797i 0.00539829 0.0513613i
$$107$$ −5.91677 + 10.2481i −0.571995 + 0.990725i 0.424366 + 0.905491i $$0.360497\pi$$
−0.996361 + 0.0852341i $$0.972836\pi$$
$$108$$ −0.145871 0.0418279i −0.0140365 0.00402490i
$$109$$ −18.2508 2.56499i −1.74811 0.245681i −0.808640 0.588304i $$-0.799796\pi$$
−0.939473 + 0.342623i $$0.888685\pi$$
$$110$$ 9.11262 4.95301i 0.868854 0.472251i
$$111$$ 0.00319161 0.0913957i 0.000302934 0.00867489i
$$112$$ −0.106998 0.264830i −0.0101104 0.0250241i
$$113$$ −4.91880 + 15.1385i −0.462722 + 1.42411i 0.399103 + 0.916906i $$0.369322\pi$$
−0.861825 + 0.507206i $$0.830678\pi$$
$$114$$ −0.0107081 + 0.0747112i −0.00100291 + 0.00699735i
$$115$$ 6.33472 2.37167i 0.590715 0.221160i
$$116$$ 0.241607 + 0.597997i 0.0224326 + 0.0555227i
$$117$$ 6.03342 + 8.94491i 0.557790 + 0.826957i
$$118$$ 1.44014 8.16745i 0.132576 0.751875i
$$119$$ 6.62856 13.5906i 0.607639 1.24584i
$$120$$ −0.0483269 0.116525i −0.00441162 0.0106372i
$$121$$ −1.88167 17.9029i −0.171061 1.62753i
$$122$$ 0.494308 + 0.220080i 0.0447526 + 0.0199251i
$$123$$ −0.00839165 + 0.0207701i −0.000756650 + 0.00187277i
$$124$$ 5.35943 + 4.49710i 0.481291 + 0.403851i
$$125$$ 8.86085 6.81801i 0.792539 0.609822i
$$126$$ −3.71591 + 6.43615i −0.331040 + 0.573378i
$$127$$ −4.50414 5.76503i −0.399677 0.511564i 0.545505 0.838108i $$-0.316338\pi$$
−0.945182 + 0.326544i $$0.894116\pi$$
$$128$$ −5.28002 5.09886i −0.466692 0.450679i
$$129$$ 0.0255412 + 0.0523672i 0.00224878 + 0.00461067i
$$130$$ −2.08020 + 6.60783i −0.182446 + 0.579545i
$$131$$ −1.82959 + 0.127938i −0.159852 + 0.0111780i −0.149458 0.988768i $$-0.547753\pi$$
−0.0103940 + 0.999946i $$0.503309\pi$$
$$132$$ −0.136212 −0.0118558
$$133$$ −11.6129 4.72884i −1.00696 0.410042i
$$134$$ −1.35931 + 4.18353i −0.117427 + 0.361402i
$$135$$ 0.132701 0.234792i 0.0114211 0.0202077i
$$136$$ 0.514808 14.7422i 0.0441444 1.26413i
$$137$$ 5.45512 + 2.90054i 0.466062 + 0.247810i 0.685857 0.727737i $$-0.259428\pi$$
−0.219795 + 0.975546i $$0.570539\pi$$
$$138$$ 0.0518686 + 0.00728966i 0.00441535 + 0.000620537i
$$139$$ 1.55831 + 1.99455i 0.132174 + 0.169175i 0.849545 0.527517i $$-0.176877\pi$$
−0.717371 + 0.696692i $$0.754655\pi$$
$$140$$ 8.00338 1.19976i 0.676409 0.101398i
$$141$$ 0.195206 0.0414922i 0.0164393 0.00349428i
$$142$$ −2.88562 11.5736i −0.242156 0.971234i
$$143$$ 14.8389 + 12.4514i 1.24090 + 1.04123i
$$144$$ 0.0311329 0.296210i 0.00259441 0.0246842i
$$145$$ −1.13359 + 0.169933i −0.0941396 + 0.0141122i
$$146$$ −3.69274 + 5.47472i −0.305614 + 0.453091i
$$147$$ 0.0184347 + 0.0178022i 0.00152047 + 0.00146830i
$$148$$ 5.66773 0.796548i 0.465885 0.0654759i
$$149$$ −6.46253 2.35217i −0.529431 0.192697i 0.0634532 0.997985i $$-0.479789\pi$$
−0.592884 + 0.805288i $$0.702011\pi$$
$$150$$ 0.0854974 0.0136196i 0.00698084 0.00111204i
$$151$$ −15.6294 −1.27190 −0.635952 0.771728i $$-0.719392\pi$$
−0.635952 + 0.771728i $$0.719392\pi$$
$$152$$ −12.2259 + 0.393508i −0.991648 + 0.0319177i
$$153$$ 12.7561 9.26788i 1.03127 0.749264i
$$154$$ −3.22788 + 12.9463i −0.260110 + 1.04325i
$$155$$ −9.99191 + 7.40052i −0.802570 + 0.594424i
$$156$$ 0.0654455 0.0632000i 0.00523983 0.00506005i
$$157$$ 0.355370 + 2.01540i 0.0283616 + 0.160847i 0.995699 0.0926449i $$-0.0295321\pi$$
−0.967338 + 0.253491i $$0.918421\pi$$
$$158$$ −5.53413 1.58689i −0.440272 0.126246i
$$159$$ −0.00830426 0.00922281i −0.000658570 0.000731416i
$$160$$ 10.7428 6.85063i 0.849290 0.541590i
$$161$$ −3.25972 + 8.06809i −0.256902 + 0.635855i
$$162$$ −6.57116 + 4.10612i −0.516279 + 0.322607i
$$163$$ −0.519988 + 0.110527i −0.0407286 + 0.00865713i −0.228231 0.973607i $$-0.573294\pi$$
0.187502 + 0.982264i $$0.439961\pi$$
$$164$$ −1.37133 0.291486i −0.107083 0.0227612i
$$165$$ 0.0564083 0.235420i 0.00439138 0.0183274i
$$166$$ −13.9563 1.96143i −1.08322 0.152237i
$$167$$ −3.44106 + 3.32299i −0.266277 + 0.257141i −0.815795 0.578341i $$-0.803700\pi$$
0.549518 + 0.835482i $$0.314811\pi$$
$$168$$ 0.152497 + 0.0555043i 0.0117654 + 0.00428225i
$$169$$ 0.0615246 0.00430222i 0.00473266 0.000330940i
$$170$$ 9.75670 + 2.70109i 0.748304 + 0.207164i
$$171$$ −8.37702 10.0389i −0.640607 0.767694i
$$172$$ −2.95001 + 2.14331i −0.224936 + 0.163426i
$$173$$ −2.88886 1.80516i −0.219636 0.137244i 0.415640 0.909529i $$-0.363558\pi$$
−0.635275 + 0.772286i $$0.719113\pi$$
$$174$$ −0.00834080 0.00303580i −0.000632314 0.000230144i
$$175$$ −1.24078 + 14.3293i −0.0937944 + 1.08320i
$$176$$ −0.0928545 0.526604i −0.00699917 0.0396943i
$$177$$ −0.119177 0.152540i −0.00895789 0.0114656i
$$178$$ −0.713004 6.78378i −0.0534419 0.508466i
$$179$$ 13.0162 + 5.79517i 0.972874 + 0.433151i 0.830718 0.556693i $$-0.187930\pi$$
0.142156 + 0.989844i $$0.454597\pi$$
$$180$$ 7.95608 + 2.81341i 0.593011 + 0.209699i
$$181$$ 1.69409 + 6.79462i 0.125921 + 0.505040i 0.999821 + 0.0189347i $$0.00602745\pi$$
−0.873900 + 0.486106i $$0.838417\pi$$
$$182$$ −4.45596 7.71796i −0.330298 0.572093i
$$183$$ 0.0115375 0.00513685i 0.000852880 0.000379727i
$$184$$ 0.296260 + 8.48379i 0.0218406 + 0.625433i
$$185$$ −0.970428 + 10.1256i −0.0713473 + 0.744447i
$$186$$ −0.0953467 + 0.0134001i −0.00699116 + 0.000982543i
$$187$$ 17.4281 22.3070i 1.27447 1.63125i
$$188$$ 4.67875 + 11.5803i 0.341233 + 0.844581i
$$189$$ 0.107214 + 0.329971i 0.00779869 + 0.0240019i
$$190$$ 1.69247 8.22254i 0.122785 0.596526i
$$191$$ 0.831159 2.55804i 0.0601406 0.185094i −0.916473 0.400097i $$-0.868976\pi$$
0.976613 + 0.215004i $$0.0689763\pi$$
$$192$$ 0.0944390 0.00660382i 0.00681555 0.000476590i
$$193$$ 11.9838 + 4.36175i 0.862613 + 0.313965i 0.735172 0.677881i $$-0.237101\pi$$
0.127441 + 0.991846i $$0.459324\pi$$
$$194$$ −5.32358 + 5.14093i −0.382211 + 0.369097i
$$195$$ 0.0821280 + 0.139284i 0.00588131 + 0.00997431i
$$196$$ −0.896871 + 1.32967i −0.0640622 + 0.0949762i
$$197$$ −1.44100 13.7102i −0.102667 0.976808i −0.917668 0.397349i $$-0.869930\pi$$
0.815001 0.579459i $$-0.196736\pi$$
$$198$$ −9.30976 + 10.3395i −0.661616 + 0.734799i
$$199$$ 8.63085 + 7.24214i 0.611825 + 0.513382i 0.895222 0.445621i $$-0.147017\pi$$
−0.283397 + 0.959003i $$0.591461\pi$$
$$200$$ 4.57996 + 13.2628i 0.323852 + 0.937819i
$$201$$ 0.0513360 + 0.0889165i 0.00362096 + 0.00627169i
$$202$$ 12.0729 + 2.56617i 0.849446 + 0.180555i
$$203$$ 0.824587 1.22250i 0.0578747 0.0858028i
$$204$$ −0.0956400 0.0923585i −0.00669614 0.00646639i
$$205$$ 1.07168 2.24941i 0.0748494 0.157105i
$$206$$ 4.26649 + 6.32533i 0.297260 + 0.440706i
$$207$$ −6.95094 + 5.83253i −0.483124 + 0.405389i
$$208$$ 0.288948 + 0.209933i 0.0200349 + 0.0145562i
$$209$$ −19.4249 13.1796i −1.34365 0.911651i
$$210$$ −0.0614306 + 0.0929014i −0.00423911 + 0.00641081i
$$211$$ −16.7017 10.4364i −1.14979 0.718470i −0.185327 0.982677i $$-0.559334\pi$$
−0.964466 + 0.264207i $$0.914890\pi$$
$$212$$ 0.478187 0.612052i 0.0328420 0.0420359i
$$213$$ −0.245818 0.130704i −0.0168432 0.00895569i
$$214$$ 8.99920 4.78496i 0.615173 0.327093i
$$215$$ −2.48268 5.98617i −0.169317 0.408253i
$$216$$ 0.226480 + 0.251532i 0.0154100 + 0.0171146i
$$217$$ 1.67202 15.9082i 0.113504 1.07992i
$$218$$ 12.1601 + 10.2036i 0.823588 + 0.691073i
$$219$$ 0.0372888 + 0.149557i 0.00251974 + 0.0101061i
$$220$$ 15.1228 + 0.918185i 1.01958 + 0.0619040i
$$221$$ 1.97639 + 18.8041i 0.132946 + 1.26490i
$$222$$ −0.0440460 + 0.0653009i −0.00295617 + 0.00438271i
$$223$$ 16.9758 9.02621i 1.13679 0.604440i 0.209134 0.977887i $$-0.432935\pi$$
0.927651 + 0.373447i $$0.121824\pi$$
$$224$$ −2.84625 + 16.1419i −0.190173 + 1.07853i
$$225$$ −8.15727 + 12.5856i −0.543818 + 0.839043i
$$226$$ 10.5023 8.81250i 0.698604 0.586199i
$$227$$ 5.77330 + 17.7684i 0.383187 + 1.17933i 0.937787 + 0.347212i $$0.112872\pi$$
−0.554599 + 0.832118i $$0.687128\pi$$
$$228$$ −0.0710985 + 0.0842634i −0.00470861 + 0.00558048i
$$229$$ −15.5828 + 11.3216i −1.02974 + 0.748150i −0.968257 0.249958i $$-0.919583\pi$$
−0.0614836 + 0.998108i $$0.519583\pi$$
$$230$$ −5.70951 1.15896i −0.376474 0.0764197i
$$231$$ 0.174148 + 0.258186i 0.0114581 + 0.0169874i
$$232$$ 0.249801 1.41669i 0.0164003 0.0930105i
$$233$$ 6.98216 14.3156i 0.457417 0.937843i −0.538066 0.842903i $$-0.680845\pi$$
0.995483 0.0949407i $$-0.0302662\pi$$
$$234$$ −0.324321 9.28735i −0.0212016 0.607133i
$$235$$ −21.9522 + 3.29078i −1.43200 + 0.214667i
$$236$$ 8.10640 9.00307i 0.527681 0.586050i
$$237$$ −0.113958 + 0.0712087i −0.00740235 + 0.00462550i
$$238$$ −11.0447 + 6.90147i −0.715919 + 0.447356i
$$239$$ 9.13140 10.1414i 0.590661 0.655996i −0.371514 0.928427i $$-0.621161\pi$$
0.962175 + 0.272432i $$0.0878279\pi$$
$$240$$ 0.000734732 0.00440264i 4.74267e−5 0.000284189i
$$241$$ 0.881822 + 25.2521i 0.0568032 + 1.62663i 0.609177 + 0.793034i $$0.291500\pi$$
−0.552374 + 0.833596i $$0.686278\pi$$
$$242$$ −6.79680 + 13.9355i −0.436915 + 0.895809i
$$243$$ −0.0942380 + 0.534450i −0.00604537 + 0.0342850i
$$244$$ 0.441989 + 0.655275i 0.0282954 + 0.0419497i
$$245$$ −1.92669 2.10073i −0.123092 0.134211i
$$246$$ 0.0156093 0.0113408i 0.000995215 0.000723066i
$$247$$ 15.4481 2.68043i 0.982938 0.170552i
$$248$$ −4.82212 14.8410i −0.306205 0.942402i
$$249$$ −0.251993 + 0.211447i −0.0159694 + 0.0133999i
$$250$$ −9.58406 + 0.935775i −0.606149 + 0.0591836i
$$251$$ −4.20627 + 23.8550i −0.265498 + 1.50571i 0.502116 + 0.864800i $$0.332555\pi$$
−0.767614 + 0.640912i $$0.778556\pi$$
$$252$$ −9.58544 + 5.09667i −0.603826 + 0.321060i
$$253$$ −9.10959 + 13.5055i −0.572715 + 0.849085i
$$254$$ 0.658656 + 6.26669i 0.0413278 + 0.393207i
$$255$$ 0.199232 0.127050i 0.0124764 0.00795617i
$$256$$ 3.80792 + 15.2727i 0.237995 + 0.954546i
$$257$$ 12.8234 + 10.7601i 0.799900 + 0.671195i 0.948174 0.317751i $$-0.102928\pi$$
−0.148275 + 0.988946i $$0.547372\pi$$
$$258$$ 0.00524552 0.0499077i 0.000326572 0.00310712i
$$259$$ −8.75607 9.72460i −0.544076 0.604257i
$$260$$ −7.69202 + 6.57554i −0.477039 + 0.407798i
$$261$$ 1.35767 0.721887i 0.0840378 0.0446837i
$$262$$ 1.39477 + 0.741614i 0.0861693 + 0.0458171i
$$263$$ −12.8427 + 16.4379i −0.791915 + 1.01361i 0.207460 + 0.978244i $$0.433480\pi$$
−0.999375 + 0.0353614i $$0.988742\pi$$
$$264$$ 0.257649 + 0.160997i 0.0158572 + 0.00990866i
$$265$$ 0.859800 + 1.07993i 0.0528171 + 0.0663395i
$$266$$ 6.32399 + 8.75440i 0.387748 + 0.536767i
$$267$$ −0.128804 0.0935819i −0.00788270 0.00572712i
$$268$$ −4.92235 + 4.13034i −0.300680 + 0.252301i
$$269$$ 0.283382 + 0.420131i 0.0172781 + 0.0256159i 0.837578 0.546318i $$-0.183971\pi$$
−0.820300 + 0.571934i $$0.806193\pi$$
$$270$$ −0.204092 + 0.110930i −0.0124206 + 0.00675101i
$$271$$ 2.89100 + 2.79180i 0.175616 + 0.169590i 0.777271 0.629165i $$-0.216603\pi$$
−0.601656 + 0.798755i $$0.705492\pi$$
$$272$$ 0.291866 0.432709i 0.0176970 0.0262368i
$$273$$ −0.203466 0.0432480i −0.0123143 0.00261749i
$$274$$ −2.66069 4.60844i −0.160738 0.278406i
$$275$$ −7.84959 + 25.7570i −0.473348 + 1.55320i
$$276$$ 0.0586121 + 0.0491814i 0.00352804 + 0.00296037i
$$277$$ 3.18469 3.53695i 0.191349 0.212515i −0.639834 0.768513i $$-0.720997\pi$$
0.831184 + 0.555998i $$0.187664\pi$$
$$278$$ −0.227877 2.16811i −0.0136672 0.130034i
$$279$$ 9.32723 13.8282i 0.558407 0.827872i
$$280$$ −16.5566 7.19026i −0.989448 0.429700i
$$281$$ 7.47754 7.22097i 0.446072 0.430767i −0.437388 0.899273i $$-0.644096\pi$$
0.883460 + 0.468506i $$0.155207\pi$$
$$282$$ −0.161521 0.0587888i −0.00961842 0.00350082i
$$283$$ −5.61763 + 0.392823i −0.333933 + 0.0233509i −0.235739 0.971816i $$-0.575751\pi$$
−0.0981942 + 0.995167i $$0.531307\pi$$
$$284$$ 5.38429 16.5711i 0.319499 0.983316i
$$285$$ −0.116192 0.157777i −0.00688260 0.00934589i
$$286$$ −5.15568 15.8676i −0.304862 0.938268i
$$287$$ 1.20076 + 2.97198i 0.0708785 + 0.175430i
$$288$$ −10.5228 + 13.4685i −0.620060 + 0.793640i
$$289$$ 10.5276 1.47956i 0.619272 0.0870330i
$$290$$ 0.905563 + 0.393270i 0.0531765 + 0.0230936i
$$291$$ 0.00602843 + 0.172632i 0.000353393 + 0.0101199i
$$292$$ −8.81251 + 3.92358i −0.515713 + 0.229610i
$$293$$ 10.1998 + 17.6666i 0.595881 + 1.03210i 0.993422 + 0.114511i $$0.0365302\pi$$
−0.397541 + 0.917584i $$0.630136\pi$$
$$294$$ −0.00533989 0.0214171i −0.000311428 0.00124907i
$$295$$ 12.2032 + 17.7389i 0.710500 + 1.03280i
$$296$$ −11.6621 5.19231i −0.677847 0.301797i
$$297$$ 0.0678948 + 0.645976i 0.00393966 + 0.0374833i
$$298$$ 3.64681 + 4.66771i 0.211254 + 0.270393i
$$299$$ −1.88945 10.7156i −0.109270 0.619701i
$$300$$ 0.116457 + 0.0493107i 0.00672366 + 0.00284696i
$$301$$ 7.83417 + 2.85140i 0.451554 + 0.164352i
$$302$$ 11.4161 + 7.13358i 0.656923 + 0.410491i
$$303$$ 0.233067 0.169333i 0.0133893 0.00972791i
$$304$$ −0.374234 0.217429i −0.0214638 0.0124704i
$$305$$ −1.31557 + 0.492539i −0.0753292 + 0.0282027i
$$306$$ −13.5474 + 0.947329i −0.774455 + 0.0541552i
$$307$$ 20.4872 + 7.45674i 1.16927 + 0.425579i 0.852400 0.522891i $$-0.175146\pi$$
0.316868 + 0.948469i $$0.397369\pi$$
$$308$$ −14.0203 + 13.5393i −0.798883 + 0.771472i
$$309$$ 0.176351 + 0.0247845i 0.0100322 + 0.00140994i
$$310$$ 10.6761 0.845014i 0.606361 0.0479936i
$$311$$ 28.7553 + 6.11212i 1.63056 + 0.346587i 0.930158 0.367160i $$-0.119670\pi$$
0.700404 + 0.713746i $$0.253003\pi$$
$$312$$ −0.198491 + 0.0421906i −0.0112373 + 0.00238857i
$$313$$ −6.97490 + 4.35840i −0.394244 + 0.246351i −0.712527 0.701645i $$-0.752449\pi$$
0.318283 + 0.947996i $$0.396894\pi$$
$$314$$ 0.660299 1.63430i 0.0372628 0.0922287i
$$315$$ −4.83920 18.6774i −0.272658 1.05235i
$$316$$ −5.62731 6.24976i −0.316561 0.351576i
$$317$$ 23.1232 + 6.63047i 1.29873 + 0.372404i 0.852600 0.522564i $$-0.175025\pi$$
0.446129 + 0.894969i $$0.352802\pi$$
$$318$$ 0.00185616 + 0.0105268i 0.000104088 + 0.000590313i
$$319$$ 1.98583 1.91769i 0.111185 0.107370i
$$320$$ −10.5295 + 0.0965830i −0.588617 + 0.00539915i
$$321$$ 0.0575519 0.230828i 0.00321223 0.0128836i
$$322$$ 6.06342 4.40533i 0.337901 0.245499i
$$323$$ −4.70259 22.4249i −0.261659 1.24776i
$$324$$ −11.3189 −0.628827
$$325$$ −8.17927 16.0174i −0.453705 0.888486i
$$326$$ 0.430258 + 0.156601i 0.0238298 + 0.00867334i
$$327$$ 0.366904 0.0515650i 0.0202898 0.00285155i
$$328$$ 2.24938 + 2.17220i 0.124201 + 0.119940i
$$329$$ 15.9683 23.6739i 0.880359 1.30519i
$$330$$ −0.148652 + 0.146210i −0.00818304 + 0.00804862i
$$331$$ 0.824885 7.84826i 0.0453398 0.431379i −0.948181 0.317730i $$-0.897079\pi$$
0.993521 0.113649i $$-0.0362540\pi$$
$$332$$ −15.7708 13.2333i −0.865536 0.726271i
$$333$$ −3.30110 13.2400i −0.180899 0.725546i
$$334$$ 4.03011 0.856627i 0.220518 0.0468726i
$$335$$ −5.10014 10.2179i −0.278651 0.558263i
$$336$$ 0.00353519 + 0.00452484i 0.000192860 + 0.000246850i
$$337$$ −17.8979 2.51538i −0.974960 0.137022i −0.366338 0.930482i $$-0.619389\pi$$
−0.608622 + 0.793460i $$0.708278\pi$$
$$338$$ −0.0469027 0.0249386i −0.00255117 0.00135648i
$$339$$ 0.0111678 0.319803i 0.000606550 0.0173693i
$$340$$ 9.99574 + 10.8987i 0.542095 + 0.591064i
$$341$$ 9.25381 28.4803i 0.501122 1.54229i
$$342$$ 1.53683 + 11.1561i 0.0831021 + 0.603252i
$$343$$ −16.4691 −0.889250
$$344$$ 8.11329 0.567337i 0.437439 0.0305887i
$$345$$ −0.109274 + 0.0809340i −0.00588312 + 0.00435734i
$$346$$ 1.28618 + 2.63706i 0.0691455 + 0.141769i
$$347$$ 17.7580 + 17.1487i 0.953298 + 0.920589i 0.996917 0.0784594i $$-0.0250001\pi$$
−0.0436197 + 0.999048i $$0.513889\pi$$
$$348$$ −0.00798262 0.0102173i −0.000427913 0.000547704i
$$349$$ −5.30919 + 9.19578i −0.284194 + 0.492239i −0.972413 0.233264i $$-0.925059\pi$$
0.688219 + 0.725503i $$0.258393\pi$$
$$350$$ 7.44649 9.90017i 0.398031 0.529186i
$$351$$ −0.332342 0.278868i −0.0177391 0.0148849i
$$352$$ −11.4950 + 28.4512i −0.612688 + 1.51646i
$$353$$ −5.77073 2.56930i −0.307145 0.136750i 0.247376 0.968920i $$-0.420432\pi$$
−0.554521 + 0.832170i $$0.687098\pi$$
$$354$$ 0.0174277 + 0.165813i 0.000926271 + 0.00881288i
$$355$$ 26.4106 + 16.1683i 1.40173 + 0.858122i
$$356$$ 4.36799 8.95570i 0.231503 0.474651i
$$357$$ −0.0527858 + 0.299363i −0.00279372 + 0.0158440i
$$358$$ −6.86229 10.1738i −0.362683 0.537700i
$$359$$ −3.95115 9.77943i −0.208533 0.516138i 0.786278 0.617873i $$-0.212005\pi$$
−0.994812 + 0.101734i $$0.967561\pi$$
$$360$$ −11.7238 14.7253i −0.617898 0.776094i
$$361$$ −18.2923 + 5.13727i −0.962753 + 0.270383i
$$362$$ 1.86380 5.73617i 0.0979589 0.301487i
$$363$$ 0.135567 + 0.335540i 0.00711542 + 0.0176113i
$$364$$ 0.454331 13.0103i 0.0238134 0.681927i
$$365$$ −3.13180 16.8558i −0.163926 0.882271i
$$366$$ −0.0107719 0.00151389i −0.000563054 7.91321e-5i
$$367$$ −22.9115 6.56978i −1.19597 0.342940i −0.382176 0.924090i $$-0.624825\pi$$
−0.813796 + 0.581150i $$0.802603\pi$$
$$368$$ −0.150183 + 0.260124i −0.00782881 + 0.0135599i
$$369$$ −0.349381 + 3.32414i −0.0181881 + 0.173048i
$$370$$ 5.33034 6.95305i 0.277111 0.361472i
$$371$$ −1.77149 0.123875i −0.0919711 0.00643125i
$$372$$ −0.128489 0.0572068i −0.00666183 0.00296604i
$$373$$ 6.20041 + 1.31794i 0.321045 + 0.0682403i 0.365616 0.930766i $$-0.380859\pi$$
−0.0445702 + 0.999006i $$0.514192\pi$$
$$374$$ −22.9113 + 8.33903i −1.18471 + 0.431201i
$$375$$ −0.133453 + 0.180856i −0.00689146 + 0.00933936i
$$376$$ 4.83744 27.4345i 0.249472 1.41483i
$$377$$ −0.0643510 + 1.84277i −0.00331424 + 0.0949075i
$$378$$ 0.0722936 0.289954i 0.00371838 0.0149136i
$$379$$ −14.3802 + 10.4478i −0.738660 + 0.536668i −0.892291 0.451460i $$-0.850903\pi$$
0.153631 + 0.988128i $$0.450903\pi$$
$$380$$ 8.46163 8.87598i 0.434072 0.455328i
$$381$$ 0.118986 + 0.0864486i 0.00609586 + 0.00442890i
$$382$$ −1.77464 + 1.48910i −0.0907985 + 0.0761890i
$$383$$ 9.21530 + 13.6622i 0.470880 + 0.698108i 0.987414 0.158159i $$-0.0505557\pi$$
−0.516534 + 0.856267i $$0.672778\pi$$
$$384$$ 0.130289 + 0.0692757i 0.00664876 + 0.00353521i
$$385$$ −17.5942 29.8387i −0.896685 1.52072i
$$386$$ −6.76247 8.65557i −0.344201 0.440557i
$$387$$ 5.81705 + 6.46049i 0.295697 + 0.328405i
$$388$$ −10.5744 + 2.24766i −0.536834 + 0.114108i
$$389$$ 9.84588 24.3694i 0.499206 1.23558i −0.441777 0.897125i $$-0.645652\pi$$
0.940983 0.338453i $$-0.109904\pi$$
$$390$$ 0.00358354 0.139221i 0.000181459 0.00704973i
$$391$$ −15.5536 + 3.30602i −0.786578 + 0.167192i
$$392$$ 3.26806 1.45503i 0.165062 0.0734902i
$$393$$ 0.0346473 0.0126106i 0.00174773 0.000636120i
$$394$$ −5.20505 + 10.6719i −0.262226 + 0.537644i
$$395$$ 13.1320 7.13769i 0.660744 0.359136i
$$396$$ −19.5367 + 5.60205i −0.981755 + 0.281514i
$$397$$ 1.53156 6.14275i 0.0768667 0.308296i −0.919540 0.392997i $$-0.871438\pi$$
0.996406 + 0.0847017i $$0.0269937\pi$$
$$398$$ −2.99872 9.22912i −0.150312 0.462614i
$$399$$ 0.250618 + 0.0270333i 0.0125466 + 0.00135336i
$$400$$ −0.111250 + 0.483845i −0.00556251 + 0.0241922i
$$401$$ 29.4324 24.6967i 1.46978 1.23329i 0.553445 0.832886i $$-0.313313\pi$$
0.916337 0.400408i $$-0.131132\pi$$
$$402$$ 0.00308621 0.0883776i 0.000153926 0.00440787i
$$403$$ 8.76818 + 17.9774i 0.436774 + 0.895519i
$$404$$ 12.9695 + 12.5245i 0.645256 + 0.623116i
$$405$$ 4.68738 19.5628i 0.232918 0.972081i
$$406$$ −1.16027 + 0.516586i −0.0575833 + 0.0256378i
$$407$$ −12.2490 21.2159i −0.607160 1.05163i
$$408$$ 0.0717417 + 0.287740i 0.00355174 + 0.0142453i
$$409$$ −29.4328 + 18.3916i −1.45536 + 0.909407i −0.455540 + 0.890215i $$0.650554\pi$$
−0.999816 + 0.0191922i $$0.993891\pi$$
$$410$$ −1.80945 + 1.15388i −0.0893626 + 0.0569863i
$$411$$ −0.121491 0.0258237i −0.00599270 0.00127379i
$$412$$ 0.388964 + 11.1385i 0.0191629 + 0.548753i
$$413$$ −27.4291 3.85491i −1.34970 0.189688i
$$414$$ 7.73922 1.08768i 0.380362 0.0534564i
$$415$$ 29.4025 21.7770i 1.44331 1.06899i
$$416$$ −7.67785 19.0033i −0.376437 0.931715i
$$417$$ −0.0411661 0.0299089i −0.00201591 0.00146465i
$$418$$ 8.17299 + 18.4926i 0.399754 + 0.904502i
$$419$$ −19.1294 13.8984i −0.934534 0.678979i 0.0125644 0.999921i $$-0.496001\pi$$
−0.947099 + 0.320942i $$0.896001\pi$$
$$420$$ −0.148014 + 0.0675338i −0.00722237 + 0.00329531i
$$421$$ 37.9075 10.8698i 1.84750 0.529761i 0.847498 0.530799i $$-0.178108\pi$$
0.999999 + 0.00103740i $$0.000330215\pi$$
$$422$$ 7.43596 + 15.2460i 0.361977 + 0.742162i
$$423$$ 26.2915 13.9794i 1.27834 0.679704i
$$424$$ −1.62792 + 0.592514i −0.0790587 + 0.0287750i
$$425$$ −22.9759 + 12.7626i −1.11450 + 0.619075i
$$426$$ 0.119896 + 0.207666i 0.00580897 + 0.0100614i
$$427$$ 0.676966 1.67555i 0.0327607 0.0810855i
$$428$$ 14.8522 + 1.03857i 0.717910 + 0.0502011i
$$429$$ −0.355754 0.158392i −0.0171759 0.00764722i
$$430$$ −0.918797 + 5.50559i −0.0443083 + 0.265503i
$$431$$ 22.1815 + 6.36044i 1.06845 + 0.306372i 0.763373 0.645958i $$-0.223542\pi$$
0.305072 + 0.952329i $$0.401319\pi$$
$$432$$ 0.00207962 + 0.0117941i 0.000100056 + 0.000567446i
$$433$$ 26.7579 25.8398i 1.28590 1.24178i 0.331429 0.943480i $$-0.392469\pi$$
0.954472 0.298300i $$-0.0964195\pi$$
$$434$$ −8.48209 + 10.8566i −0.407153 + 0.521132i
$$435$$ 0.0209646 0.00956541i 0.00100518 0.000458626i
$$436$$ 7.16554 + 22.0533i 0.343167 + 1.05616i
$$437$$ 3.59985 + 12.6848i 0.172204 + 0.606797i
$$438$$ 0.0410242 0.126259i 0.00196021 0.00603291i
$$439$$ 6.81631 + 4.25930i 0.325325 + 0.203285i 0.682742 0.730659i $$-0.260787\pi$$
−0.357418 + 0.933945i $$0.616343\pi$$
$$440$$ −27.5199 19.6112i −1.31196 0.934929i
$$441$$ 3.37621 + 1.79516i 0.160772 + 0.0854840i
$$442$$ 7.13895 14.6370i 0.339565 0.696212i
$$443$$ −25.2230 + 9.18041i −1.19838 + 0.436174i −0.862658 0.505787i $$-0.831202\pi$$
−0.335721 + 0.941962i $$0.608980\pi$$
$$444$$ −0.105113 + 0.0467994i −0.00498845 + 0.00222100i
$$445$$ 13.6695 + 11.2581i 0.647998 + 0.533683i
$$446$$ −16.5193 1.15514i −0.782211 0.0546975i
$$447$$ 0.137920 + 0.00964431i 0.00652340 + 0.000456160i
$$448$$ 9.06420 10.0668i 0.428243 0.475612i
$$449$$ −17.8970 + 30.9985i −0.844611 + 1.46291i 0.0413477 + 0.999145i $$0.486835\pi$$
−0.885959 + 0.463764i $$0.846498\pi$$
$$450$$ 11.7026 5.46972i 0.551666 0.257845i
$$451$$ 1.04204 + 5.90968i 0.0490675 + 0.278276i
$$452$$ 19.8320 2.78720i 0.932818 0.131099i
$$453$$ 0.302033 0.0866066i 0.0141908 0.00406913i
$$454$$ 3.89289 15.6135i 0.182702 0.732779i
$$455$$ 22.2980 + 6.17308i 1.04535 + 0.289399i
$$456$$ 0.234080 0.0753510i 0.0109618 0.00352863i
$$457$$ 3.18149 0.148824 0.0744120 0.997228i $$-0.476292\pi$$
0.0744120 + 0.997228i $$0.476292\pi$$
$$458$$ 16.5494 1.15725i 0.773304 0.0540747i
$$459$$ −0.390331 + 0.499601i −0.0182191 + 0.0233194i
$$460$$ −6.17582 5.85540i −0.287949 0.273009i
$$461$$ −18.4745 + 9.82307i −0.860443 + 0.457506i −0.840192 0.542289i $$-0.817558\pi$$
−0.0202513 + 0.999795i $$0.506447\pi$$
$$462$$ −0.00936121 0.268070i −0.000435523 0.0124717i
$$463$$ 17.6698 + 19.6243i 0.821184 + 0.912017i 0.997380 0.0723382i $$-0.0230461\pi$$
−0.176197 + 0.984355i $$0.556379\pi$$
$$464$$ 0.0340589 0.0378262i 0.00158115 0.00175604i
$$465$$ 0.152082 0.198380i 0.00705264 0.00919966i
$$466$$ −11.6338 + 7.26963i −0.538927 + 0.336759i
$$467$$ −0.325128 + 3.09339i −0.0150451 + 0.143145i −0.999466 0.0326850i $$-0.989594\pi$$
0.984421 + 0.175830i $$0.0562609\pi$$
$$468$$ 6.78747 11.7563i 0.313751 0.543433i
$$469$$ 14.1222 + 4.04947i 0.652101 + 0.186987i
$$470$$ 17.5364 + 7.61574i 0.808892 + 0.351288i
$$471$$ −0.0180353 0.0369778i −0.000831021 0.00170385i
$$472$$ −25.9746 + 7.44811i −1.19558 + 0.342827i
$$473$$ 13.2361 + 8.27082i 0.608596 + 0.380293i
$$474$$ 0.115739 0.00531605
$$475$$ 11.8365 + 18.3002i 0.543095 + 0.839671i
$$476$$ −19.0245 −0.871987
$$477$$ −1.57037 0.981278i −0.0719025 0.0449296i
$$478$$ −11.2986 + 3.23981i −0.516784 + 0.148185i
$$479$$ 7.97367 + 16.3485i 0.364326 + 0.746980i 0.999681 0.0252403i $$-0.00803508\pi$$
−0.635355 + 0.772220i $$0.719146\pi$$
$$480$$ −0.169639 + 0.191914i −0.00774293 + 0.00875965i
$$481$$ 15.7290 + 4.51022i 0.717180 + 0.205648i
$$482$$ 10.8814 18.8472i 0.495636 0.858467i
$$483$$ 0.0182856 0.173976i 0.000832024 0.00791618i
$$484$$ −19.2072 + 12.0020i −0.873057 + 0.545546i
$$485$$ 0.494383 19.2069i 0.0224488 0.872139i
$$486$$ 0.312767 0.347363i 0.0141874 0.0157567i
$$487$$ 4.41103 + 4.89894i 0.199883 + 0.221992i 0.834750 0.550629i $$-0.185612\pi$$
−0.634867 + 0.772621i $$0.718945\pi$$
$$488$$ −0.0615261 1.76188i −0.00278516 0.0797565i
$$489$$ 0.00943613 0.00501728i 0.000426716 0.000226889i
$$490$$ 0.448485 + 2.41380i 0.0202605 + 0.109045i
$$491$$ −8.96488 + 11.4745i −0.404580 + 0.517838i −0.946549 0.322560i $$-0.895457\pi$$
0.541969 + 0.840398i $$0.317679\pi$$
$$492$$ 0.0281157 0.00196604i 0.00126756 8.86361e-5i
$$493$$ 2.69461 0.121359
$$494$$ −12.5071 5.09296i −0.562719 0.229143i
$$495$$ −1.59165 36.0858i −0.0715395 1.62193i
$$496$$ 0.133575 0.535741i 0.00599771 0.0240555i
$$497$$ −38.2938 + 10.9806i −1.71771 + 0.492547i
$$498$$ 0.280570 0.0394315i 0.0125726 0.00176697i
$$499$$ −4.20784 23.8638i −0.188369 1.06829i −0.921550 0.388259i $$-0.873077\pi$$
0.733182 0.680033i $$-0.238034\pi$$
$$500$$ −12.5971 6.25968i −0.563361 0.279941i
$$501$$ 0.0480837 0.0832835i 0.00214822 0.00372083i
$$502$$ 13.9602 15.5044i 0.623076 0.691996i
$$503$$ −35.6535 2.49314i −1.58971 0.111164i −0.752706 0.658357i $$-0.771252\pi$$
−0.837006 + 0.547193i $$0.815696\pi$$
$$504$$ 24.1551 + 1.68909i 1.07595 + 0.0752380i
$$505$$ −27.0174 + 17.2289i −1.20226 + 0.766676i
$$506$$ 12.8180 5.70696i 0.569832 0.253705i
$$507$$ −0.00116510 0.000424062i −5.17440e−5 1.88333e-5i
$$508$$ −4.03504 + 8.27306i −0.179026 + 0.367058i
$$509$$ −31.7815 16.8985i −1.40869 0.749015i −0.421242 0.906948i $$-0.638406\pi$$
−0.987450 + 0.157934i $$0.949517\pi$$
$$510$$ −0.203512 + 0.00186674i −0.00901167 + 8.26606e-5i
$$511$$ 18.7039 + 11.6875i 0.827410 + 0.517023i
$$512$$ −0.347047 + 1.06810i −0.0153375 + 0.0472039i
$$513$$ 0.435051 + 0.295178i 0.0192080 + 0.0130324i
$$514$$ −4.45538 13.7123i −0.196519 0.604822i
$$515$$ −19.4120 3.94041i −0.855396 0.173635i
$$516$$ 0.0451313 0.0577654i 0.00198679 0.00254298i
$$517$$ 38.4558 37.1364i 1.69129 1.63326i
$$518$$ 1.95715 + 11.0995i 0.0859920 + 0.487685i
$$519$$ 0.0658290 + 0.0188762i 0.00288957 + 0.000828571i
$$520$$ 22.3216 3.34616i 0.978868 0.146739i
$$521$$ 14.3473 + 6.38781i 0.628565 + 0.279855i 0.696192 0.717855i $$-0.254876\pi$$
−0.0676271 + 0.997711i $$0.521543\pi$$
$$522$$ −1.32116 0.0923845i −0.0578256 0.00404356i
$$523$$ 2.35143 5.82000i 0.102821 0.254491i −0.867000 0.498307i $$-0.833955\pi$$
0.969821 + 0.243817i $$0.0783995\pi$$
$$524$$ 1.15377 + 1.99839i 0.0504028 + 0.0873002i
$$525$$ −0.0554248 0.283785i −0.00241893 0.0123854i
$$526$$ 16.8832 6.14498i 0.736143 0.267934i
$$527$$ 25.8085 13.7226i 1.12423 0.597766i
$$528$$ 0.00471243 + 0.00966191i 0.000205082 + 0.000420481i
$$529$$ −13.3128 + 3.81739i −0.578818 + 0.165973i
$$530$$ −0.135118 1.18124i −0.00586916 0.0513096i
$$531$$ −23.3669 16.9770i −1.01404 0.736741i
$$532$$ 1.05748 + 15.7403i 0.0458475 + 0.682429i
$$533$$ −3.24264 2.35592i −0.140454 0.102046i
$$534$$ 0.0513692 + 0.127143i 0.00222296 + 0.00550203i
$$535$$ −7.94560 + 25.2394i −0.343518 + 1.09120i
$$536$$ 14.1926 1.99464i 0.613027 0.0861553i
$$537$$ −0.283645 0.0398638i −0.0122402 0.00172025i
$$538$$ −0.0152330 0.436215i −0.000656740 0.0188066i
$$539$$ 6.71501 + 1.42732i 0.289236 + 0.0614790i
$$540$$ −0.338699 0.0205642i −0.0145753 0.000884943i
$$541$$ 34.6913 21.6775i 1.49149 0.931989i 0.493430 0.869785i $$-0.335743\pi$$
0.998064 0.0622032i $$-0.0198127\pi$$
$$542$$ −0.837420 3.35871i −0.0359703 0.144269i
$$543$$ −0.0703884 0.121916i −0.00302066 0.00523193i
$$544$$ −27.3624 + 12.1825i −1.17315 + 0.522321i
$$545$$ −41.0827 + 3.25170i −1.75979 + 0.139288i
$$546$$ 0.128877 + 0.124455i 0.00551543 + 0.00532619i
$$547$$ 12.4847 + 25.5973i 0.533805 + 1.09446i 0.979902 + 0.199478i $$0.0639247\pi$$
−0.446097 + 0.894985i $$0.647186\pi$$
$$548$$ 0.271284 7.76857i 0.0115887 0.331857i
$$549$$ 1.44354 1.21128i 0.0616089 0.0516960i
$$550$$ 17.4895 15.2308i 0.745755 0.649443i
$$551$$ −0.149780 2.22944i −0.00638085 0.0949774i
$$552$$ −0.0527359 0.162305i −0.00224459 0.00690814i
$$553$$ −4.65164 + 18.6567i −0.197808 + 0.793365i
$$554$$ −3.94051 + 1.12992i −0.167416 + 0.0480058i
$$555$$ −0.0373552 0.201051i −0.00158564 0.00853413i
$$556$$ 1.39602 2.86225i 0.0592042 0.121387i
$$557$$ 9.53142 3.46915i 0.403859 0.146993i −0.132100 0.991236i $$-0.542172\pi$$
0.535960 + 0.844244i $$0.319950\pi$$
$$558$$ −13.1243 + 5.84331i −0.555595 + 0.247367i
$$559$$ −10.1970 + 2.16744i −0.431287 + 0.0916729i
$$560$$ −0.361989 0.526195i −0.0152968 0.0222358i
$$561$$ −0.213184 + 0.527649i −0.00900063 + 0.0222773i
$$562$$ −8.75757 + 1.86148i −0.369416 + 0.0785217i
$$563$$ −28.0542 31.1573i −1.18234 1.31313i −0.939295 0.343111i $$-0.888519\pi$$
−0.243048 0.970014i $$-0.578147\pi$$
$$564$$ −0.154585 0.197859i −0.00650919 0.00833138i
$$565$$ −3.39563 + 35.4304i −0.142855 + 1.49057i
$$566$$ 4.28254 + 2.27707i 0.180009 + 0.0957123i
$$567$$ 14.4713 + 21.4545i 0.607736 + 0.901006i
$$568$$ −29.7708 + 24.9807i −1.24916 + 1.04817i
$$569$$ 31.1258 + 22.6142i 1.30486 + 0.948038i 0.999991 0.00435483i $$-0.00138619\pi$$
0.304872 + 0.952393i $$0.401386\pi$$
$$570$$ 0.0128567 + 0.168276i 0.000538509 + 0.00704831i
$$571$$ 26.3138 19.1181i 1.10120 0.800067i 0.119943 0.992781i $$-0.461729\pi$$
0.981255 + 0.192713i $$0.0617287\pi$$
$$572$$ 5.89604 23.6477i 0.246526 0.988762i
$$573$$ −0.00188708 + 0.0540390i −7.88340e−5 + 0.00225751i
$$574$$ 0.479408 2.71886i 0.0200101 0.113483i
$$575$$ 12.6776 8.24900i 0.528692 0.344007i
$$576$$ 13.2736 4.83120i 0.553067 0.201300i
$$577$$ −15.5803 3.31170i −0.648617 0.137868i −0.128157 0.991754i $$-0.540906\pi$$
−0.520460 + 0.853886i $$0.674239\pi$$
$$578$$ −8.36493 3.72431i −0.347935 0.154911i
$$579$$ −0.255752 0.0178839i −0.0106287 0.000743231i
$$580$$ 0.817388 + 1.18817i 0.0339402 + 0.0493361i
$$581$$ −4.92013 + 46.8119i −0.204121 + 1.94208i
$$582$$ 0.0743892 0.128846i 0.00308353 0.00534084i
$$583$$ −3.19574 0.916364i −0.132354 0.0379519i
$$584$$ 21.3065 + 2.99444i 0.881671 + 0.123911i
$$585$$ 17.5078 + 16.5995i 0.723860 + 0.686305i
$$586$$ 0.613192 17.5595i 0.0253307 0.725378i
$$587$$ 3.89828 + 9.64858i 0.160899 + 0.398239i 0.986000 0.166746i $$-0.0533261\pi$$
−0.825101 + 0.564986i $$0.808882\pi$$
$$588$$ 0.00996371 0.0306651i 0.000410896 0.00126461i
$$589$$ −12.7882 20.5904i −0.526930 0.848412i
$$590$$ −0.817167 18.5267i −0.0336422 0.762732i
$$591$$ 0.103818 + 0.256959i 0.00427051 + 0.0105699i
$$592$$ −0.252583 0.374470i −0.0103811 0.0153906i
$$593$$ −1.07216 + 6.08054i −0.0440285 + 0.249698i −0.998876 0.0473981i $$-0.984907\pi$$
0.954848 + 0.297096i $$0.0960182\pi$$
$$594$$ 0.245244 0.502825i 0.0100625 0.0206312i
$$595$$ 7.87844 32.8806i 0.322984 1.34797i
$$596$$ 0.904457 + 8.60533i 0.0370480 + 0.352488i
$$597$$ −0.206919 0.0921261i −0.00846862 0.00377047i
$$598$$ −3.51072 + 8.68934i −0.143564 + 0.355333i
$$599$$ −4.46357 3.74538i −0.182377 0.153032i 0.547029 0.837114i $$-0.315759\pi$$
−0.729406 + 0.684082i $$0.760203\pi$$
$$600$$ −0.161998 0.230919i −0.00661356 0.00942725i
$$601$$ 6.82835 11.8270i 0.278534 0.482435i −0.692487 0.721431i $$-0.743485\pi$$
0.971021 + 0.238996i $$0.0768182\pi$$
$$602$$ −4.42083 5.65840i −0.180179 0.230619i
$$603$$ 11.0199 + 10.6418i 0.448766 + 0.433368i
$$604$$ 8.62028 + 17.6742i 0.350754 + 0.719153i
$$605$$ −12.7893 38.1667i −0.519960 1.55170i
$$606$$ −0.247524 + 0.0173086i −0.0100550 + 0.000703113i
$$607$$ −25.2435 −1.02460 −0.512301 0.858806i $$-0.671207\pi$$
−0.512301 + 0.858806i $$0.671207\pi$$
$$608$$ 11.6004 + 21.9617i 0.470458 + 0.890663i
$$609$$ −0.00916067 + 0.0281937i −0.000371209 + 0.00114246i
$$610$$ 1.18573 + 0.240689i 0.0480087 + 0.00974520i
$$611$$ −1.24617 + 35.6855i −0.0504145 + 1.44368i
$$612$$ −17.5159 9.31338i −0.708039 0.376471i
$$613$$ −3.09683 0.435231i −0.125080 0.0175788i 0.0763554 0.997081i $$-0.475672\pi$$
−0.201435 + 0.979502i $$0.564561\pi$$
$$614$$ −11.5610 14.7974i −0.466563 0.597173i
$$615$$ −0.00824533 + 0.0494074i −0.000332484 + 0.00199230i
$$616$$ 42.5226 9.03846i 1.71328 0.364170i
$$617$$ 6.57815 + 26.3835i 0.264826 + 1.06216i 0.944465 + 0.328613i $$0.106581\pi$$
−0.679638 + 0.733547i $$0.737863\pi$$
$$618$$ −0.117499 0.0985930i −0.00472649 0.00396599i
$$619$$ −1.69725 + 16.1483i −0.0682182 + 0.649053i 0.905974 + 0.423333i $$0.139140\pi$$
−0.974192 + 0.225720i $$0.927527\pi$$
$$620$$ 13.8797 + 7.21744i 0.557421 + 0.289859i
$$621$$ 0.204024 0.302478i 0.00818719 0.0121380i
$$622$$ −18.2139 17.5889i −0.730309 0.705251i
$$623$$ −22.5597 + 3.17056i −0.903836 + 0.127026i
$$624$$ −0.00674711 0.00245575i −0.000270100 9.83085e-5i
$$625$$ 16.0355 19.1797i 0.641421 0.767189i
$$626$$ 7.08389 0.283129
$$627$$ 0.448411 + 0.147053i 0.0179078 + 0.00587272i
$$628$$ 2.08307 1.51344i 0.0831237 0.0603929i
$$629$$ 5.78488 23.2019i 0.230658 0.925120i
$$630$$ −4.99008 + 15.8512i −0.198810 + 0.631525i
$$631$$ 20.7790 20.0660i 0.827197 0.798815i −0.154753 0.987953i $$-0.549458\pi$$
0.981950 + 0.189138i $$0.0605694\pi$$
$$632$$ 3.25725 + 18.4728i 0.129566 + 0.734807i
$$633$$ 0.380585 + 0.109131i 0.0151269 + 0.00433757i
$$634$$ −13.8635 15.3969i −0.550589 0.611491i
$$635$$ −12.6276 10.3999i −0.501110 0.412708i
$$636$$ −0.00584927 + 0.0144775i −0.000231939 + 0.000574068i
$$637$$ −3.88858 + 2.42986i −0.154071 + 0.0962745i
$$638$$ −2.32577 + 0.494357i −0.0920780 + 0.0195718i
$$639$$ −40.6328 8.63676i −1.60741 0.341665i
$$640$$ −13.9982 8.56950i −0.553326 0.338739i
$$641$$ −31.0617 4.36543i −1.22686 0.172424i −0.504176 0.863601i $$-0.668204\pi$$
−0.722686 + 0.691177i $$0.757093\pi$$
$$642$$ −0.147392 + 0.142335i −0.00581709 + 0.00561750i
$$643$$ 30.1976 + 10.9910i 1.19088 + 0.433444i 0.860032 0.510241i $$-0.170444\pi$$
0.330846 + 0.943685i $$0.392666\pi$$
$$644$$ 10.9215 0.763706i 0.430367 0.0300942i
$$645$$ 0.0811478 + 0.101923i 0.00319519 + 0.00401323i
$$646$$ −6.80029 + 18.5260i −0.267554 + 0.728897i
$$647$$ −32.1929 + 23.3895i −1.26564 + 0.919538i −0.999020 0.0442651i $$-0.985905\pi$$
−0.266616 + 0.963803i $$0.585905\pi$$
$$648$$ 21.4099 + 13.3784i 0.841060 + 0.525553i
$$649$$ −48.7278 17.7355i −1.91273 0.696177i
$$650$$ −1.33632 + 15.4327i −0.0524149 + 0.605320i
$$651$$ 0.0558401 + 0.316685i 0.00218855 + 0.0124119i
$$652$$ 0.411782 + 0.527057i 0.0161266 + 0.0206411i
$$653$$ −2.36060 22.4596i −0.0923774 0.878913i −0.938350 0.345686i $$-0.887646\pi$$
0.845973 0.533226i $$-0.179021\pi$$
$$654$$ −0.291531 0.129798i −0.0113998 0.00507550i
$$655$$ −3.93168 + 1.16652i −0.153624 + 0.0455799i
$$656$$ 0.0267670 + 0.107357i 0.00104508 + 0.00419157i
$$657$$ 11.4992 + 19.9171i 0.448625 + 0.777041i
$$658$$ −22.4688 + 10.0038i −0.875927 + 0.389988i
$$659$$ 0.0503530 + 1.44192i 0.00196147 + 0.0561693i 0.999977 0.00680107i $$-0.00216487\pi$$
−0.998015 + 0.0629704i $$0.979943\pi$$
$$660$$ −0.297331 + 0.0660557i −0.0115736 + 0.00257122i
$$661$$ 11.2537 1.58161i 0.437719 0.0615174i 0.0831280 0.996539i $$-0.473509\pi$$
0.354591 + 0.935021i $$0.384620\pi$$
$$662$$ −4.18462 + 5.35606i −0.162640 + 0.208169i
$$663$$ −0.142391 0.352431i −0.00553002 0.0136873i
$$664$$ 14.1897 + 43.6714i 0.550667 + 1.69478i
$$665$$ −27.6424 4.69071i −1.07192 0.181898i
$$666$$ −3.63178 + 11.1775i −0.140729 + 0.433119i
$$667$$ −1.54691 + 0.108170i −0.0598966 + 0.00418838i
$$668$$ 5.65562 + 2.05848i 0.218823 + 0.0796449i
$$669$$ −0.278035 + 0.268496i −0.0107495 + 0.0103806i
$$670$$ −0.938382 + 9.79121i −0.0362528 + 0.378267i
$$671$$ 1.89184 2.80477i 0.0730338 0.108277i
$$672$$ −0.0344435 0.327708i −0.00132869 0.0126416i
$$673$$ 12.4187 13.7924i 0.478705 0.531656i −0.454621 0.890685i $$-0.650225\pi$$
0.933327 + 0.359029i $$0.116892\pi$$
$$674$$ 11.9250 + 10.0062i 0.459333 + 0.385426i
$$675$$ 0.175804 0.576868i 0.00676670 0.0222037i
$$676$$ −0.0387985 0.0672009i −0.00149225 0.00258465i
$$677$$ −14.4606 3.07369i −0.555766 0.118132i −0.0785376 0.996911i $$-0.525025\pi$$
−0.477228 + 0.878780i $$0.658358\pi$$
$$678$$ −0.154122 + 0.228495i −0.00591900 + 0.00877528i
$$679$$ 17.7798 + 17.1698i 0.682327 + 0.658916i
$$680$$ −6.02542 32.4296i −0.231064 1.24362i
$$681$$ −0.210026 0.311377i −0.00804822 0.0119320i
$$682$$ −19.7582 + 16.5791i −0.756580 + 0.634846i
$$683$$ −25.0921 18.2305i −0.960121 0.697569i −0.00694251 0.999976i $$-0.502210\pi$$
−0.953179 + 0.302407i $$0.902210\pi$$
$$684$$ −6.73199 + 15.0098i −0.257404 + 0.573916i
$$685$$ 13.3143 + 3.68599i 0.508713 + 0.140834i
$$686$$ 12.0295 + 7.51684i 0.459287 + 0.286994i
$$687$$ 0.238396 0.305134i 0.00909539 0.0116416i
$$688$$ 0.254089 + 0.135102i 0.00968707 + 0.00515071i
$$689$$ 1.96062 1.04248i 0.0746937 0.0397154i
$$690$$ 0.116756 0.00924129i 0.00444484 0.000351810i
$$691$$ 17.8140 + 19.7844i 0.677676 + 0.752635i 0.979657 0.200679i $$-0.0643147\pi$$
−0.301981 + 0.953314i $$0.597648\pi$$
$$692$$ −0.447998 + 4.26242i −0.0170303 + 0.162033i
$$693$$ 35.5963 + 29.8688i 1.35219 + 1.13462i
$$694$$ −5.14386 20.6309i −0.195258 0.783138i
$$695$$ 4.36880 + 3.59809i 0.165718 + 0.136483i
$$696$$ 0.00302294 + 0.0287613i 0.000114584 + 0.00109019i
$$697$$ −3.27539 + 4.85596i −0.124064 + 0.183933i
$$698$$ 8.07509 4.29360i 0.305647 0.162515i
$$699$$ −0.0556017 + 0.315333i −0.00210305 + 0.0119270i
$$700$$ 16.8884 6.50011i 0.638320 0.245681i
$$701$$ −12.6120 + 10.5827i −0.476349 + 0.399704i −0.849104 0.528226i $$-0.822858\pi$$
0.372755 + 0.927930i $$0.378413\pi$$
$$702$$ 0.115470 + 0.355379i 0.00435812 + 0.0134129i
$$703$$ −19.5181 3.49656i −0.736139 0.131875i
$$704$$ 20.5167 14.9063i 0.773254 0.561802i
$$705$$ 0.405983 0.185236i 0.0152902 0.00697638i
$$706$$ 3.04241 + 4.51055i 0.114502 + 0.169757i
$$707$$ 7.15814 40.5958i 0.269210 1.52676i
$$708$$ −0.106765 + 0.218901i −0.00401247 + 0.00822679i
$$709$$ 1.31022 + 37.5197i 0.0492062 + 1.40908i 0.733408 + 0.679788i $$0.237928\pi$$
−0.684202 + 0.729292i $$0.739849\pi$$
$$710$$ −11.9114 23.8640i −0.447029 0.895601i
$$711$$ −13.4161 + 14.9001i −0.503144 + 0.558798i
$$712$$ −18.8474 + 11.7771i −0.706335 + 0.441367i
$$713$$ −14.2651 + 8.91384i −0.534233 + 0.333826i
$$714$$ 0.175191 0.194570i 0.00655637 0.00728159i
$$715$$ 38.4294 + 19.9833i 1.43718 + 0.747334i
$$716$$ −0.625617 17.9153i −0.0233804 0.669527i
$$717$$ −0.120265 + 0.246579i −0.00449137 + 0.00920867i
$$718$$ −1.57751 + 8.94651i −0.0588722 + 0.333881i
$$719$$ 22.7525 + 33.7320i 0.848527 + 1.25799i 0.964325 + 0.264720i $$0.0852794\pi$$
−0.115799 + 0.993273i $$0.536943\pi$$
$$720$$ −0.0756876 0.661680i −0.00282071 0.0246593i
$$721$$ 20.6153 14.9779i 0.767754 0.557806i
$$722$$ 15.7059 + 4.59658i 0.584513 + 0.171067i
$$723$$ −0.156969 0.483101i −0.00583775 0.0179667i
$$724$$ 6.74919 5.66324i 0.250832 0.210473i
$$725$$ −2.39205 + 0.920669i −0.0888384 + 0.0341928i
$$726$$ 0.0541256 0.306962i 0.00200879 0.0113924i
$$727$$ −35.5370 + 18.8953i −1.31799 + 0.700790i −0.971450 0.237244i $$-0.923756\pi$$
−0.346544 + 0.938034i $$0.612645\pi$$
$$728$$ −16.2370 + 24.0724i −0.601783 + 0.892181i
$$729$$ 2.81999 + 26.8304i 0.104444 + 0.993718i
$$730$$ −5.40575 + 13.7413i −0.200076 + 0.508587i
$$731$$ 3.68556 + 14.7820i 0.136315 + 0.546731i
$$732$$ −0.0121723 0.0102138i −0.000449902 0.000377513i
$$733$$ 4.29164 40.8323i 0.158515 1.50817i −0.569146 0.822237i $$-0.692726\pi$$
0.727661 0.685937i $$-0.240607\pi$$
$$734$$ 13.7366 + 15.2560i 0.507026 + 0.563109i
$$735$$ 0.0488733 + 0.0299196i 0.00180272 + 0.00110360i
$$736$$ 15.2190 8.09210i 0.560981 0.298279i
$$737$$ 24.2844 + 12.9122i 0.894526 + 0.475628i
$$738$$ 1.77240 2.26857i 0.0652429 0.0835071i
$$739$$ −25.0060 15.6255i −0.919862 0.574794i −0.0147147 0.999892i $$-0.504684\pi$$
−0.905147 + 0.425098i $$0.860240\pi$$
$$740$$ 11.9855 4.48729i 0.440597 0.164956i
$$741$$ −0.283676 + 0.137400i −0.0104211 + 0.00504752i
$$742$$ 1.23740 + 0.899024i 0.0454264 + 0.0330042i
$$743$$ −2.57376 + 2.15964i −0.0944221 + 0.0792296i −0.688777 0.724973i $$-0.741852\pi$$
0.594355 + 0.804203i $$0.297408\pi$$
$$744$$ 0.175423 + 0.260076i 0.00643133 + 0.00953484i
$$745$$ −15.2474 2.00044i −0.558621 0.0732906i
$$746$$ −3.92740 3.79265i −0.143792 0.138859i
$$747$$ −27.4466 + 40.6912i −1.00422 + 1.48881i
$$748$$ −34.8377 7.40499i −1.27379 0.270753i
$$749$$ −17.0201 29.4797i −0.621901 1.07716i
$$750$$ 0.180023 0.0711912i 0.00657352 0.00259954i
$$751$$ 16.1911 + 13.5860i 0.590823 + 0.495760i 0.888481 0.458913i $$-0.151761\pi$$
−0.297658 + 0.954673i $$0.596205\pi$$
$$752$$ 0.659556 0.732511i 0.0240515 0.0267119i
$$753$$ −0.0509017 0.484297i −0.00185496 0.0176488i
$$754$$ 0.888081 1.31663i 0.0323420 0.0479490i
$$755$$ −34.1167 + 7.57944i −1.24163 + 0.275844i
$$756$$ 0.314008 0.303234i 0.0114204 0.0110285i
$$757$$ 47.7055 + 17.3634i 1.73389 + 0.631083i 0.998895 0.0469953i $$-0.0149646\pi$$
0.734990 + 0.678078i $$0.237187\pi$$
$$758$$ 15.2722 1.06794i 0.554712 0.0387892i
$$759$$ 0.101202 0.311468i 0.00367340 0.0113056i
$$760$$ −26.4964 + 6.78786i −0.961124 + 0.246221i
$$761$$ −11.4184 35.1421i −0.413916 1.27390i −0.913217 0.407473i $$-0.866410\pi$$
0.499302 0.866428i $$-0.333590\pi$$
$$762$$ −0.0474536 0.117452i −0.00171906 0.00425483i
$$763$$ 32.6400 41.7773i 1.18165 1.51244i
$$764$$ −3.35113 + 0.470970i −0.121240 + 0.0170391i
$$765$$ 23.3503 26.4164i 0.844232 0.955088i
$$766$$ −0.495361 14.1853i −0.0178981 0.512535i
$$767$$