Properties

Label 4732.2.a.r.1.6
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 273130214 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4732,2,Mod(1,4732)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4732.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4732, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.2854789.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 6x^{4} + 17x^{3} + 11x^{2} - 20x - 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.87590\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.28803 q^{3} -3.77007 q^{5} +1.00000 q^{7} +7.81112 q^{9} -0.166194 q^{11} -12.3961 q^{15} -6.66424 q^{17} -3.14115 q^{19} +3.28803 q^{21} +8.71947 q^{23} +9.21343 q^{25} +15.8191 q^{27} +2.50377 q^{29} +2.07228 q^{31} -0.546452 q^{33} -3.77007 q^{35} +5.24067 q^{37} +6.25901 q^{41} -3.39957 q^{43} -29.4485 q^{45} +8.74103 q^{47} +1.00000 q^{49} -21.9122 q^{51} +5.35058 q^{53} +0.626565 q^{55} -10.3282 q^{57} +2.20341 q^{59} -8.97348 q^{61} +7.81112 q^{63} +3.94316 q^{67} +28.6698 q^{69} +12.2041 q^{71} -2.07244 q^{73} +30.2940 q^{75} -0.166194 q^{77} +0.710134 q^{79} +28.5802 q^{81} +8.92521 q^{83} +25.1246 q^{85} +8.23247 q^{87} -9.36913 q^{89} +6.81371 q^{93} +11.8423 q^{95} -15.9901 q^{97} -1.29816 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 6 q^{7} + 20 q^{9} + 4 q^{11} + 3 q^{15} - 3 q^{17} + 5 q^{19} + 6 q^{21} + 18 q^{23} + 2 q^{25} + 24 q^{27} + 17 q^{29} - 17 q^{31} + 21 q^{33} + q^{37} + 14 q^{41} + 14 q^{43} - 29 q^{45}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.28803 1.89834 0.949171 0.314760i \(-0.101924\pi\)
0.949171 + 0.314760i \(0.101924\pi\)
\(4\) 0 0
\(5\) −3.77007 −1.68603 −0.843013 0.537893i \(-0.819221\pi\)
−0.843013 + 0.537893i \(0.819221\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 7.81112 2.60371
\(10\) 0 0
\(11\) −0.166194 −0.0501095 −0.0250548 0.999686i \(-0.507976\pi\)
−0.0250548 + 0.999686i \(0.507976\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −12.3961 −3.20066
\(16\) 0 0
\(17\) −6.66424 −1.61632 −0.808158 0.588966i \(-0.799535\pi\)
−0.808158 + 0.588966i \(0.799535\pi\)
\(18\) 0 0
\(19\) −3.14115 −0.720629 −0.360314 0.932831i \(-0.617331\pi\)
−0.360314 + 0.932831i \(0.617331\pi\)
\(20\) 0 0
\(21\) 3.28803 0.717506
\(22\) 0 0
\(23\) 8.71947 1.81813 0.909067 0.416649i \(-0.136796\pi\)
0.909067 + 0.416649i \(0.136796\pi\)
\(24\) 0 0
\(25\) 9.21343 1.84269
\(26\) 0 0
\(27\) 15.8191 3.04438
\(28\) 0 0
\(29\) 2.50377 0.464939 0.232470 0.972604i \(-0.425319\pi\)
0.232470 + 0.972604i \(0.425319\pi\)
\(30\) 0 0
\(31\) 2.07228 0.372192 0.186096 0.982532i \(-0.440416\pi\)
0.186096 + 0.982532i \(0.440416\pi\)
\(32\) 0 0
\(33\) −0.546452 −0.0951250
\(34\) 0 0
\(35\) −3.77007 −0.637258
\(36\) 0 0
\(37\) 5.24067 0.861560 0.430780 0.902457i \(-0.358238\pi\)
0.430780 + 0.902457i \(0.358238\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.25901 0.977493 0.488746 0.872426i \(-0.337454\pi\)
0.488746 + 0.872426i \(0.337454\pi\)
\(42\) 0 0
\(43\) −3.39957 −0.518430 −0.259215 0.965820i \(-0.583464\pi\)
−0.259215 + 0.965820i \(0.583464\pi\)
\(44\) 0 0
\(45\) −29.4485 −4.38992
\(46\) 0 0
\(47\) 8.74103 1.27501 0.637505 0.770446i \(-0.279967\pi\)
0.637505 + 0.770446i \(0.279967\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −21.9122 −3.06832
\(52\) 0 0
\(53\) 5.35058 0.734959 0.367480 0.930032i \(-0.380221\pi\)
0.367480 + 0.930032i \(0.380221\pi\)
\(54\) 0 0
\(55\) 0.626565 0.0844859
\(56\) 0 0
\(57\) −10.3282 −1.36800
\(58\) 0 0
\(59\) 2.20341 0.286859 0.143430 0.989661i \(-0.454187\pi\)
0.143430 + 0.989661i \(0.454187\pi\)
\(60\) 0 0
\(61\) −8.97348 −1.14894 −0.574468 0.818527i \(-0.694791\pi\)
−0.574468 + 0.818527i \(0.694791\pi\)
\(62\) 0 0
\(63\) 7.81112 0.984108
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.94316 0.481733 0.240867 0.970558i \(-0.422568\pi\)
0.240867 + 0.970558i \(0.422568\pi\)
\(68\) 0 0
\(69\) 28.6698 3.45144
\(70\) 0 0
\(71\) 12.2041 1.44836 0.724179 0.689612i \(-0.242219\pi\)
0.724179 + 0.689612i \(0.242219\pi\)
\(72\) 0 0
\(73\) −2.07244 −0.242561 −0.121281 0.992618i \(-0.538700\pi\)
−0.121281 + 0.992618i \(0.538700\pi\)
\(74\) 0 0
\(75\) 30.2940 3.49805
\(76\) 0 0
\(77\) −0.166194 −0.0189396
\(78\) 0 0
\(79\) 0.710134 0.0798963 0.0399481 0.999202i \(-0.487281\pi\)
0.0399481 + 0.999202i \(0.487281\pi\)
\(80\) 0 0
\(81\) 28.5802 3.17558
\(82\) 0 0
\(83\) 8.92521 0.979669 0.489834 0.871815i \(-0.337057\pi\)
0.489834 + 0.871815i \(0.337057\pi\)
\(84\) 0 0
\(85\) 25.1246 2.72515
\(86\) 0 0
\(87\) 8.23247 0.882614
\(88\) 0 0
\(89\) −9.36913 −0.993126 −0.496563 0.868001i \(-0.665405\pi\)
−0.496563 + 0.868001i \(0.665405\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.81371 0.706548
\(94\) 0 0
\(95\) 11.8423 1.21500
\(96\) 0 0
\(97\) −15.9901 −1.62355 −0.811775 0.583971i \(-0.801498\pi\)
−0.811775 + 0.583971i \(0.801498\pi\)
\(98\) 0 0
\(99\) −1.29816 −0.130470
\(100\) 0 0
\(101\) 18.8716 1.87779 0.938897 0.344198i \(-0.111849\pi\)
0.938897 + 0.344198i \(0.111849\pi\)
\(102\) 0 0
\(103\) 1.32073 0.130136 0.0650678 0.997881i \(-0.479274\pi\)
0.0650678 + 0.997881i \(0.479274\pi\)
\(104\) 0 0
\(105\) −12.3961 −1.20973
\(106\) 0 0
\(107\) 15.6517 1.51311 0.756553 0.653932i \(-0.226882\pi\)
0.756553 + 0.653932i \(0.226882\pi\)
\(108\) 0 0
\(109\) 16.2365 1.55518 0.777588 0.628775i \(-0.216443\pi\)
0.777588 + 0.628775i \(0.216443\pi\)
\(110\) 0 0
\(111\) 17.2315 1.63554
\(112\) 0 0
\(113\) −3.47410 −0.326816 −0.163408 0.986559i \(-0.552249\pi\)
−0.163408 + 0.986559i \(0.552249\pi\)
\(114\) 0 0
\(115\) −32.8730 −3.06542
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.66424 −0.610910
\(120\) 0 0
\(121\) −10.9724 −0.997489
\(122\) 0 0
\(123\) 20.5798 1.85562
\(124\) 0 0
\(125\) −15.8849 −1.42079
\(126\) 0 0
\(127\) −14.8850 −1.32083 −0.660417 0.750899i \(-0.729620\pi\)
−0.660417 + 0.750899i \(0.729620\pi\)
\(128\) 0 0
\(129\) −11.1779 −0.984158
\(130\) 0 0
\(131\) −14.1906 −1.23984 −0.619920 0.784665i \(-0.712835\pi\)
−0.619920 + 0.784665i \(0.712835\pi\)
\(132\) 0 0
\(133\) −3.14115 −0.272372
\(134\) 0 0
\(135\) −59.6390 −5.13291
\(136\) 0 0
\(137\) 15.6016 1.33294 0.666468 0.745534i \(-0.267805\pi\)
0.666468 + 0.745534i \(0.267805\pi\)
\(138\) 0 0
\(139\) −3.43170 −0.291073 −0.145537 0.989353i \(-0.546491\pi\)
−0.145537 + 0.989353i \(0.546491\pi\)
\(140\) 0 0
\(141\) 28.7407 2.42041
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −9.43940 −0.783900
\(146\) 0 0
\(147\) 3.28803 0.271192
\(148\) 0 0
\(149\) −7.87139 −0.644850 −0.322425 0.946595i \(-0.604498\pi\)
−0.322425 + 0.946595i \(0.604498\pi\)
\(150\) 0 0
\(151\) −18.0392 −1.46801 −0.734005 0.679144i \(-0.762351\pi\)
−0.734005 + 0.679144i \(0.762351\pi\)
\(152\) 0 0
\(153\) −52.0551 −4.20841
\(154\) 0 0
\(155\) −7.81264 −0.627526
\(156\) 0 0
\(157\) 11.9607 0.954568 0.477284 0.878749i \(-0.341621\pi\)
0.477284 + 0.878749i \(0.341621\pi\)
\(158\) 0 0
\(159\) 17.5929 1.39520
\(160\) 0 0
\(161\) 8.71947 0.687190
\(162\) 0 0
\(163\) −5.51608 −0.432053 −0.216027 0.976387i \(-0.569310\pi\)
−0.216027 + 0.976387i \(0.569310\pi\)
\(164\) 0 0
\(165\) 2.06016 0.160383
\(166\) 0 0
\(167\) 5.35124 0.414091 0.207046 0.978331i \(-0.433615\pi\)
0.207046 + 0.978331i \(0.433615\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −24.5359 −1.87631
\(172\) 0 0
\(173\) −4.67653 −0.355550 −0.177775 0.984071i \(-0.556890\pi\)
−0.177775 + 0.984071i \(0.556890\pi\)
\(174\) 0 0
\(175\) 9.21343 0.696470
\(176\) 0 0
\(177\) 7.24486 0.544557
\(178\) 0 0
\(179\) 19.2036 1.43535 0.717673 0.696381i \(-0.245207\pi\)
0.717673 + 0.696381i \(0.245207\pi\)
\(180\) 0 0
\(181\) 10.7540 0.799338 0.399669 0.916660i \(-0.369125\pi\)
0.399669 + 0.916660i \(0.369125\pi\)
\(182\) 0 0
\(183\) −29.5050 −2.18107
\(184\) 0 0
\(185\) −19.7577 −1.45261
\(186\) 0 0
\(187\) 1.10756 0.0809928
\(188\) 0 0
\(189\) 15.8191 1.15067
\(190\) 0 0
\(191\) 2.70445 0.195687 0.0978435 0.995202i \(-0.468806\pi\)
0.0978435 + 0.995202i \(0.468806\pi\)
\(192\) 0 0
\(193\) −7.24910 −0.521802 −0.260901 0.965366i \(-0.584020\pi\)
−0.260901 + 0.965366i \(0.584020\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.8259 1.12755 0.563775 0.825928i \(-0.309348\pi\)
0.563775 + 0.825928i \(0.309348\pi\)
\(198\) 0 0
\(199\) 1.98977 0.141051 0.0705254 0.997510i \(-0.477532\pi\)
0.0705254 + 0.997510i \(0.477532\pi\)
\(200\) 0 0
\(201\) 12.9652 0.914495
\(202\) 0 0
\(203\) 2.50377 0.175730
\(204\) 0 0
\(205\) −23.5969 −1.64808
\(206\) 0 0
\(207\) 68.1088 4.73389
\(208\) 0 0
\(209\) 0.522041 0.0361104
\(210\) 0 0
\(211\) −4.77371 −0.328636 −0.164318 0.986407i \(-0.552542\pi\)
−0.164318 + 0.986407i \(0.552542\pi\)
\(212\) 0 0
\(213\) 40.1273 2.74948
\(214\) 0 0
\(215\) 12.8166 0.874087
\(216\) 0 0
\(217\) 2.07228 0.140675
\(218\) 0 0
\(219\) −6.81425 −0.460465
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −24.4090 −1.63455 −0.817274 0.576250i \(-0.804516\pi\)
−0.817274 + 0.576250i \(0.804516\pi\)
\(224\) 0 0
\(225\) 71.9672 4.79781
\(226\) 0 0
\(227\) −22.1495 −1.47011 −0.735056 0.678006i \(-0.762844\pi\)
−0.735056 + 0.678006i \(0.762844\pi\)
\(228\) 0 0
\(229\) 11.0363 0.729302 0.364651 0.931144i \(-0.381188\pi\)
0.364651 + 0.931144i \(0.381188\pi\)
\(230\) 0 0
\(231\) −0.546452 −0.0359539
\(232\) 0 0
\(233\) −17.3066 −1.13380 −0.566898 0.823788i \(-0.691857\pi\)
−0.566898 + 0.823788i \(0.691857\pi\)
\(234\) 0 0
\(235\) −32.9543 −2.14970
\(236\) 0 0
\(237\) 2.33494 0.151671
\(238\) 0 0
\(239\) −1.90457 −0.123196 −0.0615981 0.998101i \(-0.519620\pi\)
−0.0615981 + 0.998101i \(0.519620\pi\)
\(240\) 0 0
\(241\) 2.30854 0.148706 0.0743530 0.997232i \(-0.476311\pi\)
0.0743530 + 0.997232i \(0.476311\pi\)
\(242\) 0 0
\(243\) 46.5152 2.98395
\(244\) 0 0
\(245\) −3.77007 −0.240861
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 29.3463 1.85975
\(250\) 0 0
\(251\) −2.97612 −0.187851 −0.0939254 0.995579i \(-0.529942\pi\)
−0.0939254 + 0.995579i \(0.529942\pi\)
\(252\) 0 0
\(253\) −1.44913 −0.0911058
\(254\) 0 0
\(255\) 82.6105 5.17327
\(256\) 0 0
\(257\) −10.9271 −0.681615 −0.340808 0.940133i \(-0.610700\pi\)
−0.340808 + 0.940133i \(0.610700\pi\)
\(258\) 0 0
\(259\) 5.24067 0.325639
\(260\) 0 0
\(261\) 19.5573 1.21056
\(262\) 0 0
\(263\) −12.9704 −0.799789 −0.399895 0.916561i \(-0.630953\pi\)
−0.399895 + 0.916561i \(0.630953\pi\)
\(264\) 0 0
\(265\) −20.1721 −1.23916
\(266\) 0 0
\(267\) −30.8060 −1.88529
\(268\) 0 0
\(269\) 6.74714 0.411380 0.205690 0.978617i \(-0.434056\pi\)
0.205690 + 0.978617i \(0.434056\pi\)
\(270\) 0 0
\(271\) −2.71741 −0.165071 −0.0825355 0.996588i \(-0.526302\pi\)
−0.0825355 + 0.996588i \(0.526302\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.53122 −0.0923360
\(276\) 0 0
\(277\) 6.25873 0.376051 0.188025 0.982164i \(-0.439791\pi\)
0.188025 + 0.982164i \(0.439791\pi\)
\(278\) 0 0
\(279\) 16.1868 0.969079
\(280\) 0 0
\(281\) 29.2013 1.74200 0.871002 0.491279i \(-0.163471\pi\)
0.871002 + 0.491279i \(0.163471\pi\)
\(282\) 0 0
\(283\) 2.80256 0.166595 0.0832975 0.996525i \(-0.473455\pi\)
0.0832975 + 0.996525i \(0.473455\pi\)
\(284\) 0 0
\(285\) 38.9380 2.30649
\(286\) 0 0
\(287\) 6.25901 0.369458
\(288\) 0 0
\(289\) 27.4121 1.61248
\(290\) 0 0
\(291\) −52.5759 −3.08205
\(292\) 0 0
\(293\) 3.46125 0.202208 0.101104 0.994876i \(-0.467762\pi\)
0.101104 + 0.994876i \(0.467762\pi\)
\(294\) 0 0
\(295\) −8.30700 −0.483652
\(296\) 0 0
\(297\) −2.62904 −0.152553
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.39957 −0.195948
\(302\) 0 0
\(303\) 62.0503 3.56470
\(304\) 0 0
\(305\) 33.8306 1.93714
\(306\) 0 0
\(307\) −16.5672 −0.945542 −0.472771 0.881185i \(-0.656746\pi\)
−0.472771 + 0.881185i \(0.656746\pi\)
\(308\) 0 0
\(309\) 4.34260 0.247042
\(310\) 0 0
\(311\) −7.46655 −0.423389 −0.211695 0.977336i \(-0.567898\pi\)
−0.211695 + 0.977336i \(0.567898\pi\)
\(312\) 0 0
\(313\) −6.38185 −0.360723 −0.180362 0.983600i \(-0.557727\pi\)
−0.180362 + 0.983600i \(0.557727\pi\)
\(314\) 0 0
\(315\) −29.4485 −1.65923
\(316\) 0 0
\(317\) 8.19850 0.460474 0.230237 0.973135i \(-0.426050\pi\)
0.230237 + 0.973135i \(0.426050\pi\)
\(318\) 0 0
\(319\) −0.416113 −0.0232979
\(320\) 0 0
\(321\) 51.4632 2.87239
\(322\) 0 0
\(323\) 20.9334 1.16476
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 53.3861 2.95226
\(328\) 0 0
\(329\) 8.74103 0.481909
\(330\) 0 0
\(331\) 23.8711 1.31208 0.656039 0.754727i \(-0.272231\pi\)
0.656039 + 0.754727i \(0.272231\pi\)
\(332\) 0 0
\(333\) 40.9355 2.24325
\(334\) 0 0
\(335\) −14.8660 −0.812215
\(336\) 0 0
\(337\) −14.2185 −0.774534 −0.387267 0.921968i \(-0.626581\pi\)
−0.387267 + 0.921968i \(0.626581\pi\)
\(338\) 0 0
\(339\) −11.4229 −0.620409
\(340\) 0 0
\(341\) −0.344401 −0.0186504
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −108.087 −5.81922
\(346\) 0 0
\(347\) −15.5065 −0.832432 −0.416216 0.909266i \(-0.636644\pi\)
−0.416216 + 0.909266i \(0.636644\pi\)
\(348\) 0 0
\(349\) −13.2890 −0.711346 −0.355673 0.934610i \(-0.615748\pi\)
−0.355673 + 0.934610i \(0.615748\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.1697 1.39287 0.696437 0.717618i \(-0.254768\pi\)
0.696437 + 0.717618i \(0.254768\pi\)
\(354\) 0 0
\(355\) −46.0102 −2.44197
\(356\) 0 0
\(357\) −21.9122 −1.15972
\(358\) 0 0
\(359\) −24.0498 −1.26930 −0.634649 0.772800i \(-0.718855\pi\)
−0.634649 + 0.772800i \(0.718855\pi\)
\(360\) 0 0
\(361\) −9.13319 −0.480694
\(362\) 0 0
\(363\) −36.0775 −1.89358
\(364\) 0 0
\(365\) 7.81326 0.408965
\(366\) 0 0
\(367\) 5.27863 0.275542 0.137771 0.990464i \(-0.456006\pi\)
0.137771 + 0.990464i \(0.456006\pi\)
\(368\) 0 0
\(369\) 48.8898 2.54510
\(370\) 0 0
\(371\) 5.35058 0.277788
\(372\) 0 0
\(373\) 20.0485 1.03807 0.519036 0.854752i \(-0.326291\pi\)
0.519036 + 0.854752i \(0.326291\pi\)
\(374\) 0 0
\(375\) −52.2300 −2.69715
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 19.2760 0.990142 0.495071 0.868852i \(-0.335142\pi\)
0.495071 + 0.868852i \(0.335142\pi\)
\(380\) 0 0
\(381\) −48.9424 −2.50740
\(382\) 0 0
\(383\) −20.0986 −1.02699 −0.513495 0.858093i \(-0.671650\pi\)
−0.513495 + 0.858093i \(0.671650\pi\)
\(384\) 0 0
\(385\) 0.626565 0.0319327
\(386\) 0 0
\(387\) −26.5545 −1.34984
\(388\) 0 0
\(389\) −7.32852 −0.371571 −0.185785 0.982590i \(-0.559483\pi\)
−0.185785 + 0.982590i \(0.559483\pi\)
\(390\) 0 0
\(391\) −58.1086 −2.93868
\(392\) 0 0
\(393\) −46.6591 −2.35364
\(394\) 0 0
\(395\) −2.67725 −0.134707
\(396\) 0 0
\(397\) 23.3190 1.17035 0.585175 0.810907i \(-0.301026\pi\)
0.585175 + 0.810907i \(0.301026\pi\)
\(398\) 0 0
\(399\) −10.3282 −0.517056
\(400\) 0 0
\(401\) 3.62784 0.181166 0.0905829 0.995889i \(-0.471127\pi\)
0.0905829 + 0.995889i \(0.471127\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −107.749 −5.35411
\(406\) 0 0
\(407\) −0.870970 −0.0431724
\(408\) 0 0
\(409\) 16.5099 0.816364 0.408182 0.912901i \(-0.366163\pi\)
0.408182 + 0.912901i \(0.366163\pi\)
\(410\) 0 0
\(411\) 51.2985 2.53037
\(412\) 0 0
\(413\) 2.20341 0.108423
\(414\) 0 0
\(415\) −33.6487 −1.65175
\(416\) 0 0
\(417\) −11.2835 −0.552556
\(418\) 0 0
\(419\) 1.39271 0.0680383 0.0340191 0.999421i \(-0.489169\pi\)
0.0340191 + 0.999421i \(0.489169\pi\)
\(420\) 0 0
\(421\) 3.31700 0.161661 0.0808303 0.996728i \(-0.474243\pi\)
0.0808303 + 0.996728i \(0.474243\pi\)
\(422\) 0 0
\(423\) 68.2772 3.31975
\(424\) 0 0
\(425\) −61.4005 −2.97836
\(426\) 0 0
\(427\) −8.97348 −0.434257
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.72035 −0.420045 −0.210022 0.977697i \(-0.567354\pi\)
−0.210022 + 0.977697i \(0.567354\pi\)
\(432\) 0 0
\(433\) −11.4153 −0.548585 −0.274293 0.961646i \(-0.588444\pi\)
−0.274293 + 0.961646i \(0.588444\pi\)
\(434\) 0 0
\(435\) −31.0370 −1.48811
\(436\) 0 0
\(437\) −27.3891 −1.31020
\(438\) 0 0
\(439\) −15.8781 −0.757822 −0.378911 0.925433i \(-0.623701\pi\)
−0.378911 + 0.925433i \(0.623701\pi\)
\(440\) 0 0
\(441\) 7.81112 0.371958
\(442\) 0 0
\(443\) 5.51966 0.262247 0.131123 0.991366i \(-0.458142\pi\)
0.131123 + 0.991366i \(0.458142\pi\)
\(444\) 0 0
\(445\) 35.3223 1.67444
\(446\) 0 0
\(447\) −25.8813 −1.22415
\(448\) 0 0
\(449\) −1.60128 −0.0755692 −0.0377846 0.999286i \(-0.512030\pi\)
−0.0377846 + 0.999286i \(0.512030\pi\)
\(450\) 0 0
\(451\) −1.04021 −0.0489817
\(452\) 0 0
\(453\) −59.3134 −2.78679
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.23757 0.432115 0.216058 0.976381i \(-0.430680\pi\)
0.216058 + 0.976381i \(0.430680\pi\)
\(458\) 0 0
\(459\) −105.422 −4.92068
\(460\) 0 0
\(461\) −14.7131 −0.685256 −0.342628 0.939471i \(-0.611317\pi\)
−0.342628 + 0.939471i \(0.611317\pi\)
\(462\) 0 0
\(463\) −41.2688 −1.91792 −0.958961 0.283539i \(-0.908492\pi\)
−0.958961 + 0.283539i \(0.908492\pi\)
\(464\) 0 0
\(465\) −25.6881 −1.19126
\(466\) 0 0
\(467\) 10.0035 0.462907 0.231453 0.972846i \(-0.425652\pi\)
0.231453 + 0.972846i \(0.425652\pi\)
\(468\) 0 0
\(469\) 3.94316 0.182078
\(470\) 0 0
\(471\) 39.3271 1.81210
\(472\) 0 0
\(473\) 0.564990 0.0259783
\(474\) 0 0
\(475\) −28.9407 −1.32789
\(476\) 0 0
\(477\) 41.7940 1.91362
\(478\) 0 0
\(479\) −17.1559 −0.783873 −0.391937 0.919992i \(-0.628195\pi\)
−0.391937 + 0.919992i \(0.628195\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 28.6698 1.30452
\(484\) 0 0
\(485\) 60.2838 2.73735
\(486\) 0 0
\(487\) 8.08467 0.366351 0.183176 0.983080i \(-0.441362\pi\)
0.183176 + 0.983080i \(0.441362\pi\)
\(488\) 0 0
\(489\) −18.1370 −0.820185
\(490\) 0 0
\(491\) −5.79104 −0.261346 −0.130673 0.991426i \(-0.541714\pi\)
−0.130673 + 0.991426i \(0.541714\pi\)
\(492\) 0 0
\(493\) −16.6857 −0.751488
\(494\) 0 0
\(495\) 4.89417 0.219977
\(496\) 0 0
\(497\) 12.2041 0.547428
\(498\) 0 0
\(499\) −13.3966 −0.599714 −0.299857 0.953984i \(-0.596939\pi\)
−0.299857 + 0.953984i \(0.596939\pi\)
\(500\) 0 0
\(501\) 17.5950 0.786087
\(502\) 0 0
\(503\) 3.23034 0.144034 0.0720168 0.997403i \(-0.477056\pi\)
0.0720168 + 0.997403i \(0.477056\pi\)
\(504\) 0 0
\(505\) −71.1472 −3.16601
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.3664 0.947049 0.473524 0.880781i \(-0.342982\pi\)
0.473524 + 0.880781i \(0.342982\pi\)
\(510\) 0 0
\(511\) −2.07244 −0.0916796
\(512\) 0 0
\(513\) −49.6901 −2.19387
\(514\) 0 0
\(515\) −4.97925 −0.219412
\(516\) 0 0
\(517\) −1.45271 −0.0638901
\(518\) 0 0
\(519\) −15.3765 −0.674955
\(520\) 0 0
\(521\) −32.2857 −1.41446 −0.707231 0.706983i \(-0.750056\pi\)
−0.707231 + 0.706983i \(0.750056\pi\)
\(522\) 0 0
\(523\) 2.46204 0.107658 0.0538288 0.998550i \(-0.482857\pi\)
0.0538288 + 0.998550i \(0.482857\pi\)
\(524\) 0 0
\(525\) 30.2940 1.32214
\(526\) 0 0
\(527\) −13.8102 −0.601580
\(528\) 0 0
\(529\) 53.0291 2.30561
\(530\) 0 0
\(531\) 17.2111 0.746897
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −59.0080 −2.55114
\(536\) 0 0
\(537\) 63.1420 2.72478
\(538\) 0 0
\(539\) −0.166194 −0.00715850
\(540\) 0 0
\(541\) −23.9903 −1.03142 −0.515711 0.856762i \(-0.672472\pi\)
−0.515711 + 0.856762i \(0.672472\pi\)
\(542\) 0 0
\(543\) 35.3594 1.51742
\(544\) 0 0
\(545\) −61.2128 −2.62207
\(546\) 0 0
\(547\) 36.2013 1.54786 0.773929 0.633273i \(-0.218289\pi\)
0.773929 + 0.633273i \(0.218289\pi\)
\(548\) 0 0
\(549\) −70.0929 −2.99149
\(550\) 0 0
\(551\) −7.86472 −0.335049
\(552\) 0 0
\(553\) 0.710134 0.0301980
\(554\) 0 0
\(555\) −64.9638 −2.75756
\(556\) 0 0
\(557\) −1.48127 −0.0627636 −0.0313818 0.999507i \(-0.509991\pi\)
−0.0313818 + 0.999507i \(0.509991\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 3.64168 0.153752
\(562\) 0 0
\(563\) 13.3255 0.561602 0.280801 0.959766i \(-0.409400\pi\)
0.280801 + 0.959766i \(0.409400\pi\)
\(564\) 0 0
\(565\) 13.0976 0.551020
\(566\) 0 0
\(567\) 28.5802 1.20026
\(568\) 0 0
\(569\) −9.37782 −0.393139 −0.196569 0.980490i \(-0.562980\pi\)
−0.196569 + 0.980490i \(0.562980\pi\)
\(570\) 0 0
\(571\) 4.70554 0.196921 0.0984603 0.995141i \(-0.468608\pi\)
0.0984603 + 0.995141i \(0.468608\pi\)
\(572\) 0 0
\(573\) 8.89229 0.371481
\(574\) 0 0
\(575\) 80.3362 3.35025
\(576\) 0 0
\(577\) 41.4130 1.72405 0.862023 0.506870i \(-0.169197\pi\)
0.862023 + 0.506870i \(0.169197\pi\)
\(578\) 0 0
\(579\) −23.8352 −0.990559
\(580\) 0 0
\(581\) 8.92521 0.370280
\(582\) 0 0
\(583\) −0.889237 −0.0368284
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.7773 0.940120 0.470060 0.882634i \(-0.344232\pi\)
0.470060 + 0.882634i \(0.344232\pi\)
\(588\) 0 0
\(589\) −6.50933 −0.268212
\(590\) 0 0
\(591\) 52.0360 2.14048
\(592\) 0 0
\(593\) −30.3573 −1.24662 −0.623311 0.781974i \(-0.714213\pi\)
−0.623311 + 0.781974i \(0.714213\pi\)
\(594\) 0 0
\(595\) 25.1246 1.03001
\(596\) 0 0
\(597\) 6.54240 0.267763
\(598\) 0 0
\(599\) 14.9609 0.611287 0.305643 0.952146i \(-0.401128\pi\)
0.305643 + 0.952146i \(0.401128\pi\)
\(600\) 0 0
\(601\) 9.88738 0.403315 0.201657 0.979456i \(-0.435367\pi\)
0.201657 + 0.979456i \(0.435367\pi\)
\(602\) 0 0
\(603\) 30.8005 1.25429
\(604\) 0 0
\(605\) 41.3666 1.68179
\(606\) 0 0
\(607\) 19.0570 0.773502 0.386751 0.922184i \(-0.373597\pi\)
0.386751 + 0.922184i \(0.373597\pi\)
\(608\) 0 0
\(609\) 8.23247 0.333597
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.3334 −0.457752 −0.228876 0.973456i \(-0.573505\pi\)
−0.228876 + 0.973456i \(0.573505\pi\)
\(614\) 0 0
\(615\) −77.5872 −3.12862
\(616\) 0 0
\(617\) −18.4204 −0.741577 −0.370788 0.928717i \(-0.620913\pi\)
−0.370788 + 0.928717i \(0.620913\pi\)
\(618\) 0 0
\(619\) −27.3881 −1.10082 −0.550411 0.834894i \(-0.685529\pi\)
−0.550411 + 0.834894i \(0.685529\pi\)
\(620\) 0 0
\(621\) 137.934 5.53510
\(622\) 0 0
\(623\) −9.36913 −0.375366
\(624\) 0 0
\(625\) 13.8201 0.552804
\(626\) 0 0
\(627\) 1.71649 0.0685498
\(628\) 0 0
\(629\) −34.9251 −1.39255
\(630\) 0 0
\(631\) −41.8121 −1.66451 −0.832257 0.554389i \(-0.812952\pi\)
−0.832257 + 0.554389i \(0.812952\pi\)
\(632\) 0 0
\(633\) −15.6961 −0.623864
\(634\) 0 0
\(635\) 56.1177 2.22696
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 95.3275 3.77110
\(640\) 0 0
\(641\) −34.0360 −1.34434 −0.672170 0.740397i \(-0.734638\pi\)
−0.672170 + 0.740397i \(0.734638\pi\)
\(642\) 0 0
\(643\) −3.51097 −0.138459 −0.0692295 0.997601i \(-0.522054\pi\)
−0.0692295 + 0.997601i \(0.522054\pi\)
\(644\) 0 0
\(645\) 42.1414 1.65932
\(646\) 0 0
\(647\) 38.4112 1.51010 0.755049 0.655668i \(-0.227613\pi\)
0.755049 + 0.655668i \(0.227613\pi\)
\(648\) 0 0
\(649\) −0.366194 −0.0143744
\(650\) 0 0
\(651\) 6.81371 0.267050
\(652\) 0 0
\(653\) −32.3895 −1.26750 −0.633749 0.773539i \(-0.718485\pi\)
−0.633749 + 0.773539i \(0.718485\pi\)
\(654\) 0 0
\(655\) 53.4996 2.09040
\(656\) 0 0
\(657\) −16.1881 −0.631558
\(658\) 0 0
\(659\) −47.3291 −1.84368 −0.921840 0.387570i \(-0.873315\pi\)
−0.921840 + 0.387570i \(0.873315\pi\)
\(660\) 0 0
\(661\) 17.6770 0.687554 0.343777 0.939051i \(-0.388294\pi\)
0.343777 + 0.939051i \(0.388294\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 11.8423 0.459227
\(666\) 0 0
\(667\) 21.8316 0.845322
\(668\) 0 0
\(669\) −80.2574 −3.10293
\(670\) 0 0
\(671\) 1.49134 0.0575726
\(672\) 0 0
\(673\) −36.2939 −1.39903 −0.699513 0.714620i \(-0.746600\pi\)
−0.699513 + 0.714620i \(0.746600\pi\)
\(674\) 0 0
\(675\) 145.748 5.60984
\(676\) 0 0
\(677\) 30.7764 1.18283 0.591416 0.806367i \(-0.298569\pi\)
0.591416 + 0.806367i \(0.298569\pi\)
\(678\) 0 0
\(679\) −15.9901 −0.613644
\(680\) 0 0
\(681\) −72.8281 −2.79078
\(682\) 0 0
\(683\) −10.9755 −0.419966 −0.209983 0.977705i \(-0.567341\pi\)
−0.209983 + 0.977705i \(0.567341\pi\)
\(684\) 0 0
\(685\) −58.8192 −2.24736
\(686\) 0 0
\(687\) 36.2878 1.38446
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 45.3865 1.72659 0.863293 0.504704i \(-0.168398\pi\)
0.863293 + 0.504704i \(0.168398\pi\)
\(692\) 0 0
\(693\) −1.29816 −0.0493132
\(694\) 0 0
\(695\) 12.9378 0.490757
\(696\) 0 0
\(697\) −41.7115 −1.57994
\(698\) 0 0
\(699\) −56.9047 −2.15233
\(700\) 0 0
\(701\) −23.8023 −0.898999 −0.449500 0.893281i \(-0.648398\pi\)
−0.449500 + 0.893281i \(0.648398\pi\)
\(702\) 0 0
\(703\) −16.4617 −0.620865
\(704\) 0 0
\(705\) −108.355 −4.08087
\(706\) 0 0
\(707\) 18.8716 0.709739
\(708\) 0 0
\(709\) 15.8067 0.593631 0.296816 0.954935i \(-0.404075\pi\)
0.296816 + 0.954935i \(0.404075\pi\)
\(710\) 0 0
\(711\) 5.54694 0.208026
\(712\) 0 0
\(713\) 18.0692 0.676696
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.26227 −0.233869
\(718\) 0 0
\(719\) 26.6935 0.995499 0.497749 0.867321i \(-0.334160\pi\)
0.497749 + 0.867321i \(0.334160\pi\)
\(720\) 0 0
\(721\) 1.32073 0.0491866
\(722\) 0 0
\(723\) 7.59053 0.282295
\(724\) 0 0
\(725\) 23.0683 0.856737
\(726\) 0 0
\(727\) −17.8836 −0.663267 −0.331634 0.943408i \(-0.607600\pi\)
−0.331634 + 0.943408i \(0.607600\pi\)
\(728\) 0 0
\(729\) 67.2026 2.48898
\(730\) 0 0
\(731\) 22.6556 0.837947
\(732\) 0 0
\(733\) −27.2625 −1.00696 −0.503481 0.864006i \(-0.667948\pi\)
−0.503481 + 0.864006i \(0.667948\pi\)
\(734\) 0 0
\(735\) −12.3961 −0.457237
\(736\) 0 0
\(737\) −0.655331 −0.0241394
\(738\) 0 0
\(739\) 37.7631 1.38914 0.694569 0.719426i \(-0.255595\pi\)
0.694569 + 0.719426i \(0.255595\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −38.9179 −1.42776 −0.713880 0.700268i \(-0.753064\pi\)
−0.713880 + 0.700268i \(0.753064\pi\)
\(744\) 0 0
\(745\) 29.6757 1.08723
\(746\) 0 0
\(747\) 69.7158 2.55077
\(748\) 0 0
\(749\) 15.6517 0.571900
\(750\) 0 0
\(751\) −11.3301 −0.413442 −0.206721 0.978400i \(-0.566279\pi\)
−0.206721 + 0.978400i \(0.566279\pi\)
\(752\) 0 0
\(753\) −9.78555 −0.356605
\(754\) 0 0
\(755\) 68.0091 2.47510
\(756\) 0 0
\(757\) −32.9459 −1.19744 −0.598720 0.800958i \(-0.704324\pi\)
−0.598720 + 0.800958i \(0.704324\pi\)
\(758\) 0 0
\(759\) −4.76477 −0.172950
\(760\) 0 0
\(761\) 33.7013 1.22167 0.610835 0.791758i \(-0.290834\pi\)
0.610835 + 0.791758i \(0.290834\pi\)
\(762\) 0 0
\(763\) 16.2365 0.587801
\(764\) 0 0
\(765\) 196.252 7.09549
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −46.6993 −1.68402 −0.842010 0.539461i \(-0.818628\pi\)
−0.842010 + 0.539461i \(0.818628\pi\)
\(770\) 0 0
\(771\) −35.9287 −1.29394
\(772\) 0 0
\(773\) 10.3745 0.373144 0.186572 0.982441i \(-0.440262\pi\)
0.186572 + 0.982441i \(0.440262\pi\)
\(774\) 0 0
\(775\) 19.0928 0.685833
\(776\) 0 0
\(777\) 17.2315 0.618175
\(778\) 0 0
\(779\) −19.6605 −0.704409
\(780\) 0 0
\(781\) −2.02825 −0.0725765
\(782\) 0 0
\(783\) 39.6074 1.41545
\(784\) 0 0
\(785\) −45.0927 −1.60943
\(786\) 0 0
\(787\) −16.2732 −0.580077 −0.290039 0.957015i \(-0.593668\pi\)
−0.290039 + 0.957015i \(0.593668\pi\)
\(788\) 0 0
\(789\) −42.6470 −1.51827
\(790\) 0 0
\(791\) −3.47410 −0.123525
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −66.3263 −2.35235
\(796\) 0 0
\(797\) −15.8959 −0.563063 −0.281531 0.959552i \(-0.590842\pi\)
−0.281531 + 0.959552i \(0.590842\pi\)
\(798\) 0 0
\(799\) −58.2523 −2.06082
\(800\) 0 0
\(801\) −73.1834 −2.58581
\(802\) 0 0
\(803\) 0.344429 0.0121546
\(804\) 0 0
\(805\) −32.8730 −1.15862
\(806\) 0 0
\(807\) 22.1848 0.780941
\(808\) 0 0
\(809\) 27.2970 0.959711 0.479856 0.877347i \(-0.340689\pi\)
0.479856 + 0.877347i \(0.340689\pi\)
\(810\) 0 0
\(811\) −40.9306 −1.43727 −0.718635 0.695388i \(-0.755233\pi\)
−0.718635 + 0.695388i \(0.755233\pi\)
\(812\) 0 0
\(813\) −8.93492 −0.313361
\(814\) 0 0
\(815\) 20.7960 0.728453
\(816\) 0 0
\(817\) 10.6786 0.373596
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.4546 −0.678970 −0.339485 0.940611i \(-0.610253\pi\)
−0.339485 + 0.940611i \(0.610253\pi\)
\(822\) 0 0
\(823\) 31.4806 1.09734 0.548672 0.836038i \(-0.315134\pi\)
0.548672 + 0.836038i \(0.315134\pi\)
\(824\) 0 0
\(825\) −5.03469 −0.175285
\(826\) 0 0
\(827\) −26.4656 −0.920299 −0.460150 0.887841i \(-0.652204\pi\)
−0.460150 + 0.887841i \(0.652204\pi\)
\(828\) 0 0
\(829\) −15.7739 −0.547849 −0.273925 0.961751i \(-0.588322\pi\)
−0.273925 + 0.961751i \(0.588322\pi\)
\(830\) 0 0
\(831\) 20.5789 0.713873
\(832\) 0 0
\(833\) −6.66424 −0.230902
\(834\) 0 0
\(835\) −20.1745 −0.698169
\(836\) 0 0
\(837\) 32.7815 1.13310
\(838\) 0 0
\(839\) 41.3642 1.42805 0.714025 0.700120i \(-0.246870\pi\)
0.714025 + 0.700120i \(0.246870\pi\)
\(840\) 0 0
\(841\) −22.7311 −0.783832
\(842\) 0 0
\(843\) 96.0147 3.30692
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.9724 −0.377015
\(848\) 0 0
\(849\) 9.21490 0.316254
\(850\) 0 0
\(851\) 45.6958 1.56643
\(852\) 0 0
\(853\) 8.48032 0.290361 0.145180 0.989405i \(-0.453624\pi\)
0.145180 + 0.989405i \(0.453624\pi\)
\(854\) 0 0
\(855\) 92.5020 3.16350
\(856\) 0 0
\(857\) 37.9916 1.29777 0.648884 0.760888i \(-0.275236\pi\)
0.648884 + 0.760888i \(0.275236\pi\)
\(858\) 0 0
\(859\) −42.3745 −1.44580 −0.722900 0.690953i \(-0.757191\pi\)
−0.722900 + 0.690953i \(0.757191\pi\)
\(860\) 0 0
\(861\) 20.5798 0.701357
\(862\) 0 0
\(863\) −15.0922 −0.513743 −0.256871 0.966446i \(-0.582692\pi\)
−0.256871 + 0.966446i \(0.582692\pi\)
\(864\) 0 0
\(865\) 17.6308 0.599466
\(866\) 0 0
\(867\) 90.1316 3.06103
\(868\) 0 0
\(869\) −0.118020 −0.00400356
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −124.901 −4.22724
\(874\) 0 0
\(875\) −15.8849 −0.537008
\(876\) 0 0
\(877\) 54.3132 1.83403 0.917014 0.398856i \(-0.130593\pi\)
0.917014 + 0.398856i \(0.130593\pi\)
\(878\) 0 0
\(879\) 11.3807 0.383861
\(880\) 0 0
\(881\) 16.1167 0.542987 0.271493 0.962440i \(-0.412483\pi\)
0.271493 + 0.962440i \(0.412483\pi\)
\(882\) 0 0
\(883\) 22.6462 0.762104 0.381052 0.924554i \(-0.375562\pi\)
0.381052 + 0.924554i \(0.375562\pi\)
\(884\) 0 0
\(885\) −27.3136 −0.918138
\(886\) 0 0
\(887\) 21.1922 0.711565 0.355782 0.934569i \(-0.384214\pi\)
0.355782 + 0.934569i \(0.384214\pi\)
\(888\) 0 0
\(889\) −14.8850 −0.499228
\(890\) 0 0
\(891\) −4.74987 −0.159127
\(892\) 0 0
\(893\) −27.4569 −0.918809
\(894\) 0 0
\(895\) −72.3989 −2.42003
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.18852 0.173047
\(900\) 0 0
\(901\) −35.6576 −1.18793
\(902\) 0 0
\(903\) −11.1779 −0.371977
\(904\) 0 0
\(905\) −40.5433 −1.34771
\(906\) 0 0
\(907\) −14.7802 −0.490769 −0.245385 0.969426i \(-0.578914\pi\)
−0.245385 + 0.969426i \(0.578914\pi\)
\(908\) 0 0
\(909\) 147.408 4.88922
\(910\) 0 0
\(911\) −32.6578 −1.08200 −0.541000 0.841022i \(-0.681954\pi\)
−0.541000 + 0.841022i \(0.681954\pi\)
\(912\) 0 0
\(913\) −1.48332 −0.0490907
\(914\) 0 0
\(915\) 111.236 3.67735
\(916\) 0 0
\(917\) −14.1906 −0.468616
\(918\) 0 0
\(919\) 21.8819 0.721817 0.360908 0.932601i \(-0.382467\pi\)
0.360908 + 0.932601i \(0.382467\pi\)
\(920\) 0 0
\(921\) −54.4735 −1.79496
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 48.2845 1.58758
\(926\) 0 0
\(927\) 10.3164 0.338835
\(928\) 0 0
\(929\) −60.1004 −1.97183 −0.985915 0.167249i \(-0.946511\pi\)
−0.985915 + 0.167249i \(0.946511\pi\)
\(930\) 0 0
\(931\) −3.14115 −0.102947
\(932\) 0 0
\(933\) −24.5502 −0.803738
\(934\) 0 0
\(935\) −4.17558 −0.136556
\(936\) 0 0
\(937\) 57.1562 1.86721 0.933606 0.358300i \(-0.116644\pi\)
0.933606 + 0.358300i \(0.116644\pi\)
\(938\) 0 0
\(939\) −20.9837 −0.684777
\(940\) 0 0
\(941\) 12.2849 0.400476 0.200238 0.979747i \(-0.435829\pi\)
0.200238 + 0.979747i \(0.435829\pi\)
\(942\) 0 0
\(943\) 54.5752 1.77721
\(944\) 0 0
\(945\) −59.6390 −1.94006
\(946\) 0 0
\(947\) −8.33208 −0.270756 −0.135378 0.990794i \(-0.543225\pi\)
−0.135378 + 0.990794i \(0.543225\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 26.9569 0.874137
\(952\) 0 0
\(953\) −47.2691 −1.53120 −0.765599 0.643318i \(-0.777557\pi\)
−0.765599 + 0.643318i \(0.777557\pi\)
\(954\) 0 0
\(955\) −10.1960 −0.329933
\(956\) 0 0
\(957\) −1.36819 −0.0442273
\(958\) 0 0
\(959\) 15.6016 0.503802
\(960\) 0 0
\(961\) −26.7057 −0.861473
\(962\) 0 0
\(963\) 122.257 3.93968
\(964\) 0 0
\(965\) 27.3296 0.879772
\(966\) 0 0
\(967\) −2.60091 −0.0836397 −0.0418198 0.999125i \(-0.513316\pi\)
−0.0418198 + 0.999125i \(0.513316\pi\)
\(968\) 0 0
\(969\) 68.8294 2.21112
\(970\) 0 0
\(971\) −28.6175 −0.918379 −0.459189 0.888338i \(-0.651860\pi\)
−0.459189 + 0.888338i \(0.651860\pi\)
\(972\) 0 0
\(973\) −3.43170 −0.110015
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −24.9100 −0.796942 −0.398471 0.917181i \(-0.630459\pi\)
−0.398471 + 0.917181i \(0.630459\pi\)
\(978\) 0 0
\(979\) 1.55710 0.0497651
\(980\) 0 0
\(981\) 126.825 4.04922
\(982\) 0 0
\(983\) −29.2114 −0.931698 −0.465849 0.884864i \(-0.654251\pi\)
−0.465849 + 0.884864i \(0.654251\pi\)
\(984\) 0 0
\(985\) −59.6648 −1.90108
\(986\) 0 0
\(987\) 28.7407 0.914828
\(988\) 0 0
\(989\) −29.6425 −0.942576
\(990\) 0 0
\(991\) −17.5542 −0.557627 −0.278814 0.960345i \(-0.589941\pi\)
−0.278814 + 0.960345i \(0.589941\pi\)
\(992\) 0 0
\(993\) 78.4890 2.49077
\(994\) 0 0
\(995\) −7.50156 −0.237815
\(996\) 0 0
\(997\) −53.5986 −1.69749 −0.848743 0.528805i \(-0.822640\pi\)
−0.848743 + 0.528805i \(0.822640\pi\)
\(998\) 0 0
\(999\) 82.9025 2.62292
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.r.1.6 yes 6
13.5 odd 4 4732.2.g.j.337.12 12
13.8 odd 4 4732.2.g.j.337.11 12
13.12 even 2 4732.2.a.q.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4732.2.a.q.1.6 6 13.12 even 2
4732.2.a.r.1.6 yes 6 1.1 even 1 trivial
4732.2.g.j.337.11 12 13.8 odd 4
4732.2.g.j.337.12 12 13.5 odd 4