Properties

Label 4732.2.a.q.1.3
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 251262196 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4732,2,Mod(1,4732)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4732.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4732, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.2854789.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 6x^{4} + 17x^{3} + 11x^{2} - 20x - 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.875901\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.76089 q^{3} -2.41317 q^{5} -1.00000 q^{7} +0.100737 q^{9} -6.01705 q^{11} -4.24934 q^{15} +2.95045 q^{17} -0.290293 q^{19} -1.76089 q^{21} +0.329450 q^{23} +0.823409 q^{25} -5.10529 q^{27} +4.40808 q^{29} +2.88630 q^{31} -10.5954 q^{33} +2.41317 q^{35} -4.01600 q^{37} +7.46676 q^{41} +9.64655 q^{43} -0.243097 q^{45} +6.00009 q^{47} +1.00000 q^{49} +5.19542 q^{51} +4.12592 q^{53} +14.5202 q^{55} -0.511175 q^{57} -7.46445 q^{59} -8.05128 q^{61} -0.100737 q^{63} +11.3097 q^{67} +0.580125 q^{69} +1.38708 q^{71} -7.54224 q^{73} +1.44993 q^{75} +6.01705 q^{77} +7.40516 q^{79} -9.29206 q^{81} +16.9577 q^{83} -7.11994 q^{85} +7.76215 q^{87} +11.7438 q^{89} +5.08246 q^{93} +0.700528 q^{95} -5.74851 q^{97} -0.606142 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 6 q^{7} + 20 q^{9} - 4 q^{11} - 3 q^{15} - 3 q^{17} - 5 q^{19} - 6 q^{21} + 18 q^{23} + 2 q^{25} + 24 q^{27} + 17 q^{29} + 17 q^{31} - 21 q^{33} - q^{37} - 14 q^{41} + 14 q^{43} + 29 q^{45}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.76089 1.01665 0.508325 0.861165i \(-0.330265\pi\)
0.508325 + 0.861165i \(0.330265\pi\)
\(4\) 0 0
\(5\) −2.41317 −1.07920 −0.539602 0.841920i \(-0.681425\pi\)
−0.539602 + 0.841920i \(0.681425\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0.100737 0.0335792
\(10\) 0 0
\(11\) −6.01705 −1.81421 −0.907104 0.420906i \(-0.861712\pi\)
−0.907104 + 0.420906i \(0.861712\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −4.24934 −1.09717
\(16\) 0 0
\(17\) 2.95045 0.715588 0.357794 0.933800i \(-0.383529\pi\)
0.357794 + 0.933800i \(0.383529\pi\)
\(18\) 0 0
\(19\) −0.290293 −0.0665978 −0.0332989 0.999445i \(-0.510601\pi\)
−0.0332989 + 0.999445i \(0.510601\pi\)
\(20\) 0 0
\(21\) −1.76089 −0.384258
\(22\) 0 0
\(23\) 0.329450 0.0686950 0.0343475 0.999410i \(-0.489065\pi\)
0.0343475 + 0.999410i \(0.489065\pi\)
\(24\) 0 0
\(25\) 0.823409 0.164682
\(26\) 0 0
\(27\) −5.10529 −0.982513
\(28\) 0 0
\(29\) 4.40808 0.818560 0.409280 0.912409i \(-0.365780\pi\)
0.409280 + 0.912409i \(0.365780\pi\)
\(30\) 0 0
\(31\) 2.88630 0.518394 0.259197 0.965824i \(-0.416542\pi\)
0.259197 + 0.965824i \(0.416542\pi\)
\(32\) 0 0
\(33\) −10.5954 −1.84442
\(34\) 0 0
\(35\) 2.41317 0.407901
\(36\) 0 0
\(37\) −4.01600 −0.660226 −0.330113 0.943941i \(-0.607087\pi\)
−0.330113 + 0.943941i \(0.607087\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.46676 1.16611 0.583056 0.812432i \(-0.301857\pi\)
0.583056 + 0.812432i \(0.301857\pi\)
\(42\) 0 0
\(43\) 9.64655 1.47109 0.735543 0.677478i \(-0.236927\pi\)
0.735543 + 0.677478i \(0.236927\pi\)
\(44\) 0 0
\(45\) −0.243097 −0.0362388
\(46\) 0 0
\(47\) 6.00009 0.875203 0.437602 0.899169i \(-0.355828\pi\)
0.437602 + 0.899169i \(0.355828\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.19542 0.727504
\(52\) 0 0
\(53\) 4.12592 0.566738 0.283369 0.959011i \(-0.408548\pi\)
0.283369 + 0.959011i \(0.408548\pi\)
\(54\) 0 0
\(55\) 14.5202 1.95790
\(56\) 0 0
\(57\) −0.511175 −0.0677067
\(58\) 0 0
\(59\) −7.46445 −0.971789 −0.485894 0.874018i \(-0.661506\pi\)
−0.485894 + 0.874018i \(0.661506\pi\)
\(60\) 0 0
\(61\) −8.05128 −1.03086 −0.515430 0.856932i \(-0.672368\pi\)
−0.515430 + 0.856932i \(0.672368\pi\)
\(62\) 0 0
\(63\) −0.100737 −0.0126917
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 11.3097 1.38170 0.690852 0.722996i \(-0.257235\pi\)
0.690852 + 0.722996i \(0.257235\pi\)
\(68\) 0 0
\(69\) 0.580125 0.0698388
\(70\) 0 0
\(71\) 1.38708 0.164616 0.0823078 0.996607i \(-0.473771\pi\)
0.0823078 + 0.996607i \(0.473771\pi\)
\(72\) 0 0
\(73\) −7.54224 −0.882753 −0.441376 0.897322i \(-0.645510\pi\)
−0.441376 + 0.897322i \(0.645510\pi\)
\(74\) 0 0
\(75\) 1.44993 0.167424
\(76\) 0 0
\(77\) 6.01705 0.685706
\(78\) 0 0
\(79\) 7.40516 0.833146 0.416573 0.909102i \(-0.363231\pi\)
0.416573 + 0.909102i \(0.363231\pi\)
\(80\) 0 0
\(81\) −9.29206 −1.03245
\(82\) 0 0
\(83\) 16.9577 1.86135 0.930676 0.365843i \(-0.119219\pi\)
0.930676 + 0.365843i \(0.119219\pi\)
\(84\) 0 0
\(85\) −7.11994 −0.772266
\(86\) 0 0
\(87\) 7.76215 0.832190
\(88\) 0 0
\(89\) 11.7438 1.24484 0.622418 0.782685i \(-0.286150\pi\)
0.622418 + 0.782685i \(0.286150\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.08246 0.527026
\(94\) 0 0
\(95\) 0.700528 0.0718727
\(96\) 0 0
\(97\) −5.74851 −0.583672 −0.291836 0.956468i \(-0.594266\pi\)
−0.291836 + 0.956468i \(0.594266\pi\)
\(98\) 0 0
\(99\) −0.606142 −0.0609196
\(100\) 0 0
\(101\) 10.4816 1.04296 0.521478 0.853265i \(-0.325381\pi\)
0.521478 + 0.853265i \(0.325381\pi\)
\(102\) 0 0
\(103\) −17.5315 −1.72743 −0.863713 0.503983i \(-0.831867\pi\)
−0.863713 + 0.503983i \(0.831867\pi\)
\(104\) 0 0
\(105\) 4.24934 0.414693
\(106\) 0 0
\(107\) 9.33384 0.902336 0.451168 0.892439i \(-0.351008\pi\)
0.451168 + 0.892439i \(0.351008\pi\)
\(108\) 0 0
\(109\) 1.39103 0.133236 0.0666181 0.997779i \(-0.478779\pi\)
0.0666181 + 0.997779i \(0.478779\pi\)
\(110\) 0 0
\(111\) −7.07174 −0.671220
\(112\) 0 0
\(113\) −9.11232 −0.857215 −0.428607 0.903491i \(-0.640996\pi\)
−0.428607 + 0.903491i \(0.640996\pi\)
\(114\) 0 0
\(115\) −0.795019 −0.0741359
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.95045 −0.270467
\(120\) 0 0
\(121\) 25.2049 2.29135
\(122\) 0 0
\(123\) 13.1481 1.18553
\(124\) 0 0
\(125\) 10.0788 0.901479
\(126\) 0 0
\(127\) 12.2226 1.08458 0.542289 0.840192i \(-0.317558\pi\)
0.542289 + 0.840192i \(0.317558\pi\)
\(128\) 0 0
\(129\) 16.9865 1.49558
\(130\) 0 0
\(131\) −10.2889 −0.898942 −0.449471 0.893295i \(-0.648387\pi\)
−0.449471 + 0.893295i \(0.648387\pi\)
\(132\) 0 0
\(133\) 0.290293 0.0251716
\(134\) 0 0
\(135\) 12.3199 1.06033
\(136\) 0 0
\(137\) −17.5059 −1.49563 −0.747816 0.663906i \(-0.768897\pi\)
−0.747816 + 0.663906i \(0.768897\pi\)
\(138\) 0 0
\(139\) 5.26079 0.446214 0.223107 0.974794i \(-0.428380\pi\)
0.223107 + 0.974794i \(0.428380\pi\)
\(140\) 0 0
\(141\) 10.5655 0.889776
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −10.6375 −0.883393
\(146\) 0 0
\(147\) 1.76089 0.145236
\(148\) 0 0
\(149\) 22.8551 1.87236 0.936180 0.351520i \(-0.114335\pi\)
0.936180 + 0.351520i \(0.114335\pi\)
\(150\) 0 0
\(151\) −24.1534 −1.96558 −0.982790 0.184729i \(-0.940859\pi\)
−0.982790 + 0.184729i \(0.940859\pi\)
\(152\) 0 0
\(153\) 0.297221 0.0240289
\(154\) 0 0
\(155\) −6.96514 −0.559453
\(156\) 0 0
\(157\) 1.15459 0.0921466 0.0460733 0.998938i \(-0.485329\pi\)
0.0460733 + 0.998938i \(0.485329\pi\)
\(158\) 0 0
\(159\) 7.26529 0.576175
\(160\) 0 0
\(161\) −0.329450 −0.0259643
\(162\) 0 0
\(163\) 20.6011 1.61360 0.806802 0.590821i \(-0.201196\pi\)
0.806802 + 0.590821i \(0.201196\pi\)
\(164\) 0 0
\(165\) 25.5685 1.99050
\(166\) 0 0
\(167\) 11.8060 0.913573 0.456787 0.889576i \(-0.349000\pi\)
0.456787 + 0.889576i \(0.349000\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −0.0292434 −0.00223630
\(172\) 0 0
\(173\) 20.4935 1.55809 0.779047 0.626965i \(-0.215703\pi\)
0.779047 + 0.626965i \(0.215703\pi\)
\(174\) 0 0
\(175\) −0.823409 −0.0622439
\(176\) 0 0
\(177\) −13.1441 −0.987970
\(178\) 0 0
\(179\) −8.65834 −0.647155 −0.323577 0.946202i \(-0.604886\pi\)
−0.323577 + 0.946202i \(0.604886\pi\)
\(180\) 0 0
\(181\) −6.73893 −0.500901 −0.250450 0.968129i \(-0.580579\pi\)
−0.250450 + 0.968129i \(0.580579\pi\)
\(182\) 0 0
\(183\) −14.1774 −1.04803
\(184\) 0 0
\(185\) 9.69131 0.712519
\(186\) 0 0
\(187\) −17.7530 −1.29823
\(188\) 0 0
\(189\) 5.10529 0.371355
\(190\) 0 0
\(191\) 19.4098 1.40444 0.702221 0.711959i \(-0.252192\pi\)
0.702221 + 0.711959i \(0.252192\pi\)
\(192\) 0 0
\(193\) 6.36015 0.457814 0.228907 0.973448i \(-0.426485\pi\)
0.228907 + 0.973448i \(0.426485\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.94515 −0.708562 −0.354281 0.935139i \(-0.615274\pi\)
−0.354281 + 0.935139i \(0.615274\pi\)
\(198\) 0 0
\(199\) −22.3660 −1.58549 −0.792743 0.609556i \(-0.791348\pi\)
−0.792743 + 0.609556i \(0.791348\pi\)
\(200\) 0 0
\(201\) 19.9152 1.40471
\(202\) 0 0
\(203\) −4.40808 −0.309387
\(204\) 0 0
\(205\) −18.0186 −1.25847
\(206\) 0 0
\(207\) 0.0331879 0.00230672
\(208\) 0 0
\(209\) 1.74671 0.120822
\(210\) 0 0
\(211\) 23.6517 1.62825 0.814126 0.580689i \(-0.197217\pi\)
0.814126 + 0.580689i \(0.197217\pi\)
\(212\) 0 0
\(213\) 2.44249 0.167357
\(214\) 0 0
\(215\) −23.2788 −1.58760
\(216\) 0 0
\(217\) −2.88630 −0.195935
\(218\) 0 0
\(219\) −13.2811 −0.897451
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.71399 −0.583532 −0.291766 0.956490i \(-0.594243\pi\)
−0.291766 + 0.956490i \(0.594243\pi\)
\(224\) 0 0
\(225\) 0.0829481 0.00552988
\(226\) 0 0
\(227\) −4.95812 −0.329082 −0.164541 0.986370i \(-0.552614\pi\)
−0.164541 + 0.986370i \(0.552614\pi\)
\(228\) 0 0
\(229\) −19.5942 −1.29482 −0.647411 0.762141i \(-0.724148\pi\)
−0.647411 + 0.762141i \(0.724148\pi\)
\(230\) 0 0
\(231\) 10.5954 0.697124
\(232\) 0 0
\(233\) −27.4664 −1.79938 −0.899690 0.436529i \(-0.856208\pi\)
−0.899690 + 0.436529i \(0.856208\pi\)
\(234\) 0 0
\(235\) −14.4793 −0.944523
\(236\) 0 0
\(237\) 13.0397 0.847018
\(238\) 0 0
\(239\) 13.8340 0.894846 0.447423 0.894323i \(-0.352342\pi\)
0.447423 + 0.894323i \(0.352342\pi\)
\(240\) 0 0
\(241\) −1.83821 −0.118410 −0.0592049 0.998246i \(-0.518857\pi\)
−0.0592049 + 0.998246i \(0.518857\pi\)
\(242\) 0 0
\(243\) −1.04646 −0.0671302
\(244\) 0 0
\(245\) −2.41317 −0.154172
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 29.8607 1.89235
\(250\) 0 0
\(251\) −20.1333 −1.27080 −0.635402 0.772181i \(-0.719166\pi\)
−0.635402 + 0.772181i \(0.719166\pi\)
\(252\) 0 0
\(253\) −1.98231 −0.124627
\(254\) 0 0
\(255\) −12.5374 −0.785125
\(256\) 0 0
\(257\) 4.62824 0.288702 0.144351 0.989527i \(-0.453891\pi\)
0.144351 + 0.989527i \(0.453891\pi\)
\(258\) 0 0
\(259\) 4.01600 0.249542
\(260\) 0 0
\(261\) 0.444059 0.0274866
\(262\) 0 0
\(263\) −0.544003 −0.0335447 −0.0167723 0.999859i \(-0.505339\pi\)
−0.0167723 + 0.999859i \(0.505339\pi\)
\(264\) 0 0
\(265\) −9.95656 −0.611626
\(266\) 0 0
\(267\) 20.6795 1.26556
\(268\) 0 0
\(269\) 16.6044 1.01239 0.506194 0.862420i \(-0.331052\pi\)
0.506194 + 0.862420i \(0.331052\pi\)
\(270\) 0 0
\(271\) 16.6709 1.01269 0.506344 0.862332i \(-0.330997\pi\)
0.506344 + 0.862332i \(0.330997\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.95449 −0.298767
\(276\) 0 0
\(277\) 19.9098 1.19626 0.598132 0.801398i \(-0.295910\pi\)
0.598132 + 0.801398i \(0.295910\pi\)
\(278\) 0 0
\(279\) 0.290758 0.0174073
\(280\) 0 0
\(281\) 5.58343 0.333080 0.166540 0.986035i \(-0.446741\pi\)
0.166540 + 0.986035i \(0.446741\pi\)
\(282\) 0 0
\(283\) 6.21921 0.369694 0.184847 0.982767i \(-0.440821\pi\)
0.184847 + 0.982767i \(0.440821\pi\)
\(284\) 0 0
\(285\) 1.23355 0.0730694
\(286\) 0 0
\(287\) −7.46676 −0.440749
\(288\) 0 0
\(289\) −8.29486 −0.487933
\(290\) 0 0
\(291\) −10.1225 −0.593391
\(292\) 0 0
\(293\) 10.8695 0.635000 0.317500 0.948258i \(-0.397157\pi\)
0.317500 + 0.948258i \(0.397157\pi\)
\(294\) 0 0
\(295\) 18.0130 1.04876
\(296\) 0 0
\(297\) 30.7188 1.78248
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −9.64655 −0.556018
\(302\) 0 0
\(303\) 18.4569 1.06032
\(304\) 0 0
\(305\) 19.4291 1.11251
\(306\) 0 0
\(307\) 3.35325 0.191380 0.0956900 0.995411i \(-0.469494\pi\)
0.0956900 + 0.995411i \(0.469494\pi\)
\(308\) 0 0
\(309\) −30.8710 −1.75619
\(310\) 0 0
\(311\) 22.3596 1.26790 0.633949 0.773375i \(-0.281433\pi\)
0.633949 + 0.773375i \(0.281433\pi\)
\(312\) 0 0
\(313\) −19.0923 −1.07916 −0.539579 0.841935i \(-0.681417\pi\)
−0.539579 + 0.841935i \(0.681417\pi\)
\(314\) 0 0
\(315\) 0.243097 0.0136970
\(316\) 0 0
\(317\) 30.9317 1.73730 0.868648 0.495430i \(-0.164990\pi\)
0.868648 + 0.495430i \(0.164990\pi\)
\(318\) 0 0
\(319\) −26.5236 −1.48504
\(320\) 0 0
\(321\) 16.4359 0.917361
\(322\) 0 0
\(323\) −0.856495 −0.0476566
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.44945 0.135455
\(328\) 0 0
\(329\) −6.00009 −0.330796
\(330\) 0 0
\(331\) −29.9464 −1.64601 −0.823003 0.568037i \(-0.807703\pi\)
−0.823003 + 0.568037i \(0.807703\pi\)
\(332\) 0 0
\(333\) −0.404562 −0.0221698
\(334\) 0 0
\(335\) −27.2924 −1.49114
\(336\) 0 0
\(337\) −15.4765 −0.843056 −0.421528 0.906815i \(-0.638506\pi\)
−0.421528 + 0.906815i \(0.638506\pi\)
\(338\) 0 0
\(339\) −16.0458 −0.871488
\(340\) 0 0
\(341\) −17.3670 −0.940476
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −1.39994 −0.0753704
\(346\) 0 0
\(347\) −10.2122 −0.548220 −0.274110 0.961698i \(-0.588383\pi\)
−0.274110 + 0.961698i \(0.588383\pi\)
\(348\) 0 0
\(349\) 28.4820 1.52461 0.762304 0.647219i \(-0.224068\pi\)
0.762304 + 0.647219i \(0.224068\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.16002 0.221416 0.110708 0.993853i \(-0.464688\pi\)
0.110708 + 0.993853i \(0.464688\pi\)
\(354\) 0 0
\(355\) −3.34726 −0.177654
\(356\) 0 0
\(357\) −5.19542 −0.274971
\(358\) 0 0
\(359\) −6.71704 −0.354512 −0.177256 0.984165i \(-0.556722\pi\)
−0.177256 + 0.984165i \(0.556722\pi\)
\(360\) 0 0
\(361\) −18.9157 −0.995565
\(362\) 0 0
\(363\) 44.3831 2.32951
\(364\) 0 0
\(365\) 18.2007 0.952670
\(366\) 0 0
\(367\) 6.73106 0.351358 0.175679 0.984447i \(-0.443788\pi\)
0.175679 + 0.984447i \(0.443788\pi\)
\(368\) 0 0
\(369\) 0.752182 0.0391571
\(370\) 0 0
\(371\) −4.12592 −0.214207
\(372\) 0 0
\(373\) −17.8800 −0.925791 −0.462895 0.886413i \(-0.653189\pi\)
−0.462895 + 0.886413i \(0.653189\pi\)
\(374\) 0 0
\(375\) 17.7477 0.916489
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −5.92742 −0.304471 −0.152236 0.988344i \(-0.548647\pi\)
−0.152236 + 0.988344i \(0.548647\pi\)
\(380\) 0 0
\(381\) 21.5226 1.10264
\(382\) 0 0
\(383\) −21.3131 −1.08905 −0.544523 0.838746i \(-0.683289\pi\)
−0.544523 + 0.838746i \(0.683289\pi\)
\(384\) 0 0
\(385\) −14.5202 −0.740017
\(386\) 0 0
\(387\) 0.971770 0.0493978
\(388\) 0 0
\(389\) 0.893641 0.0453094 0.0226547 0.999743i \(-0.492788\pi\)
0.0226547 + 0.999743i \(0.492788\pi\)
\(390\) 0 0
\(391\) 0.972024 0.0491573
\(392\) 0 0
\(393\) −18.1176 −0.913910
\(394\) 0 0
\(395\) −17.8699 −0.899134
\(396\) 0 0
\(397\) 9.89710 0.496721 0.248361 0.968668i \(-0.420108\pi\)
0.248361 + 0.968668i \(0.420108\pi\)
\(398\) 0 0
\(399\) 0.511175 0.0255907
\(400\) 0 0
\(401\) −5.00557 −0.249966 −0.124983 0.992159i \(-0.539888\pi\)
−0.124983 + 0.992159i \(0.539888\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 22.4234 1.11423
\(406\) 0 0
\(407\) 24.1645 1.19779
\(408\) 0 0
\(409\) 1.25220 0.0619175 0.0309588 0.999521i \(-0.490144\pi\)
0.0309588 + 0.999521i \(0.490144\pi\)
\(410\) 0 0
\(411\) −30.8260 −1.52053
\(412\) 0 0
\(413\) 7.46445 0.367302
\(414\) 0 0
\(415\) −40.9220 −2.00878
\(416\) 0 0
\(417\) 9.26367 0.453644
\(418\) 0 0
\(419\) 27.0663 1.32228 0.661138 0.750264i \(-0.270074\pi\)
0.661138 + 0.750264i \(0.270074\pi\)
\(420\) 0 0
\(421\) 18.9252 0.922357 0.461179 0.887307i \(-0.347427\pi\)
0.461179 + 0.887307i \(0.347427\pi\)
\(422\) 0 0
\(423\) 0.604434 0.0293886
\(424\) 0 0
\(425\) 2.42942 0.117844
\(426\) 0 0
\(427\) 8.05128 0.389629
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.91738 0.0923567 0.0461784 0.998933i \(-0.485296\pi\)
0.0461784 + 0.998933i \(0.485296\pi\)
\(432\) 0 0
\(433\) 31.8526 1.53074 0.765369 0.643592i \(-0.222557\pi\)
0.765369 + 0.643592i \(0.222557\pi\)
\(434\) 0 0
\(435\) −18.7314 −0.898103
\(436\) 0 0
\(437\) −0.0956370 −0.00457494
\(438\) 0 0
\(439\) 16.7930 0.801485 0.400743 0.916191i \(-0.368752\pi\)
0.400743 + 0.916191i \(0.368752\pi\)
\(440\) 0 0
\(441\) 0.100737 0.00479702
\(442\) 0 0
\(443\) 1.64455 0.0781351 0.0390675 0.999237i \(-0.487561\pi\)
0.0390675 + 0.999237i \(0.487561\pi\)
\(444\) 0 0
\(445\) −28.3398 −1.34343
\(446\) 0 0
\(447\) 40.2453 1.90354
\(448\) 0 0
\(449\) −11.7806 −0.555959 −0.277979 0.960587i \(-0.589665\pi\)
−0.277979 + 0.960587i \(0.589665\pi\)
\(450\) 0 0
\(451\) −44.9279 −2.11557
\(452\) 0 0
\(453\) −42.5316 −1.99831
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.7044 −1.52985 −0.764924 0.644120i \(-0.777224\pi\)
−0.764924 + 0.644120i \(0.777224\pi\)
\(458\) 0 0
\(459\) −15.0629 −0.703075
\(460\) 0 0
\(461\) −13.4366 −0.625803 −0.312901 0.949786i \(-0.601301\pi\)
−0.312901 + 0.949786i \(0.601301\pi\)
\(462\) 0 0
\(463\) −37.1196 −1.72509 −0.862547 0.505976i \(-0.831132\pi\)
−0.862547 + 0.505976i \(0.831132\pi\)
\(464\) 0 0
\(465\) −12.2649 −0.568769
\(466\) 0 0
\(467\) 10.6831 0.494357 0.247178 0.968970i \(-0.420497\pi\)
0.247178 + 0.968970i \(0.420497\pi\)
\(468\) 0 0
\(469\) −11.3097 −0.522235
\(470\) 0 0
\(471\) 2.03311 0.0936809
\(472\) 0 0
\(473\) −58.0438 −2.66886
\(474\) 0 0
\(475\) −0.239030 −0.0109674
\(476\) 0 0
\(477\) 0.415634 0.0190306
\(478\) 0 0
\(479\) 23.7348 1.08447 0.542235 0.840227i \(-0.317578\pi\)
0.542235 + 0.840227i \(0.317578\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −0.580125 −0.0263966
\(484\) 0 0
\(485\) 13.8721 0.629902
\(486\) 0 0
\(487\) 1.87394 0.0849162 0.0424581 0.999098i \(-0.486481\pi\)
0.0424581 + 0.999098i \(0.486481\pi\)
\(488\) 0 0
\(489\) 36.2763 1.64047
\(490\) 0 0
\(491\) 44.0373 1.98737 0.993687 0.112184i \(-0.0357847\pi\)
0.993687 + 0.112184i \(0.0357847\pi\)
\(492\) 0 0
\(493\) 13.0058 0.585752
\(494\) 0 0
\(495\) 1.46273 0.0657447
\(496\) 0 0
\(497\) −1.38708 −0.0622189
\(498\) 0 0
\(499\) 23.6495 1.05870 0.529348 0.848405i \(-0.322437\pi\)
0.529348 + 0.848405i \(0.322437\pi\)
\(500\) 0 0
\(501\) 20.7890 0.928785
\(502\) 0 0
\(503\) 15.5968 0.695428 0.347714 0.937601i \(-0.386958\pi\)
0.347714 + 0.937601i \(0.386958\pi\)
\(504\) 0 0
\(505\) −25.2939 −1.12556
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 32.4384 1.43781 0.718904 0.695110i \(-0.244644\pi\)
0.718904 + 0.695110i \(0.244644\pi\)
\(510\) 0 0
\(511\) 7.54224 0.333649
\(512\) 0 0
\(513\) 1.48203 0.0654332
\(514\) 0 0
\(515\) 42.3065 1.86425
\(516\) 0 0
\(517\) −36.1028 −1.58780
\(518\) 0 0
\(519\) 36.0869 1.58404
\(520\) 0 0
\(521\) −14.7595 −0.646626 −0.323313 0.946292i \(-0.604797\pi\)
−0.323313 + 0.946292i \(0.604797\pi\)
\(522\) 0 0
\(523\) −36.6349 −1.60193 −0.800966 0.598710i \(-0.795680\pi\)
−0.800966 + 0.598710i \(0.795680\pi\)
\(524\) 0 0
\(525\) −1.44993 −0.0632803
\(526\) 0 0
\(527\) 8.51587 0.370957
\(528\) 0 0
\(529\) −22.8915 −0.995281
\(530\) 0 0
\(531\) −0.751950 −0.0326319
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −22.5242 −0.973805
\(536\) 0 0
\(537\) −15.2464 −0.657930
\(538\) 0 0
\(539\) −6.01705 −0.259173
\(540\) 0 0
\(541\) 34.6618 1.49023 0.745113 0.666938i \(-0.232395\pi\)
0.745113 + 0.666938i \(0.232395\pi\)
\(542\) 0 0
\(543\) −11.8665 −0.509241
\(544\) 0 0
\(545\) −3.35679 −0.143789
\(546\) 0 0
\(547\) −33.5692 −1.43532 −0.717659 0.696395i \(-0.754786\pi\)
−0.717659 + 0.696395i \(0.754786\pi\)
\(548\) 0 0
\(549\) −0.811065 −0.0346154
\(550\) 0 0
\(551\) −1.27964 −0.0545143
\(552\) 0 0
\(553\) −7.40516 −0.314899
\(554\) 0 0
\(555\) 17.0653 0.724383
\(556\) 0 0
\(557\) −9.05561 −0.383699 −0.191849 0.981424i \(-0.561448\pi\)
−0.191849 + 0.981424i \(0.561448\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −31.2611 −1.31984
\(562\) 0 0
\(563\) −10.0815 −0.424883 −0.212442 0.977174i \(-0.568142\pi\)
−0.212442 + 0.977174i \(0.568142\pi\)
\(564\) 0 0
\(565\) 21.9896 0.925110
\(566\) 0 0
\(567\) 9.29206 0.390230
\(568\) 0 0
\(569\) −15.3185 −0.642185 −0.321093 0.947048i \(-0.604050\pi\)
−0.321093 + 0.947048i \(0.604050\pi\)
\(570\) 0 0
\(571\) 3.10370 0.129886 0.0649428 0.997889i \(-0.479313\pi\)
0.0649428 + 0.997889i \(0.479313\pi\)
\(572\) 0 0
\(573\) 34.1785 1.42783
\(574\) 0 0
\(575\) 0.271272 0.0113128
\(576\) 0 0
\(577\) −28.1391 −1.17145 −0.585723 0.810511i \(-0.699189\pi\)
−0.585723 + 0.810511i \(0.699189\pi\)
\(578\) 0 0
\(579\) 11.1995 0.465437
\(580\) 0 0
\(581\) −16.9577 −0.703525
\(582\) 0 0
\(583\) −24.8258 −1.02818
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.6993 0.606706 0.303353 0.952878i \(-0.401894\pi\)
0.303353 + 0.952878i \(0.401894\pi\)
\(588\) 0 0
\(589\) −0.837873 −0.0345239
\(590\) 0 0
\(591\) −17.5123 −0.720361
\(592\) 0 0
\(593\) −22.2976 −0.915652 −0.457826 0.889042i \(-0.651372\pi\)
−0.457826 + 0.889042i \(0.651372\pi\)
\(594\) 0 0
\(595\) 7.11994 0.291889
\(596\) 0 0
\(597\) −39.3842 −1.61189
\(598\) 0 0
\(599\) −4.57091 −0.186762 −0.0933812 0.995630i \(-0.529768\pi\)
−0.0933812 + 0.995630i \(0.529768\pi\)
\(600\) 0 0
\(601\) 27.7160 1.13056 0.565280 0.824899i \(-0.308768\pi\)
0.565280 + 0.824899i \(0.308768\pi\)
\(602\) 0 0
\(603\) 1.13932 0.0463965
\(604\) 0 0
\(605\) −60.8238 −2.47284
\(606\) 0 0
\(607\) 14.4157 0.585117 0.292558 0.956248i \(-0.405493\pi\)
0.292558 + 0.956248i \(0.405493\pi\)
\(608\) 0 0
\(609\) −7.76215 −0.314538
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 7.86871 0.317814 0.158907 0.987294i \(-0.449203\pi\)
0.158907 + 0.987294i \(0.449203\pi\)
\(614\) 0 0
\(615\) −31.7288 −1.27943
\(616\) 0 0
\(617\) 2.73041 0.109922 0.0549611 0.998488i \(-0.482497\pi\)
0.0549611 + 0.998488i \(0.482497\pi\)
\(618\) 0 0
\(619\) 29.6881 1.19326 0.596632 0.802515i \(-0.296505\pi\)
0.596632 + 0.802515i \(0.296505\pi\)
\(620\) 0 0
\(621\) −1.68193 −0.0674937
\(622\) 0 0
\(623\) −11.7438 −0.470504
\(624\) 0 0
\(625\) −28.4390 −1.13756
\(626\) 0 0
\(627\) 3.07576 0.122834
\(628\) 0 0
\(629\) −11.8490 −0.472450
\(630\) 0 0
\(631\) 27.6160 1.09938 0.549689 0.835370i \(-0.314746\pi\)
0.549689 + 0.835370i \(0.314746\pi\)
\(632\) 0 0
\(633\) 41.6481 1.65536
\(634\) 0 0
\(635\) −29.4952 −1.17048
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.139731 0.00552765
\(640\) 0 0
\(641\) −37.2581 −1.47161 −0.735803 0.677195i \(-0.763195\pi\)
−0.735803 + 0.677195i \(0.763195\pi\)
\(642\) 0 0
\(643\) 22.3550 0.881593 0.440797 0.897607i \(-0.354696\pi\)
0.440797 + 0.897607i \(0.354696\pi\)
\(644\) 0 0
\(645\) −40.9915 −1.61404
\(646\) 0 0
\(647\) 28.2847 1.11199 0.555993 0.831187i \(-0.312338\pi\)
0.555993 + 0.831187i \(0.312338\pi\)
\(648\) 0 0
\(649\) 44.9140 1.76303
\(650\) 0 0
\(651\) −5.08246 −0.199197
\(652\) 0 0
\(653\) 28.3115 1.10791 0.553957 0.832545i \(-0.313117\pi\)
0.553957 + 0.832545i \(0.313117\pi\)
\(654\) 0 0
\(655\) 24.8288 0.970142
\(656\) 0 0
\(657\) −0.759786 −0.0296421
\(658\) 0 0
\(659\) −19.9190 −0.775936 −0.387968 0.921673i \(-0.626823\pi\)
−0.387968 + 0.921673i \(0.626823\pi\)
\(660\) 0 0
\(661\) −29.6064 −1.15155 −0.575777 0.817607i \(-0.695300\pi\)
−0.575777 + 0.817607i \(0.695300\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.700528 −0.0271653
\(666\) 0 0
\(667\) 1.45224 0.0562310
\(668\) 0 0
\(669\) −15.3444 −0.593249
\(670\) 0 0
\(671\) 48.4449 1.87020
\(672\) 0 0
\(673\) 32.8303 1.26552 0.632758 0.774350i \(-0.281923\pi\)
0.632758 + 0.774350i \(0.281923\pi\)
\(674\) 0 0
\(675\) −4.20374 −0.161802
\(676\) 0 0
\(677\) 25.4406 0.977762 0.488881 0.872350i \(-0.337405\pi\)
0.488881 + 0.872350i \(0.337405\pi\)
\(678\) 0 0
\(679\) 5.74851 0.220607
\(680\) 0 0
\(681\) −8.73072 −0.334562
\(682\) 0 0
\(683\) −30.3282 −1.16048 −0.580238 0.814447i \(-0.697041\pi\)
−0.580238 + 0.814447i \(0.697041\pi\)
\(684\) 0 0
\(685\) 42.2448 1.61409
\(686\) 0 0
\(687\) −34.5033 −1.31638
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −23.7078 −0.901889 −0.450944 0.892552i \(-0.648913\pi\)
−0.450944 + 0.892552i \(0.648913\pi\)
\(692\) 0 0
\(693\) 0.606142 0.0230254
\(694\) 0 0
\(695\) −12.6952 −0.481556
\(696\) 0 0
\(697\) 22.0303 0.834456
\(698\) 0 0
\(699\) −48.3653 −1.82934
\(700\) 0 0
\(701\) −28.7608 −1.08628 −0.543141 0.839641i \(-0.682765\pi\)
−0.543141 + 0.839641i \(0.682765\pi\)
\(702\) 0 0
\(703\) 1.16582 0.0439696
\(704\) 0 0
\(705\) −25.4964 −0.960250
\(706\) 0 0
\(707\) −10.4816 −0.394200
\(708\) 0 0
\(709\) 27.2335 1.02278 0.511388 0.859350i \(-0.329132\pi\)
0.511388 + 0.859350i \(0.329132\pi\)
\(710\) 0 0
\(711\) 0.745977 0.0279763
\(712\) 0 0
\(713\) 0.950890 0.0356111
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 24.3601 0.909746
\(718\) 0 0
\(719\) 1.05310 0.0392740 0.0196370 0.999807i \(-0.493749\pi\)
0.0196370 + 0.999807i \(0.493749\pi\)
\(720\) 0 0
\(721\) 17.5315 0.652906
\(722\) 0 0
\(723\) −3.23689 −0.120381
\(724\) 0 0
\(725\) 3.62965 0.134802
\(726\) 0 0
\(727\) 23.0992 0.856700 0.428350 0.903613i \(-0.359095\pi\)
0.428350 + 0.903613i \(0.359095\pi\)
\(728\) 0 0
\(729\) 26.0335 0.964204
\(730\) 0 0
\(731\) 28.4616 1.05269
\(732\) 0 0
\(733\) −29.0249 −1.07206 −0.536030 0.844199i \(-0.680077\pi\)
−0.536030 + 0.844199i \(0.680077\pi\)
\(734\) 0 0
\(735\) −4.24934 −0.156739
\(736\) 0 0
\(737\) −68.0513 −2.50670
\(738\) 0 0
\(739\) 39.7179 1.46105 0.730523 0.682888i \(-0.239276\pi\)
0.730523 + 0.682888i \(0.239276\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.2264 0.521917 0.260958 0.965350i \(-0.415961\pi\)
0.260958 + 0.965350i \(0.415961\pi\)
\(744\) 0 0
\(745\) −55.1533 −2.02066
\(746\) 0 0
\(747\) 1.70828 0.0625027
\(748\) 0 0
\(749\) −9.33384 −0.341051
\(750\) 0 0
\(751\) 21.1280 0.770972 0.385486 0.922714i \(-0.374034\pi\)
0.385486 + 0.922714i \(0.374034\pi\)
\(752\) 0 0
\(753\) −35.4526 −1.29196
\(754\) 0 0
\(755\) 58.2865 2.12126
\(756\) 0 0
\(757\) −17.8609 −0.649165 −0.324583 0.945857i \(-0.605224\pi\)
−0.324583 + 0.945857i \(0.605224\pi\)
\(758\) 0 0
\(759\) −3.49064 −0.126702
\(760\) 0 0
\(761\) 16.1336 0.584844 0.292422 0.956289i \(-0.405539\pi\)
0.292422 + 0.956289i \(0.405539\pi\)
\(762\) 0 0
\(763\) −1.39103 −0.0503586
\(764\) 0 0
\(765\) −0.717245 −0.0259320
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 37.2607 1.34366 0.671828 0.740707i \(-0.265510\pi\)
0.671828 + 0.740707i \(0.265510\pi\)
\(770\) 0 0
\(771\) 8.14983 0.293509
\(772\) 0 0
\(773\) 44.2031 1.58987 0.794937 0.606691i \(-0.207504\pi\)
0.794937 + 0.606691i \(0.207504\pi\)
\(774\) 0 0
\(775\) 2.37660 0.0853701
\(776\) 0 0
\(777\) 7.07174 0.253697
\(778\) 0 0
\(779\) −2.16755 −0.0776605
\(780\) 0 0
\(781\) −8.34610 −0.298647
\(782\) 0 0
\(783\) −22.5045 −0.804246
\(784\) 0 0
\(785\) −2.78623 −0.0994450
\(786\) 0 0
\(787\) 37.5148 1.33726 0.668630 0.743595i \(-0.266881\pi\)
0.668630 + 0.743595i \(0.266881\pi\)
\(788\) 0 0
\(789\) −0.957930 −0.0341032
\(790\) 0 0
\(791\) 9.11232 0.323997
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −17.5324 −0.621810
\(796\) 0 0
\(797\) −48.0553 −1.70220 −0.851102 0.525000i \(-0.824065\pi\)
−0.851102 + 0.525000i \(0.824065\pi\)
\(798\) 0 0
\(799\) 17.7029 0.626285
\(800\) 0 0
\(801\) 1.18304 0.0418006
\(802\) 0 0
\(803\) 45.3820 1.60150
\(804\) 0 0
\(805\) 0.795019 0.0280207
\(806\) 0 0
\(807\) 29.2385 1.02924
\(808\) 0 0
\(809\) 18.9484 0.666192 0.333096 0.942893i \(-0.391907\pi\)
0.333096 + 0.942893i \(0.391907\pi\)
\(810\) 0 0
\(811\) 14.5958 0.512529 0.256265 0.966607i \(-0.417508\pi\)
0.256265 + 0.966607i \(0.417508\pi\)
\(812\) 0 0
\(813\) 29.3557 1.02955
\(814\) 0 0
\(815\) −49.7141 −1.74141
\(816\) 0 0
\(817\) −2.80033 −0.0979711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.2334 −0.985354 −0.492677 0.870212i \(-0.663982\pi\)
−0.492677 + 0.870212i \(0.663982\pi\)
\(822\) 0 0
\(823\) 1.24398 0.0433625 0.0216813 0.999765i \(-0.493098\pi\)
0.0216813 + 0.999765i \(0.493098\pi\)
\(824\) 0 0
\(825\) −8.72432 −0.303742
\(826\) 0 0
\(827\) 48.2789 1.67882 0.839411 0.543497i \(-0.182900\pi\)
0.839411 + 0.543497i \(0.182900\pi\)
\(828\) 0 0
\(829\) 10.2769 0.356932 0.178466 0.983946i \(-0.442886\pi\)
0.178466 + 0.983946i \(0.442886\pi\)
\(830\) 0 0
\(831\) 35.0590 1.21618
\(832\) 0 0
\(833\) 2.95045 0.102227
\(834\) 0 0
\(835\) −28.4899 −0.985932
\(836\) 0 0
\(837\) −14.7354 −0.509329
\(838\) 0 0
\(839\) −15.4398 −0.533041 −0.266520 0.963829i \(-0.585874\pi\)
−0.266520 + 0.963829i \(0.585874\pi\)
\(840\) 0 0
\(841\) −9.56883 −0.329960
\(842\) 0 0
\(843\) 9.83182 0.338626
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −25.2049 −0.866050
\(848\) 0 0
\(849\) 10.9513 0.375849
\(850\) 0 0
\(851\) −1.32307 −0.0453543
\(852\) 0 0
\(853\) 41.1350 1.40844 0.704218 0.709983i \(-0.251298\pi\)
0.704218 + 0.709983i \(0.251298\pi\)
\(854\) 0 0
\(855\) 0.0705694 0.00241342
\(856\) 0 0
\(857\) −20.3347 −0.694621 −0.347311 0.937750i \(-0.612905\pi\)
−0.347311 + 0.937750i \(0.612905\pi\)
\(858\) 0 0
\(859\) 43.9668 1.50013 0.750064 0.661366i \(-0.230023\pi\)
0.750064 + 0.661366i \(0.230023\pi\)
\(860\) 0 0
\(861\) −13.1481 −0.448088
\(862\) 0 0
\(863\) −2.44223 −0.0831344 −0.0415672 0.999136i \(-0.513235\pi\)
−0.0415672 + 0.999136i \(0.513235\pi\)
\(864\) 0 0
\(865\) −49.4545 −1.68150
\(866\) 0 0
\(867\) −14.6064 −0.496058
\(868\) 0 0
\(869\) −44.5572 −1.51150
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.579090 −0.0195992
\(874\) 0 0
\(875\) −10.0788 −0.340727
\(876\) 0 0
\(877\) 29.1380 0.983921 0.491960 0.870618i \(-0.336281\pi\)
0.491960 + 0.870618i \(0.336281\pi\)
\(878\) 0 0
\(879\) 19.1399 0.645574
\(880\) 0 0
\(881\) 30.7832 1.03711 0.518555 0.855044i \(-0.326470\pi\)
0.518555 + 0.855044i \(0.326470\pi\)
\(882\) 0 0
\(883\) −43.2493 −1.45546 −0.727728 0.685866i \(-0.759423\pi\)
−0.727728 + 0.685866i \(0.759423\pi\)
\(884\) 0 0
\(885\) 31.7190 1.06622
\(886\) 0 0
\(887\) 35.5377 1.19324 0.596620 0.802524i \(-0.296510\pi\)
0.596620 + 0.802524i \(0.296510\pi\)
\(888\) 0 0
\(889\) −12.2226 −0.409932
\(890\) 0 0
\(891\) 55.9108 1.87308
\(892\) 0 0
\(893\) −1.74179 −0.0582866
\(894\) 0 0
\(895\) 20.8941 0.698412
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.7230 0.424337
\(900\) 0 0
\(901\) 12.1733 0.405551
\(902\) 0 0
\(903\) −16.9865 −0.565276
\(904\) 0 0
\(905\) 16.2622 0.540574
\(906\) 0 0
\(907\) 17.3274 0.575347 0.287674 0.957728i \(-0.407118\pi\)
0.287674 + 0.957728i \(0.407118\pi\)
\(908\) 0 0
\(909\) 1.05589 0.0350216
\(910\) 0 0
\(911\) 47.6645 1.57919 0.789597 0.613625i \(-0.210289\pi\)
0.789597 + 0.613625i \(0.210289\pi\)
\(912\) 0 0
\(913\) −102.036 −3.37688
\(914\) 0 0
\(915\) 34.2126 1.13103
\(916\) 0 0
\(917\) 10.2889 0.339768
\(918\) 0 0
\(919\) −25.1946 −0.831095 −0.415547 0.909572i \(-0.636410\pi\)
−0.415547 + 0.909572i \(0.636410\pi\)
\(920\) 0 0
\(921\) 5.90470 0.194567
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −3.30681 −0.108727
\(926\) 0 0
\(927\) −1.76608 −0.0580055
\(928\) 0 0
\(929\) 9.63386 0.316077 0.158038 0.987433i \(-0.449483\pi\)
0.158038 + 0.987433i \(0.449483\pi\)
\(930\) 0 0
\(931\) −0.290293 −0.00951398
\(932\) 0 0
\(933\) 39.3728 1.28901
\(934\) 0 0
\(935\) 42.8410 1.40105
\(936\) 0 0
\(937\) −31.6012 −1.03236 −0.516182 0.856479i \(-0.672647\pi\)
−0.516182 + 0.856479i \(0.672647\pi\)
\(938\) 0 0
\(939\) −33.6194 −1.09713
\(940\) 0 0
\(941\) 25.6805 0.837161 0.418581 0.908180i \(-0.362528\pi\)
0.418581 + 0.908180i \(0.362528\pi\)
\(942\) 0 0
\(943\) 2.45992 0.0801060
\(944\) 0 0
\(945\) −12.3199 −0.400768
\(946\) 0 0
\(947\) −39.4573 −1.28219 −0.641095 0.767461i \(-0.721520\pi\)
−0.641095 + 0.767461i \(0.721520\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 54.4673 1.76622
\(952\) 0 0
\(953\) −10.3605 −0.335611 −0.167806 0.985820i \(-0.553668\pi\)
−0.167806 + 0.985820i \(0.553668\pi\)
\(954\) 0 0
\(955\) −46.8392 −1.51568
\(956\) 0 0
\(957\) −46.7052 −1.50977
\(958\) 0 0
\(959\) 17.5059 0.565295
\(960\) 0 0
\(961\) −22.6693 −0.731267
\(962\) 0 0
\(963\) 0.940267 0.0302997
\(964\) 0 0
\(965\) −15.3481 −0.494074
\(966\) 0 0
\(967\) 12.9100 0.415159 0.207579 0.978218i \(-0.433441\pi\)
0.207579 + 0.978218i \(0.433441\pi\)
\(968\) 0 0
\(969\) −1.50819 −0.0484502
\(970\) 0 0
\(971\) −4.45619 −0.143006 −0.0715030 0.997440i \(-0.522780\pi\)
−0.0715030 + 0.997440i \(0.522780\pi\)
\(972\) 0 0
\(973\) −5.26079 −0.168653
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.7785 0.920707 0.460354 0.887736i \(-0.347723\pi\)
0.460354 + 0.887736i \(0.347723\pi\)
\(978\) 0 0
\(979\) −70.6628 −2.25839
\(980\) 0 0
\(981\) 0.140129 0.00447396
\(982\) 0 0
\(983\) −0.0882026 −0.00281323 −0.00140661 0.999999i \(-0.500448\pi\)
−0.00140661 + 0.999999i \(0.500448\pi\)
\(984\) 0 0
\(985\) 23.9994 0.764684
\(986\) 0 0
\(987\) −10.5655 −0.336304
\(988\) 0 0
\(989\) 3.17805 0.101056
\(990\) 0 0
\(991\) 62.3761 1.98144 0.990721 0.135911i \(-0.0433961\pi\)
0.990721 + 0.135911i \(0.0433961\pi\)
\(992\) 0 0
\(993\) −52.7324 −1.67341
\(994\) 0 0
\(995\) 53.9731 1.71106
\(996\) 0 0
\(997\) 15.1566 0.480014 0.240007 0.970771i \(-0.422850\pi\)
0.240007 + 0.970771i \(0.422850\pi\)
\(998\) 0 0
\(999\) 20.5028 0.648681
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.q.1.3 6
13.5 odd 4 4732.2.g.j.337.6 12
13.8 odd 4 4732.2.g.j.337.5 12
13.12 even 2 4732.2.a.r.1.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4732.2.a.q.1.3 6 1.1 even 1 trivial
4732.2.a.r.1.3 yes 6 13.12 even 2
4732.2.g.j.337.5 12 13.8 odd 4
4732.2.g.j.337.6 12 13.5 odd 4