Properties

Label 4719.2.a.bc.1.5
Level $4719$
Weight $2$
Character 4719.1
Self dual yes
Analytic conductor $37.681$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4719,2,Mod(1,4719)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4719, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4719.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4719 = 3 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4719.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1,5,3,-2,-1,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.6814047138\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.303952.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 2x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.97156\) of defining polynomial
Character \(\chi\) \(=\) 4719.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.97156 q^{2} +1.00000 q^{3} +1.88703 q^{4} -3.56577 q^{5} +1.97156 q^{6} +1.46434 q^{7} -0.222723 q^{8} +1.00000 q^{9} -7.03011 q^{10} +1.88703 q^{12} +1.00000 q^{13} +2.88703 q^{14} -3.56577 q^{15} -4.21317 q^{16} +0.794179 q^{17} +1.97156 q^{18} -2.39136 q^{19} -6.72872 q^{20} +1.46434 q^{21} -6.10021 q^{23} -0.222723 q^{24} +7.71470 q^{25} +1.97156 q^{26} +1.00000 q^{27} +2.76326 q^{28} +1.87549 q^{29} -7.03011 q^{30} +1.17721 q^{31} -7.86106 q^{32} +1.56577 q^{34} -5.22150 q^{35} +1.88703 q^{36} -8.90898 q^{37} -4.71470 q^{38} +1.00000 q^{39} +0.794179 q^{40} +9.06607 q^{41} +2.88703 q^{42} -10.3374 q^{43} -3.56577 q^{45} -12.0269 q^{46} -6.54846 q^{47} -4.21317 q^{48} -4.85570 q^{49} +15.2100 q^{50} +0.794179 q^{51} +1.88703 q^{52} +2.47020 q^{53} +1.97156 q^{54} -0.326143 q^{56} -2.39136 q^{57} +3.69763 q^{58} +5.15957 q^{59} -6.72872 q^{60} -11.3955 q^{61} +2.32094 q^{62} +1.46434 q^{63} -7.07217 q^{64} -3.56577 q^{65} -3.56577 q^{67} +1.49864 q^{68} -6.10021 q^{69} -10.2945 q^{70} -0.837051 q^{71} -0.222723 q^{72} -9.22175 q^{73} -17.5645 q^{74} +7.71470 q^{75} -4.51257 q^{76} +1.97156 q^{78} +2.57995 q^{79} +15.0232 q^{80} +1.00000 q^{81} +17.8743 q^{82} +5.68748 q^{83} +2.76326 q^{84} -2.83186 q^{85} -20.3807 q^{86} +1.87549 q^{87} -14.2488 q^{89} -7.03011 q^{90} +1.46434 q^{91} -11.5113 q^{92} +1.17721 q^{93} -12.9106 q^{94} +8.52704 q^{95} -7.86106 q^{96} -15.9779 q^{97} -9.57329 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 5 q^{3} + 3 q^{4} - 2 q^{5} - q^{6} - 6 q^{7} - 9 q^{8} + 5 q^{9} - 6 q^{10} + 3 q^{12} + 5 q^{13} + 8 q^{14} - 2 q^{15} + 11 q^{16} - 2 q^{17} - q^{18} - 12 q^{19} - 8 q^{20} - 6 q^{21}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.97156 1.39410 0.697050 0.717022i \(-0.254495\pi\)
0.697050 + 0.717022i \(0.254495\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.88703 0.943516
\(5\) −3.56577 −1.59466 −0.797330 0.603544i \(-0.793755\pi\)
−0.797330 + 0.603544i \(0.793755\pi\)
\(6\) 1.97156 0.804884
\(7\) 1.46434 0.553469 0.276735 0.960946i \(-0.410748\pi\)
0.276735 + 0.960946i \(0.410748\pi\)
\(8\) −0.222723 −0.0787445
\(9\) 1.00000 0.333333
\(10\) −7.03011 −2.22312
\(11\) 0 0
\(12\) 1.88703 0.544739
\(13\) 1.00000 0.277350
\(14\) 2.88703 0.771592
\(15\) −3.56577 −0.920677
\(16\) −4.21317 −1.05329
\(17\) 0.794179 0.192617 0.0963083 0.995352i \(-0.469297\pi\)
0.0963083 + 0.995352i \(0.469297\pi\)
\(18\) 1.97156 0.464700
\(19\) −2.39136 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(20\) −6.72872 −1.50459
\(21\) 1.46434 0.319546
\(22\) 0 0
\(23\) −6.10021 −1.27198 −0.635990 0.771697i \(-0.719408\pi\)
−0.635990 + 0.771697i \(0.719408\pi\)
\(24\) −0.222723 −0.0454632
\(25\) 7.71470 1.54294
\(26\) 1.97156 0.386654
\(27\) 1.00000 0.192450
\(28\) 2.76326 0.522207
\(29\) 1.87549 0.348270 0.174135 0.984722i \(-0.444287\pi\)
0.174135 + 0.984722i \(0.444287\pi\)
\(30\) −7.03011 −1.28352
\(31\) 1.17721 0.211433 0.105717 0.994396i \(-0.466286\pi\)
0.105717 + 0.994396i \(0.466286\pi\)
\(32\) −7.86106 −1.38965
\(33\) 0 0
\(34\) 1.56577 0.268527
\(35\) −5.22150 −0.882595
\(36\) 1.88703 0.314505
\(37\) −8.90898 −1.46463 −0.732314 0.680968i \(-0.761559\pi\)
−0.732314 + 0.680968i \(0.761559\pi\)
\(38\) −4.71470 −0.764825
\(39\) 1.00000 0.160128
\(40\) 0.794179 0.125571
\(41\) 9.06607 1.41588 0.707941 0.706271i \(-0.249624\pi\)
0.707941 + 0.706271i \(0.249624\pi\)
\(42\) 2.88703 0.445479
\(43\) −10.3374 −1.57643 −0.788216 0.615399i \(-0.788995\pi\)
−0.788216 + 0.615399i \(0.788995\pi\)
\(44\) 0 0
\(45\) −3.56577 −0.531553
\(46\) −12.0269 −1.77327
\(47\) −6.54846 −0.955190 −0.477595 0.878580i \(-0.658491\pi\)
−0.477595 + 0.878580i \(0.658491\pi\)
\(48\) −4.21317 −0.608119
\(49\) −4.85570 −0.693672
\(50\) 15.2100 2.15101
\(51\) 0.794179 0.111207
\(52\) 1.88703 0.261684
\(53\) 2.47020 0.339308 0.169654 0.985504i \(-0.445735\pi\)
0.169654 + 0.985504i \(0.445735\pi\)
\(54\) 1.97156 0.268295
\(55\) 0 0
\(56\) −0.326143 −0.0435827
\(57\) −2.39136 −0.316743
\(58\) 3.69763 0.485523
\(59\) 5.15957 0.671719 0.335859 0.941912i \(-0.390973\pi\)
0.335859 + 0.941912i \(0.390973\pi\)
\(60\) −6.72872 −0.868674
\(61\) −11.3955 −1.45904 −0.729522 0.683957i \(-0.760258\pi\)
−0.729522 + 0.683957i \(0.760258\pi\)
\(62\) 2.32094 0.294759
\(63\) 1.46434 0.184490
\(64\) −7.07217 −0.884022
\(65\) −3.56577 −0.442279
\(66\) 0 0
\(67\) −3.56577 −0.435628 −0.217814 0.975990i \(-0.569893\pi\)
−0.217814 + 0.975990i \(0.569893\pi\)
\(68\) 1.49864 0.181737
\(69\) −6.10021 −0.734379
\(70\) −10.2945 −1.23043
\(71\) −0.837051 −0.0993396 −0.0496698 0.998766i \(-0.515817\pi\)
−0.0496698 + 0.998766i \(0.515817\pi\)
\(72\) −0.222723 −0.0262482
\(73\) −9.22175 −1.07932 −0.539662 0.841882i \(-0.681448\pi\)
−0.539662 + 0.841882i \(0.681448\pi\)
\(74\) −17.5645 −2.04184
\(75\) 7.71470 0.890817
\(76\) −4.51257 −0.517628
\(77\) 0 0
\(78\) 1.97156 0.223235
\(79\) 2.57995 0.290267 0.145134 0.989412i \(-0.453639\pi\)
0.145134 + 0.989412i \(0.453639\pi\)
\(80\) 15.0232 1.67965
\(81\) 1.00000 0.111111
\(82\) 17.8743 1.97388
\(83\) 5.68748 0.624282 0.312141 0.950036i \(-0.398954\pi\)
0.312141 + 0.950036i \(0.398954\pi\)
\(84\) 2.76326 0.301496
\(85\) −2.83186 −0.307158
\(86\) −20.3807 −2.19770
\(87\) 1.87549 0.201074
\(88\) 0 0
\(89\) −14.2488 −1.51037 −0.755185 0.655511i \(-0.772453\pi\)
−0.755185 + 0.655511i \(0.772453\pi\)
\(90\) −7.03011 −0.741039
\(91\) 1.46434 0.153505
\(92\) −11.5113 −1.20013
\(93\) 1.17721 0.122071
\(94\) −12.9106 −1.33163
\(95\) 8.52704 0.874855
\(96\) −7.86106 −0.802316
\(97\) −15.9779 −1.62231 −0.811153 0.584834i \(-0.801160\pi\)
−0.811153 + 0.584834i \(0.801160\pi\)
\(98\) −9.57329 −0.967048
\(99\) 0 0
\(100\) 14.5579 1.45579
\(101\) 7.53716 0.749975 0.374988 0.927030i \(-0.377647\pi\)
0.374988 + 0.927030i \(0.377647\pi\)
\(102\) 1.56577 0.155034
\(103\) −10.7613 −1.06034 −0.530171 0.847891i \(-0.677872\pi\)
−0.530171 + 0.847891i \(0.677872\pi\)
\(104\) −0.222723 −0.0218398
\(105\) −5.22150 −0.509567
\(106\) 4.87013 0.473029
\(107\) −11.1266 −1.07565 −0.537824 0.843057i \(-0.680753\pi\)
−0.537824 + 0.843057i \(0.680753\pi\)
\(108\) 1.88703 0.181580
\(109\) 7.57007 0.725082 0.362541 0.931968i \(-0.381909\pi\)
0.362541 + 0.931968i \(0.381909\pi\)
\(110\) 0 0
\(111\) −8.90898 −0.845603
\(112\) −6.16953 −0.582966
\(113\) −1.91836 −0.180464 −0.0902321 0.995921i \(-0.528761\pi\)
−0.0902321 + 0.995921i \(0.528761\pi\)
\(114\) −4.71470 −0.441572
\(115\) 21.7519 2.02838
\(116\) 3.53911 0.328598
\(117\) 1.00000 0.0924500
\(118\) 10.1724 0.936443
\(119\) 1.16295 0.106607
\(120\) 0.794179 0.0724983
\(121\) 0 0
\(122\) −22.4669 −2.03405
\(123\) 9.06607 0.817460
\(124\) 2.22143 0.199491
\(125\) −9.67999 −0.865805
\(126\) 2.88703 0.257197
\(127\) 15.3105 1.35859 0.679293 0.733867i \(-0.262286\pi\)
0.679293 + 0.733867i \(0.262286\pi\)
\(128\) 1.77894 0.157238
\(129\) −10.3374 −0.910154
\(130\) −7.03011 −0.616581
\(131\) 0.371899 0.0324930 0.0162465 0.999868i \(-0.494828\pi\)
0.0162465 + 0.999868i \(0.494828\pi\)
\(132\) 0 0
\(133\) −3.50177 −0.303642
\(134\) −7.03011 −0.607309
\(135\) −3.56577 −0.306892
\(136\) −0.176882 −0.0151675
\(137\) −0.528305 −0.0451361 −0.0225681 0.999745i \(-0.507184\pi\)
−0.0225681 + 0.999745i \(0.507184\pi\)
\(138\) −12.0269 −1.02380
\(139\) −22.9271 −1.94465 −0.972324 0.233638i \(-0.924937\pi\)
−0.972324 + 0.233638i \(0.924937\pi\)
\(140\) −9.85314 −0.832743
\(141\) −6.54846 −0.551479
\(142\) −1.65029 −0.138489
\(143\) 0 0
\(144\) −4.21317 −0.351098
\(145\) −6.68756 −0.555372
\(146\) −18.1812 −1.50469
\(147\) −4.85570 −0.400492
\(148\) −16.8115 −1.38190
\(149\) 16.9332 1.38722 0.693609 0.720352i \(-0.256020\pi\)
0.693609 + 0.720352i \(0.256020\pi\)
\(150\) 15.2100 1.24189
\(151\) −15.3083 −1.24577 −0.622887 0.782312i \(-0.714041\pi\)
−0.622887 + 0.782312i \(0.714041\pi\)
\(152\) 0.532611 0.0432005
\(153\) 0.794179 0.0642056
\(154\) 0 0
\(155\) −4.19766 −0.337164
\(156\) 1.88703 0.151083
\(157\) 13.8182 1.10281 0.551406 0.834237i \(-0.314091\pi\)
0.551406 + 0.834237i \(0.314091\pi\)
\(158\) 5.08652 0.404662
\(159\) 2.47020 0.195899
\(160\) 28.0307 2.21602
\(161\) −8.93279 −0.704002
\(162\) 1.97156 0.154900
\(163\) 12.2768 0.961597 0.480798 0.876831i \(-0.340347\pi\)
0.480798 + 0.876831i \(0.340347\pi\)
\(164\) 17.1080 1.33591
\(165\) 0 0
\(166\) 11.2132 0.870311
\(167\) 24.5032 1.89612 0.948058 0.318097i \(-0.103044\pi\)
0.948058 + 0.318097i \(0.103044\pi\)
\(168\) −0.326143 −0.0251625
\(169\) 1.00000 0.0769231
\(170\) −5.58316 −0.428209
\(171\) −2.39136 −0.182872
\(172\) −19.5069 −1.48739
\(173\) 1.80861 0.137506 0.0687529 0.997634i \(-0.478098\pi\)
0.0687529 + 0.997634i \(0.478098\pi\)
\(174\) 3.69763 0.280317
\(175\) 11.2970 0.853970
\(176\) 0 0
\(177\) 5.15957 0.387817
\(178\) −28.0923 −2.10561
\(179\) 24.7330 1.84863 0.924317 0.381627i \(-0.124636\pi\)
0.924317 + 0.381627i \(0.124636\pi\)
\(180\) −6.72872 −0.501529
\(181\) 12.0722 0.897318 0.448659 0.893703i \(-0.351902\pi\)
0.448659 + 0.893703i \(0.351902\pi\)
\(182\) 2.88703 0.214001
\(183\) −11.3955 −0.842380
\(184\) 1.35866 0.100162
\(185\) 31.7674 2.33558
\(186\) 2.32094 0.170179
\(187\) 0 0
\(188\) −12.3571 −0.901237
\(189\) 1.46434 0.106515
\(190\) 16.8115 1.21964
\(191\) −0.858754 −0.0621373 −0.0310686 0.999517i \(-0.509891\pi\)
−0.0310686 + 0.999517i \(0.509891\pi\)
\(192\) −7.07217 −0.510390
\(193\) −14.8820 −1.07123 −0.535616 0.844462i \(-0.679921\pi\)
−0.535616 + 0.844462i \(0.679921\pi\)
\(194\) −31.5012 −2.26166
\(195\) −3.56577 −0.255350
\(196\) −9.16287 −0.654490
\(197\) −12.1366 −0.864695 −0.432347 0.901707i \(-0.642315\pi\)
−0.432347 + 0.901707i \(0.642315\pi\)
\(198\) 0 0
\(199\) −2.01898 −0.143122 −0.0715609 0.997436i \(-0.522798\pi\)
−0.0715609 + 0.997436i \(0.522798\pi\)
\(200\) −1.71824 −0.121498
\(201\) −3.56577 −0.251510
\(202\) 14.8599 1.04554
\(203\) 2.74636 0.192757
\(204\) 1.49864 0.104926
\(205\) −32.3275 −2.25785
\(206\) −21.2165 −1.47822
\(207\) −6.10021 −0.423994
\(208\) −4.21317 −0.292131
\(209\) 0 0
\(210\) −10.2945 −0.710387
\(211\) −11.9257 −0.821000 −0.410500 0.911861i \(-0.634646\pi\)
−0.410500 + 0.911861i \(0.634646\pi\)
\(212\) 4.66134 0.320142
\(213\) −0.837051 −0.0573538
\(214\) −21.9367 −1.49956
\(215\) 36.8606 2.51387
\(216\) −0.222723 −0.0151544
\(217\) 1.72384 0.117022
\(218\) 14.9248 1.01084
\(219\) −9.22175 −0.623148
\(220\) 0 0
\(221\) 0.794179 0.0534223
\(222\) −17.5645 −1.17886
\(223\) 23.6029 1.58057 0.790284 0.612741i \(-0.209933\pi\)
0.790284 + 0.612741i \(0.209933\pi\)
\(224\) −11.5113 −0.769130
\(225\) 7.71470 0.514313
\(226\) −3.78216 −0.251585
\(227\) 0.578732 0.0384118 0.0192059 0.999816i \(-0.493886\pi\)
0.0192059 + 0.999816i \(0.493886\pi\)
\(228\) −4.51257 −0.298852
\(229\) −28.3316 −1.87221 −0.936103 0.351726i \(-0.885595\pi\)
−0.936103 + 0.351726i \(0.885595\pi\)
\(230\) 42.8851 2.82776
\(231\) 0 0
\(232\) −0.417715 −0.0274243
\(233\) 12.0612 0.790155 0.395078 0.918648i \(-0.370718\pi\)
0.395078 + 0.918648i \(0.370718\pi\)
\(234\) 1.97156 0.128885
\(235\) 23.3503 1.52320
\(236\) 9.73627 0.633777
\(237\) 2.57995 0.167586
\(238\) 2.29282 0.148621
\(239\) 0.895361 0.0579161 0.0289580 0.999581i \(-0.490781\pi\)
0.0289580 + 0.999581i \(0.490781\pi\)
\(240\) 15.0232 0.969744
\(241\) −25.1729 −1.62153 −0.810766 0.585370i \(-0.800949\pi\)
−0.810766 + 0.585370i \(0.800949\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −21.5037 −1.37663
\(245\) 17.3143 1.10617
\(246\) 17.8743 1.13962
\(247\) −2.39136 −0.152159
\(248\) −0.262192 −0.0166492
\(249\) 5.68748 0.360429
\(250\) −19.0846 −1.20702
\(251\) 14.5080 0.915736 0.457868 0.889020i \(-0.348613\pi\)
0.457868 + 0.889020i \(0.348613\pi\)
\(252\) 2.76326 0.174069
\(253\) 0 0
\(254\) 30.1855 1.89401
\(255\) −2.83186 −0.177338
\(256\) 17.6516 1.10323
\(257\) 5.57370 0.347678 0.173839 0.984774i \(-0.444383\pi\)
0.173839 + 0.984774i \(0.444383\pi\)
\(258\) −20.3807 −1.26885
\(259\) −13.0458 −0.810626
\(260\) −6.72872 −0.417297
\(261\) 1.87549 0.116090
\(262\) 0.733220 0.0452985
\(263\) 8.97386 0.553352 0.276676 0.960963i \(-0.410767\pi\)
0.276676 + 0.960963i \(0.410767\pi\)
\(264\) 0 0
\(265\) −8.80815 −0.541080
\(266\) −6.90393 −0.423307
\(267\) −14.2488 −0.872013
\(268\) −6.72872 −0.411022
\(269\) 5.52009 0.336566 0.168283 0.985739i \(-0.446178\pi\)
0.168283 + 0.985739i \(0.446178\pi\)
\(270\) −7.03011 −0.427839
\(271\) −2.34995 −0.142749 −0.0713747 0.997450i \(-0.522739\pi\)
−0.0713747 + 0.997450i \(0.522739\pi\)
\(272\) −3.34601 −0.202882
\(273\) 1.46434 0.0886260
\(274\) −1.04158 −0.0629243
\(275\) 0 0
\(276\) −11.5113 −0.692898
\(277\) 15.9112 0.956009 0.478005 0.878357i \(-0.341360\pi\)
0.478005 + 0.878357i \(0.341360\pi\)
\(278\) −45.2020 −2.71103
\(279\) 1.17721 0.0704777
\(280\) 1.16295 0.0694995
\(281\) −32.9366 −1.96484 −0.982418 0.186695i \(-0.940222\pi\)
−0.982418 + 0.186695i \(0.940222\pi\)
\(282\) −12.9106 −0.768818
\(283\) −12.1758 −0.723776 −0.361888 0.932222i \(-0.617868\pi\)
−0.361888 + 0.932222i \(0.617868\pi\)
\(284\) −1.57954 −0.0937285
\(285\) 8.52704 0.505098
\(286\) 0 0
\(287\) 13.2758 0.783648
\(288\) −7.86106 −0.463218
\(289\) −16.3693 −0.962899
\(290\) −13.1849 −0.774244
\(291\) −15.9779 −0.936639
\(292\) −17.4017 −1.01836
\(293\) −16.6437 −0.972336 −0.486168 0.873865i \(-0.661606\pi\)
−0.486168 + 0.873865i \(0.661606\pi\)
\(294\) −9.57329 −0.558325
\(295\) −18.3978 −1.07116
\(296\) 1.98424 0.115331
\(297\) 0 0
\(298\) 33.3847 1.93392
\(299\) −6.10021 −0.352784
\(300\) 14.5579 0.840500
\(301\) −15.1374 −0.872507
\(302\) −30.1812 −1.73673
\(303\) 7.53716 0.432998
\(304\) 10.0752 0.577853
\(305\) 40.6337 2.32668
\(306\) 1.56577 0.0895090
\(307\) 25.1690 1.43647 0.718236 0.695799i \(-0.244950\pi\)
0.718236 + 0.695799i \(0.244950\pi\)
\(308\) 0 0
\(309\) −10.7613 −0.612189
\(310\) −8.27592 −0.470041
\(311\) 8.35466 0.473750 0.236875 0.971540i \(-0.423877\pi\)
0.236875 + 0.971540i \(0.423877\pi\)
\(312\) −0.222723 −0.0126092
\(313\) 11.5387 0.652204 0.326102 0.945335i \(-0.394265\pi\)
0.326102 + 0.945335i \(0.394265\pi\)
\(314\) 27.2434 1.53743
\(315\) −5.22150 −0.294198
\(316\) 4.86845 0.273872
\(317\) 18.4187 1.03450 0.517248 0.855836i \(-0.326956\pi\)
0.517248 + 0.855836i \(0.326956\pi\)
\(318\) 4.87013 0.273103
\(319\) 0 0
\(320\) 25.2177 1.40971
\(321\) −11.1266 −0.621025
\(322\) −17.6115 −0.981450
\(323\) −1.89917 −0.105673
\(324\) 1.88703 0.104835
\(325\) 7.71470 0.427935
\(326\) 24.2045 1.34056
\(327\) 7.57007 0.418626
\(328\) −2.01922 −0.111493
\(329\) −9.58918 −0.528669
\(330\) 0 0
\(331\) −15.2177 −0.836442 −0.418221 0.908345i \(-0.637346\pi\)
−0.418221 + 0.908345i \(0.637346\pi\)
\(332\) 10.7324 0.589020
\(333\) −8.90898 −0.488209
\(334\) 48.3095 2.64338
\(335\) 12.7147 0.694678
\(336\) −6.16953 −0.336575
\(337\) −0.248364 −0.0135293 −0.00676464 0.999977i \(-0.502153\pi\)
−0.00676464 + 0.999977i \(0.502153\pi\)
\(338\) 1.97156 0.107238
\(339\) −1.91836 −0.104191
\(340\) −5.34381 −0.289809
\(341\) 0 0
\(342\) −4.71470 −0.254942
\(343\) −17.3608 −0.937395
\(344\) 2.30237 0.124135
\(345\) 21.7519 1.17108
\(346\) 3.56577 0.191697
\(347\) 23.7166 1.27317 0.636587 0.771205i \(-0.280345\pi\)
0.636587 + 0.771205i \(0.280345\pi\)
\(348\) 3.53911 0.189716
\(349\) −10.7275 −0.574230 −0.287115 0.957896i \(-0.592696\pi\)
−0.287115 + 0.957896i \(0.592696\pi\)
\(350\) 22.2726 1.19052
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) −10.0176 −0.533185 −0.266593 0.963809i \(-0.585898\pi\)
−0.266593 + 0.963809i \(0.585898\pi\)
\(354\) 10.1724 0.540656
\(355\) 2.98473 0.158413
\(356\) −26.8880 −1.42506
\(357\) 1.16295 0.0615498
\(358\) 48.7625 2.57718
\(359\) −30.6675 −1.61857 −0.809284 0.587418i \(-0.800144\pi\)
−0.809284 + 0.587418i \(0.800144\pi\)
\(360\) 0.794179 0.0418569
\(361\) −13.2814 −0.699021
\(362\) 23.8010 1.25095
\(363\) 0 0
\(364\) 2.76326 0.144834
\(365\) 32.8826 1.72115
\(366\) −22.4669 −1.17436
\(367\) 23.2498 1.21363 0.606815 0.794843i \(-0.292447\pi\)
0.606815 + 0.794843i \(0.292447\pi\)
\(368\) 25.7012 1.33977
\(369\) 9.06607 0.471961
\(370\) 62.6311 3.25604
\(371\) 3.61721 0.187796
\(372\) 2.22143 0.115176
\(373\) 1.88704 0.0977074 0.0488537 0.998806i \(-0.484443\pi\)
0.0488537 + 0.998806i \(0.484443\pi\)
\(374\) 0 0
\(375\) −9.67999 −0.499873
\(376\) 1.45849 0.0752160
\(377\) 1.87549 0.0965926
\(378\) 2.88703 0.148493
\(379\) 18.2495 0.937412 0.468706 0.883354i \(-0.344720\pi\)
0.468706 + 0.883354i \(0.344720\pi\)
\(380\) 16.0908 0.825440
\(381\) 15.3105 0.784380
\(382\) −1.69308 −0.0866256
\(383\) 6.87757 0.351427 0.175714 0.984441i \(-0.443777\pi\)
0.175714 + 0.984441i \(0.443777\pi\)
\(384\) 1.77894 0.0907813
\(385\) 0 0
\(386\) −29.3408 −1.49341
\(387\) −10.3374 −0.525477
\(388\) −30.1507 −1.53067
\(389\) 27.2413 1.38119 0.690593 0.723243i \(-0.257350\pi\)
0.690593 + 0.723243i \(0.257350\pi\)
\(390\) −7.03011 −0.355983
\(391\) −4.84465 −0.245005
\(392\) 1.08148 0.0546228
\(393\) 0.371899 0.0187598
\(394\) −23.9279 −1.20547
\(395\) −9.19951 −0.462877
\(396\) 0 0
\(397\) 28.2690 1.41878 0.709389 0.704817i \(-0.248971\pi\)
0.709389 + 0.704817i \(0.248971\pi\)
\(398\) −3.98053 −0.199526
\(399\) −3.50177 −0.175308
\(400\) −32.5034 −1.62517
\(401\) −13.1139 −0.654877 −0.327438 0.944873i \(-0.606185\pi\)
−0.327438 + 0.944873i \(0.606185\pi\)
\(402\) −7.03011 −0.350630
\(403\) 1.17721 0.0586410
\(404\) 14.2229 0.707613
\(405\) −3.56577 −0.177184
\(406\) 5.41460 0.268722
\(407\) 0 0
\(408\) −0.176882 −0.00875696
\(409\) 22.1307 1.09429 0.547146 0.837037i \(-0.315714\pi\)
0.547146 + 0.837037i \(0.315714\pi\)
\(410\) −63.7355 −3.14767
\(411\) −0.528305 −0.0260593
\(412\) −20.3069 −1.00045
\(413\) 7.55537 0.371776
\(414\) −12.0269 −0.591090
\(415\) −20.2802 −0.995517
\(416\) −7.86106 −0.385420
\(417\) −22.9271 −1.12274
\(418\) 0 0
\(419\) −5.05014 −0.246716 −0.123358 0.992362i \(-0.539366\pi\)
−0.123358 + 0.992362i \(0.539366\pi\)
\(420\) −9.85314 −0.480784
\(421\) 23.4319 1.14200 0.571001 0.820950i \(-0.306555\pi\)
0.571001 + 0.820950i \(0.306555\pi\)
\(422\) −23.5122 −1.14456
\(423\) −6.54846 −0.318397
\(424\) −0.550170 −0.0267186
\(425\) 6.12685 0.297196
\(426\) −1.65029 −0.0799569
\(427\) −16.6869 −0.807536
\(428\) −20.9962 −1.01489
\(429\) 0 0
\(430\) 72.6728 3.50459
\(431\) −12.3399 −0.594394 −0.297197 0.954816i \(-0.596052\pi\)
−0.297197 + 0.954816i \(0.596052\pi\)
\(432\) −4.21317 −0.202706
\(433\) 39.1779 1.88277 0.941386 0.337332i \(-0.109524\pi\)
0.941386 + 0.337332i \(0.109524\pi\)
\(434\) 3.39864 0.163140
\(435\) −6.68756 −0.320644
\(436\) 14.2850 0.684126
\(437\) 14.5878 0.697829
\(438\) −18.1812 −0.868731
\(439\) −16.3918 −0.782338 −0.391169 0.920319i \(-0.627929\pi\)
−0.391169 + 0.920319i \(0.627929\pi\)
\(440\) 0 0
\(441\) −4.85570 −0.231224
\(442\) 1.56577 0.0744760
\(443\) −25.2127 −1.19789 −0.598947 0.800789i \(-0.704414\pi\)
−0.598947 + 0.800789i \(0.704414\pi\)
\(444\) −16.8115 −0.797840
\(445\) 50.8080 2.40853
\(446\) 46.5344 2.20347
\(447\) 16.9332 0.800911
\(448\) −10.3561 −0.489279
\(449\) −20.2181 −0.954149 −0.477074 0.878863i \(-0.658303\pi\)
−0.477074 + 0.878863i \(0.658303\pi\)
\(450\) 15.2100 0.717004
\(451\) 0 0
\(452\) −3.62001 −0.170271
\(453\) −15.3083 −0.719248
\(454\) 1.14100 0.0535499
\(455\) −5.22150 −0.244788
\(456\) 0.532611 0.0249418
\(457\) −5.00882 −0.234303 −0.117151 0.993114i \(-0.537376\pi\)
−0.117151 + 0.993114i \(0.537376\pi\)
\(458\) −55.8574 −2.61004
\(459\) 0.794179 0.0370691
\(460\) 41.0466 1.91381
\(461\) −23.5062 −1.09479 −0.547397 0.836873i \(-0.684381\pi\)
−0.547397 + 0.836873i \(0.684381\pi\)
\(462\) 0 0
\(463\) 22.6379 1.05207 0.526035 0.850463i \(-0.323678\pi\)
0.526035 + 0.850463i \(0.323678\pi\)
\(464\) −7.90176 −0.366830
\(465\) −4.19766 −0.194662
\(466\) 23.7793 1.10156
\(467\) −3.16908 −0.146648 −0.0733238 0.997308i \(-0.523361\pi\)
−0.0733238 + 0.997308i \(0.523361\pi\)
\(468\) 1.88703 0.0872281
\(469\) −5.22150 −0.241107
\(470\) 46.0364 2.12350
\(471\) 13.8182 0.636709
\(472\) −1.14916 −0.0528942
\(473\) 0 0
\(474\) 5.08652 0.233631
\(475\) −18.4486 −0.846481
\(476\) 2.19452 0.100586
\(477\) 2.47020 0.113103
\(478\) 1.76525 0.0807408
\(479\) −9.67248 −0.441947 −0.220973 0.975280i \(-0.570923\pi\)
−0.220973 + 0.975280i \(0.570923\pi\)
\(480\) 28.0307 1.27942
\(481\) −8.90898 −0.406214
\(482\) −49.6299 −2.26058
\(483\) −8.93279 −0.406456
\(484\) 0 0
\(485\) 56.9733 2.58703
\(486\) 1.97156 0.0894316
\(487\) −26.7944 −1.21417 −0.607084 0.794637i \(-0.707661\pi\)
−0.607084 + 0.794637i \(0.707661\pi\)
\(488\) 2.53804 0.114892
\(489\) 12.2768 0.555178
\(490\) 34.1361 1.54211
\(491\) −21.7650 −0.982239 −0.491119 0.871092i \(-0.663412\pi\)
−0.491119 + 0.871092i \(0.663412\pi\)
\(492\) 17.1080 0.771287
\(493\) 1.48947 0.0670825
\(494\) −4.71470 −0.212124
\(495\) 0 0
\(496\) −4.95979 −0.222701
\(497\) −1.22573 −0.0549814
\(498\) 11.2132 0.502474
\(499\) −26.9793 −1.20776 −0.603880 0.797075i \(-0.706379\pi\)
−0.603880 + 0.797075i \(0.706379\pi\)
\(500\) −18.2665 −0.816901
\(501\) 24.5032 1.09472
\(502\) 28.6033 1.27663
\(503\) −35.6860 −1.59116 −0.795581 0.605847i \(-0.792834\pi\)
−0.795581 + 0.605847i \(0.792834\pi\)
\(504\) −0.326143 −0.0145276
\(505\) −26.8758 −1.19596
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 28.8914 1.28185
\(509\) −9.63181 −0.426922 −0.213461 0.976952i \(-0.568474\pi\)
−0.213461 + 0.976952i \(0.568474\pi\)
\(510\) −5.58316 −0.247227
\(511\) −13.5038 −0.597373
\(512\) 31.2433 1.38077
\(513\) −2.39136 −0.105581
\(514\) 10.9889 0.484698
\(515\) 38.3723 1.69089
\(516\) −19.5069 −0.858744
\(517\) 0 0
\(518\) −25.7205 −1.13009
\(519\) 1.80861 0.0793890
\(520\) 0.794179 0.0348270
\(521\) 20.6888 0.906391 0.453196 0.891411i \(-0.350284\pi\)
0.453196 + 0.891411i \(0.350284\pi\)
\(522\) 3.69763 0.161841
\(523\) −28.4093 −1.24225 −0.621126 0.783711i \(-0.713324\pi\)
−0.621126 + 0.783711i \(0.713324\pi\)
\(524\) 0.701786 0.0306577
\(525\) 11.2970 0.493040
\(526\) 17.6925 0.771428
\(527\) 0.934916 0.0407256
\(528\) 0 0
\(529\) 14.2125 0.617936
\(530\) −17.3658 −0.754320
\(531\) 5.15957 0.223906
\(532\) −6.60795 −0.286491
\(533\) 9.06607 0.392695
\(534\) −28.0923 −1.21567
\(535\) 39.6748 1.71529
\(536\) 0.794179 0.0343033
\(537\) 24.7330 1.06731
\(538\) 10.8832 0.469207
\(539\) 0 0
\(540\) −6.72872 −0.289558
\(541\) 16.3418 0.702587 0.351294 0.936265i \(-0.385742\pi\)
0.351294 + 0.936265i \(0.385742\pi\)
\(542\) −4.63306 −0.199007
\(543\) 12.0722 0.518067
\(544\) −6.24309 −0.267670
\(545\) −26.9931 −1.15626
\(546\) 2.88703 0.123554
\(547\) 29.6110 1.26608 0.633038 0.774121i \(-0.281808\pi\)
0.633038 + 0.774121i \(0.281808\pi\)
\(548\) −0.996927 −0.0425866
\(549\) −11.3955 −0.486348
\(550\) 0 0
\(551\) −4.48497 −0.191066
\(552\) 1.35866 0.0578283
\(553\) 3.77793 0.160654
\(554\) 31.3697 1.33277
\(555\) 31.7674 1.34845
\(556\) −43.2641 −1.83481
\(557\) 45.1188 1.91174 0.955872 0.293785i \(-0.0949149\pi\)
0.955872 + 0.293785i \(0.0949149\pi\)
\(558\) 2.32094 0.0982530
\(559\) −10.3374 −0.437224
\(560\) 21.9991 0.929632
\(561\) 0 0
\(562\) −64.9364 −2.73918
\(563\) 3.81739 0.160884 0.0804419 0.996759i \(-0.474367\pi\)
0.0804419 + 0.996759i \(0.474367\pi\)
\(564\) −12.3571 −0.520330
\(565\) 6.84043 0.287779
\(566\) −24.0053 −1.00902
\(567\) 1.46434 0.0614966
\(568\) 0.186430 0.00782245
\(569\) −18.3747 −0.770306 −0.385153 0.922853i \(-0.625851\pi\)
−0.385153 + 0.922853i \(0.625851\pi\)
\(570\) 16.8115 0.704157
\(571\) 24.0809 1.00776 0.503878 0.863775i \(-0.331906\pi\)
0.503878 + 0.863775i \(0.331906\pi\)
\(572\) 0 0
\(573\) −0.858754 −0.0358750
\(574\) 26.1740 1.09248
\(575\) −47.0613 −1.96259
\(576\) −7.07217 −0.294674
\(577\) −7.25685 −0.302107 −0.151053 0.988526i \(-0.548267\pi\)
−0.151053 + 0.988526i \(0.548267\pi\)
\(578\) −32.2729 −1.34238
\(579\) −14.8820 −0.618476
\(580\) −12.6196 −0.524002
\(581\) 8.32841 0.345521
\(582\) −31.5012 −1.30577
\(583\) 0 0
\(584\) 2.05390 0.0849908
\(585\) −3.56577 −0.147426
\(586\) −32.8140 −1.35553
\(587\) 25.0761 1.03500 0.517501 0.855682i \(-0.326862\pi\)
0.517501 + 0.855682i \(0.326862\pi\)
\(588\) −9.16287 −0.377870
\(589\) −2.81513 −0.115996
\(590\) −36.2723 −1.49331
\(591\) −12.1366 −0.499232
\(592\) 37.5351 1.54268
\(593\) −35.7124 −1.46653 −0.733267 0.679941i \(-0.762005\pi\)
−0.733267 + 0.679941i \(0.762005\pi\)
\(594\) 0 0
\(595\) −4.14681 −0.170003
\(596\) 31.9534 1.30886
\(597\) −2.01898 −0.0826314
\(598\) −12.0269 −0.491816
\(599\) 16.3472 0.667929 0.333965 0.942586i \(-0.391613\pi\)
0.333965 + 0.942586i \(0.391613\pi\)
\(600\) −1.71824 −0.0701469
\(601\) 31.2413 1.27436 0.637179 0.770716i \(-0.280101\pi\)
0.637179 + 0.770716i \(0.280101\pi\)
\(602\) −29.8443 −1.21636
\(603\) −3.56577 −0.145209
\(604\) −28.8873 −1.17541
\(605\) 0 0
\(606\) 14.8599 0.603643
\(607\) −19.2140 −0.779873 −0.389937 0.920842i \(-0.627503\pi\)
−0.389937 + 0.920842i \(0.627503\pi\)
\(608\) 18.7986 0.762385
\(609\) 2.74636 0.111288
\(610\) 80.1116 3.24362
\(611\) −6.54846 −0.264922
\(612\) 1.49864 0.0605790
\(613\) 39.8258 1.60855 0.804274 0.594259i \(-0.202555\pi\)
0.804274 + 0.594259i \(0.202555\pi\)
\(614\) 49.6222 2.00259
\(615\) −32.3275 −1.30357
\(616\) 0 0
\(617\) −2.59800 −0.104591 −0.0522957 0.998632i \(-0.516654\pi\)
−0.0522957 + 0.998632i \(0.516654\pi\)
\(618\) −21.2165 −0.853453
\(619\) 46.2702 1.85976 0.929878 0.367869i \(-0.119912\pi\)
0.929878 + 0.367869i \(0.119912\pi\)
\(620\) −7.92112 −0.318120
\(621\) −6.10021 −0.244793
\(622\) 16.4717 0.660454
\(623\) −20.8651 −0.835944
\(624\) −4.21317 −0.168662
\(625\) −4.05690 −0.162276
\(626\) 22.7491 0.909237
\(627\) 0 0
\(628\) 26.0754 1.04052
\(629\) −7.07532 −0.282112
\(630\) −10.2945 −0.410142
\(631\) −2.92662 −0.116507 −0.0582534 0.998302i \(-0.518553\pi\)
−0.0582534 + 0.998302i \(0.518553\pi\)
\(632\) −0.574615 −0.0228569
\(633\) −11.9257 −0.474005
\(634\) 36.3135 1.44219
\(635\) −54.5937 −2.16648
\(636\) 4.66134 0.184834
\(637\) −4.85570 −0.192390
\(638\) 0 0
\(639\) −0.837051 −0.0331132
\(640\) −6.34330 −0.250741
\(641\) 37.5952 1.48492 0.742460 0.669890i \(-0.233659\pi\)
0.742460 + 0.669890i \(0.233659\pi\)
\(642\) −21.9367 −0.865772
\(643\) −46.5117 −1.83424 −0.917121 0.398610i \(-0.869493\pi\)
−0.917121 + 0.398610i \(0.869493\pi\)
\(644\) −16.8565 −0.664237
\(645\) 36.8606 1.45139
\(646\) −3.74432 −0.147318
\(647\) −28.5385 −1.12197 −0.560983 0.827827i \(-0.689577\pi\)
−0.560983 + 0.827827i \(0.689577\pi\)
\(648\) −0.222723 −0.00874939
\(649\) 0 0
\(650\) 15.2100 0.596584
\(651\) 1.72384 0.0675626
\(652\) 23.1668 0.907282
\(653\) 39.6486 1.55157 0.775785 0.630997i \(-0.217354\pi\)
0.775785 + 0.630997i \(0.217354\pi\)
\(654\) 14.9248 0.583607
\(655\) −1.32611 −0.0518153
\(656\) −38.1970 −1.49134
\(657\) −9.22175 −0.359775
\(658\) −18.9056 −0.737017
\(659\) 21.9068 0.853367 0.426683 0.904401i \(-0.359682\pi\)
0.426683 + 0.904401i \(0.359682\pi\)
\(660\) 0 0
\(661\) −18.5956 −0.723283 −0.361642 0.932317i \(-0.617784\pi\)
−0.361642 + 0.932317i \(0.617784\pi\)
\(662\) −30.0026 −1.16608
\(663\) 0.794179 0.0308434
\(664\) −1.26673 −0.0491587
\(665\) 12.4865 0.484206
\(666\) −17.5645 −0.680612
\(667\) −11.4409 −0.442992
\(668\) 46.2384 1.78902
\(669\) 23.6029 0.912541
\(670\) 25.0677 0.968451
\(671\) 0 0
\(672\) −11.5113 −0.444057
\(673\) 12.1523 0.468436 0.234218 0.972184i \(-0.424747\pi\)
0.234218 + 0.972184i \(0.424747\pi\)
\(674\) −0.489664 −0.0188612
\(675\) 7.71470 0.296939
\(676\) 1.88703 0.0725781
\(677\) −29.5968 −1.13750 −0.568749 0.822511i \(-0.692572\pi\)
−0.568749 + 0.822511i \(0.692572\pi\)
\(678\) −3.78216 −0.145253
\(679\) −23.3970 −0.897896
\(680\) 0.630720 0.0241870
\(681\) 0.578732 0.0221771
\(682\) 0 0
\(683\) 6.76714 0.258938 0.129469 0.991583i \(-0.458673\pi\)
0.129469 + 0.991583i \(0.458673\pi\)
\(684\) −4.51257 −0.172543
\(685\) 1.88381 0.0719767
\(686\) −34.2278 −1.30682
\(687\) −28.3316 −1.08092
\(688\) 43.5531 1.66045
\(689\) 2.47020 0.0941070
\(690\) 42.8851 1.63261
\(691\) 6.24930 0.237735 0.118867 0.992910i \(-0.462074\pi\)
0.118867 + 0.992910i \(0.462074\pi\)
\(692\) 3.41290 0.129739
\(693\) 0 0
\(694\) 46.7586 1.77493
\(695\) 81.7525 3.10105
\(696\) −0.417715 −0.0158334
\(697\) 7.20008 0.272723
\(698\) −21.1499 −0.800534
\(699\) 12.0612 0.456196
\(700\) 21.3177 0.805734
\(701\) 41.9595 1.58479 0.792395 0.610009i \(-0.208834\pi\)
0.792395 + 0.610009i \(0.208834\pi\)
\(702\) 1.97156 0.0744116
\(703\) 21.3046 0.803517
\(704\) 0 0
\(705\) 23.3503 0.879422
\(706\) −19.7503 −0.743314
\(707\) 11.0370 0.415088
\(708\) 9.73627 0.365912
\(709\) −15.5081 −0.582419 −0.291209 0.956659i \(-0.594058\pi\)
−0.291209 + 0.956659i \(0.594058\pi\)
\(710\) 5.88456 0.220843
\(711\) 2.57995 0.0967557
\(712\) 3.17354 0.118933
\(713\) −7.18123 −0.268939
\(714\) 2.29282 0.0858066
\(715\) 0 0
\(716\) 46.6720 1.74421
\(717\) 0.895361 0.0334379
\(718\) −60.4626 −2.25645
\(719\) 51.3406 1.91468 0.957340 0.288964i \(-0.0933108\pi\)
0.957340 + 0.288964i \(0.0933108\pi\)
\(720\) 15.0232 0.559882
\(721\) −15.7582 −0.586867
\(722\) −26.1850 −0.974505
\(723\) −25.1729 −0.936192
\(724\) 22.7806 0.846633
\(725\) 14.4688 0.537359
\(726\) 0 0
\(727\) −26.3703 −0.978020 −0.489010 0.872278i \(-0.662642\pi\)
−0.489010 + 0.872278i \(0.662642\pi\)
\(728\) −0.326143 −0.0120877
\(729\) 1.00000 0.0370370
\(730\) 64.8299 2.39946
\(731\) −8.20971 −0.303647
\(732\) −21.5037 −0.794799
\(733\) 46.0603 1.70128 0.850638 0.525752i \(-0.176216\pi\)
0.850638 + 0.525752i \(0.176216\pi\)
\(734\) 45.8383 1.69192
\(735\) 17.3143 0.638648
\(736\) 47.9541 1.76761
\(737\) 0 0
\(738\) 17.8743 0.657961
\(739\) −27.4321 −1.00910 −0.504552 0.863381i \(-0.668342\pi\)
−0.504552 + 0.863381i \(0.668342\pi\)
\(740\) 59.9460 2.20366
\(741\) −2.39136 −0.0878488
\(742\) 7.13154 0.261807
\(743\) −48.0019 −1.76102 −0.880509 0.474029i \(-0.842799\pi\)
−0.880509 + 0.474029i \(0.842799\pi\)
\(744\) −0.262192 −0.00961242
\(745\) −60.3797 −2.21214
\(746\) 3.72041 0.136214
\(747\) 5.68748 0.208094
\(748\) 0 0
\(749\) −16.2931 −0.595338
\(750\) −19.0846 −0.696873
\(751\) 22.2285 0.811129 0.405565 0.914066i \(-0.367075\pi\)
0.405565 + 0.914066i \(0.367075\pi\)
\(752\) 27.5898 1.00610
\(753\) 14.5080 0.528700
\(754\) 3.69763 0.134660
\(755\) 54.5860 1.98659
\(756\) 2.76326 0.100499
\(757\) 21.0624 0.765525 0.382762 0.923847i \(-0.374973\pi\)
0.382762 + 0.923847i \(0.374973\pi\)
\(758\) 35.9798 1.30685
\(759\) 0 0
\(760\) −1.89917 −0.0688901
\(761\) −38.6383 −1.40064 −0.700319 0.713830i \(-0.746959\pi\)
−0.700319 + 0.713830i \(0.746959\pi\)
\(762\) 30.1855 1.09351
\(763\) 11.0852 0.401310
\(764\) −1.62050 −0.0586275
\(765\) −2.83186 −0.102386
\(766\) 13.5595 0.489925
\(767\) 5.15957 0.186301
\(768\) 17.6516 0.636948
\(769\) 32.8225 1.18361 0.591805 0.806081i \(-0.298415\pi\)
0.591805 + 0.806081i \(0.298415\pi\)
\(770\) 0 0
\(771\) 5.57370 0.200732
\(772\) −28.0829 −1.01072
\(773\) −18.2932 −0.657960 −0.328980 0.944337i \(-0.606705\pi\)
−0.328980 + 0.944337i \(0.606705\pi\)
\(774\) −20.3807 −0.732568
\(775\) 9.08182 0.326229
\(776\) 3.55864 0.127748
\(777\) −13.0458 −0.468015
\(778\) 53.7077 1.92551
\(779\) −21.6803 −0.776776
\(780\) −6.72872 −0.240927
\(781\) 0 0
\(782\) −9.55151 −0.341561
\(783\) 1.87549 0.0670245
\(784\) 20.4579 0.730640
\(785\) −49.2725 −1.75861
\(786\) 0.733220 0.0261531
\(787\) −39.2422 −1.39883 −0.699417 0.714714i \(-0.746557\pi\)
−0.699417 + 0.714714i \(0.746557\pi\)
\(788\) −22.9021 −0.815853
\(789\) 8.97386 0.319478
\(790\) −18.1373 −0.645298
\(791\) −2.80914 −0.0998814
\(792\) 0 0
\(793\) −11.3955 −0.404666
\(794\) 55.7338 1.97792
\(795\) −8.80815 −0.312393
\(796\) −3.80988 −0.135038
\(797\) −6.89589 −0.244265 −0.122132 0.992514i \(-0.538973\pi\)
−0.122132 + 0.992514i \(0.538973\pi\)
\(798\) −6.90393 −0.244397
\(799\) −5.20064 −0.183986
\(800\) −60.6457 −2.14415
\(801\) −14.2488 −0.503457
\(802\) −25.8548 −0.912964
\(803\) 0 0
\(804\) −6.72872 −0.237304
\(805\) 31.8522 1.12264
\(806\) 2.32094 0.0817515
\(807\) 5.52009 0.194316
\(808\) −1.67870 −0.0590564
\(809\) −31.0251 −1.09078 −0.545392 0.838181i \(-0.683619\pi\)
−0.545392 + 0.838181i \(0.683619\pi\)
\(810\) −7.03011 −0.247013
\(811\) −25.4035 −0.892038 −0.446019 0.895023i \(-0.647159\pi\)
−0.446019 + 0.895023i \(0.647159\pi\)
\(812\) 5.18246 0.181869
\(813\) −2.34995 −0.0824164
\(814\) 0 0
\(815\) −43.7764 −1.53342
\(816\) −3.34601 −0.117134
\(817\) 24.7203 0.864855
\(818\) 43.6319 1.52555
\(819\) 1.46434 0.0511683
\(820\) −61.0031 −2.13032
\(821\) 9.46516 0.330336 0.165168 0.986265i \(-0.447183\pi\)
0.165168 + 0.986265i \(0.447183\pi\)
\(822\) −1.04158 −0.0363293
\(823\) 24.4605 0.852639 0.426319 0.904573i \(-0.359810\pi\)
0.426319 + 0.904573i \(0.359810\pi\)
\(824\) 2.39679 0.0834962
\(825\) 0 0
\(826\) 14.8958 0.518293
\(827\) −14.1762 −0.492954 −0.246477 0.969149i \(-0.579273\pi\)
−0.246477 + 0.969149i \(0.579273\pi\)
\(828\) −11.5113 −0.400045
\(829\) −3.12178 −0.108424 −0.0542119 0.998529i \(-0.517265\pi\)
−0.0542119 + 0.998529i \(0.517265\pi\)
\(830\) −39.9836 −1.38785
\(831\) 15.9112 0.551952
\(832\) −7.07217 −0.245183
\(833\) −3.85630 −0.133613
\(834\) −45.2020 −1.56522
\(835\) −87.3728 −3.02366
\(836\) 0 0
\(837\) 1.17721 0.0406903
\(838\) −9.95663 −0.343946
\(839\) 9.00239 0.310797 0.155399 0.987852i \(-0.450334\pi\)
0.155399 + 0.987852i \(0.450334\pi\)
\(840\) 1.16295 0.0401256
\(841\) −25.4825 −0.878708
\(842\) 46.1973 1.59206
\(843\) −32.9366 −1.13440
\(844\) −22.5042 −0.774627
\(845\) −3.56577 −0.122666
\(846\) −12.9106 −0.443877
\(847\) 0 0
\(848\) −10.4074 −0.357391
\(849\) −12.1758 −0.417872
\(850\) 12.0794 0.414321
\(851\) 54.3466 1.86298
\(852\) −1.57954 −0.0541142
\(853\) −27.4270 −0.939081 −0.469541 0.882911i \(-0.655580\pi\)
−0.469541 + 0.882911i \(0.655580\pi\)
\(854\) −32.8992 −1.12579
\(855\) 8.52704 0.291618
\(856\) 2.47815 0.0847013
\(857\) −39.9386 −1.36427 −0.682137 0.731224i \(-0.738949\pi\)
−0.682137 + 0.731224i \(0.738949\pi\)
\(858\) 0 0
\(859\) 4.76174 0.162469 0.0812343 0.996695i \(-0.474114\pi\)
0.0812343 + 0.996695i \(0.474114\pi\)
\(860\) 69.5572 2.37188
\(861\) 13.2758 0.452439
\(862\) −24.3289 −0.828646
\(863\) 5.20346 0.177128 0.0885640 0.996070i \(-0.471772\pi\)
0.0885640 + 0.996070i \(0.471772\pi\)
\(864\) −7.86106 −0.267439
\(865\) −6.44907 −0.219275
\(866\) 77.2415 2.62477
\(867\) −16.3693 −0.555930
\(868\) 3.25294 0.110412
\(869\) 0 0
\(870\) −13.1849 −0.447010
\(871\) −3.56577 −0.120821
\(872\) −1.68603 −0.0570962
\(873\) −15.9779 −0.540769
\(874\) 28.7606 0.972843
\(875\) −14.1748 −0.479196
\(876\) −17.4017 −0.587950
\(877\) 36.7369 1.24052 0.620259 0.784397i \(-0.287027\pi\)
0.620259 + 0.784397i \(0.287027\pi\)
\(878\) −32.3174 −1.09066
\(879\) −16.6437 −0.561378
\(880\) 0 0
\(881\) −45.1493 −1.52112 −0.760558 0.649269i \(-0.775075\pi\)
−0.760558 + 0.649269i \(0.775075\pi\)
\(882\) −9.57329 −0.322349
\(883\) 4.44216 0.149491 0.0747453 0.997203i \(-0.476186\pi\)
0.0747453 + 0.997203i \(0.476186\pi\)
\(884\) 1.49864 0.0504047
\(885\) −18.3978 −0.618436
\(886\) −49.7083 −1.66998
\(887\) 6.44690 0.216466 0.108233 0.994126i \(-0.465481\pi\)
0.108233 + 0.994126i \(0.465481\pi\)
\(888\) 1.98424 0.0665866
\(889\) 22.4198 0.751936
\(890\) 100.171 3.35773
\(891\) 0 0
\(892\) 44.5394 1.49129
\(893\) 15.6597 0.524032
\(894\) 33.3847 1.11655
\(895\) −88.1922 −2.94794
\(896\) 2.60498 0.0870263
\(897\) −6.10021 −0.203680
\(898\) −39.8610 −1.33018
\(899\) 2.20785 0.0736358
\(900\) 14.5579 0.485263
\(901\) 1.96178 0.0653563
\(902\) 0 0
\(903\) −15.1374 −0.503742
\(904\) 0.427263 0.0142106
\(905\) −43.0466 −1.43092
\(906\) −30.1812 −1.00270
\(907\) 41.4762 1.37720 0.688598 0.725143i \(-0.258226\pi\)
0.688598 + 0.725143i \(0.258226\pi\)
\(908\) 1.09209 0.0362421
\(909\) 7.53716 0.249992
\(910\) −10.2945 −0.341259
\(911\) 22.6767 0.751313 0.375656 0.926759i \(-0.377417\pi\)
0.375656 + 0.926759i \(0.377417\pi\)
\(912\) 10.0752 0.333624
\(913\) 0 0
\(914\) −9.87517 −0.326642
\(915\) 40.6337 1.34331
\(916\) −53.4627 −1.76646
\(917\) 0.544588 0.0179839
\(918\) 1.56577 0.0516780
\(919\) 46.2181 1.52460 0.762298 0.647226i \(-0.224071\pi\)
0.762298 + 0.647226i \(0.224071\pi\)
\(920\) −4.84465 −0.159724
\(921\) 25.1690 0.829348
\(922\) −46.3439 −1.52625
\(923\) −0.837051 −0.0275519
\(924\) 0 0
\(925\) −68.7301 −2.25983
\(926\) 44.6318 1.46669
\(927\) −10.7613 −0.353448
\(928\) −14.7433 −0.483974
\(929\) 19.7434 0.647759 0.323880 0.946098i \(-0.395013\pi\)
0.323880 + 0.946098i \(0.395013\pi\)
\(930\) −8.27592 −0.271378
\(931\) 11.6117 0.380559
\(932\) 22.7599 0.745524
\(933\) 8.35466 0.273519
\(934\) −6.24802 −0.204442
\(935\) 0 0
\(936\) −0.222723 −0.00727993
\(937\) 19.0667 0.622882 0.311441 0.950266i \(-0.399188\pi\)
0.311441 + 0.950266i \(0.399188\pi\)
\(938\) −10.2945 −0.336127
\(939\) 11.5387 0.376550
\(940\) 44.0627 1.43717
\(941\) −45.8478 −1.49460 −0.747298 0.664489i \(-0.768649\pi\)
−0.747298 + 0.664489i \(0.768649\pi\)
\(942\) 27.2434 0.887636
\(943\) −55.3049 −1.80098
\(944\) −21.7382 −0.707517
\(945\) −5.22150 −0.169856
\(946\) 0 0
\(947\) 0.652498 0.0212034 0.0106017 0.999944i \(-0.496625\pi\)
0.0106017 + 0.999944i \(0.496625\pi\)
\(948\) 4.86845 0.158120
\(949\) −9.22175 −0.299351
\(950\) −36.3725 −1.18008
\(951\) 18.4187 0.597267
\(952\) −0.259016 −0.00839475
\(953\) −37.0781 −1.20108 −0.600539 0.799595i \(-0.705047\pi\)
−0.600539 + 0.799595i \(0.705047\pi\)
\(954\) 4.87013 0.157676
\(955\) 3.06212 0.0990878
\(956\) 1.68957 0.0546447
\(957\) 0 0
\(958\) −19.0698 −0.616118
\(959\) −0.773619 −0.0249814
\(960\) 25.2177 0.813899
\(961\) −29.6142 −0.955296
\(962\) −17.5645 −0.566304
\(963\) −11.1266 −0.358549
\(964\) −47.5021 −1.52994
\(965\) 53.0659 1.70825
\(966\) −17.6115 −0.566640
\(967\) −34.1386 −1.09782 −0.548912 0.835880i \(-0.684958\pi\)
−0.548912 + 0.835880i \(0.684958\pi\)
\(968\) 0 0
\(969\) −1.89917 −0.0610101
\(970\) 112.326 3.60657
\(971\) −55.4998 −1.78107 −0.890537 0.454910i \(-0.849671\pi\)
−0.890537 + 0.454910i \(0.849671\pi\)
\(972\) 1.88703 0.0605266
\(973\) −33.5730 −1.07630
\(974\) −52.8266 −1.69267
\(975\) 7.71470 0.247068
\(976\) 48.0112 1.53680
\(977\) −35.4894 −1.13541 −0.567703 0.823233i \(-0.692168\pi\)
−0.567703 + 0.823233i \(0.692168\pi\)
\(978\) 24.2045 0.773974
\(979\) 0 0
\(980\) 32.6726 1.04369
\(981\) 7.57007 0.241694
\(982\) −42.9108 −1.36934
\(983\) −51.9490 −1.65691 −0.828457 0.560052i \(-0.810781\pi\)
−0.828457 + 0.560052i \(0.810781\pi\)
\(984\) −2.01922 −0.0643705
\(985\) 43.2762 1.37889
\(986\) 2.93658 0.0935198
\(987\) −9.58918 −0.305227
\(988\) −4.51257 −0.143564
\(989\) 63.0600 2.00519
\(990\) 0 0
\(991\) 1.40629 0.0446724 0.0223362 0.999751i \(-0.492890\pi\)
0.0223362 + 0.999751i \(0.492890\pi\)
\(992\) −9.25412 −0.293819
\(993\) −15.2177 −0.482920
\(994\) −2.41659 −0.0766496
\(995\) 7.19921 0.228230
\(996\) 10.7324 0.340071
\(997\) −17.6234 −0.558138 −0.279069 0.960271i \(-0.590026\pi\)
−0.279069 + 0.960271i \(0.590026\pi\)
\(998\) −53.1912 −1.68374
\(999\) −8.90898 −0.281868
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4719.2.a.bc.1.5 5
11.10 odd 2 4719.2.a.be.1.1 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4719.2.a.bc.1.5 5 1.1 even 1 trivial
4719.2.a.be.1.1 yes 5 11.10 odd 2