Properties

Label 4719.2.a.bc.1.3
Level $4719$
Weight $2$
Character 4719.1
Self dual yes
Analytic conductor $37.681$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4719,2,Mod(1,4719)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4719, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4719.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4719 = 3 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4719.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1,5,3,-2,-1,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.6814047138\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.303952.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 2x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.238066\) of defining polynomial
Character \(\chi\) \(=\) 4719.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.238066 q^{2} +1.00000 q^{3} -1.94332 q^{4} -2.57562 q^{5} +0.238066 q^{6} -3.96246 q^{7} -0.938770 q^{8} +1.00000 q^{9} -0.613168 q^{10} -1.94332 q^{12} +1.00000 q^{13} -0.943325 q^{14} -2.57562 q^{15} +3.66316 q^{16} +2.41792 q^{17} +0.238066 q^{18} +5.73860 q^{19} +5.00527 q^{20} -3.96246 q^{21} +5.60649 q^{23} -0.938770 q^{24} +1.63384 q^{25} +0.238066 q^{26} +1.00000 q^{27} +7.70034 q^{28} -1.34857 q^{29} -0.613168 q^{30} +2.22195 q^{31} +2.74961 q^{32} +0.575623 q^{34} +10.2058 q^{35} -1.94332 q^{36} -1.81067 q^{37} +1.36616 q^{38} +1.00000 q^{39} +2.41792 q^{40} -6.27194 q^{41} -0.943325 q^{42} -6.73333 q^{43} -2.57562 q^{45} +1.33471 q^{46} +9.82122 q^{47} +3.66316 q^{48} +8.70106 q^{49} +0.388960 q^{50} +2.41792 q^{51} -1.94332 q^{52} -5.46074 q^{53} +0.238066 q^{54} +3.71984 q^{56} +5.73860 q^{57} -0.321048 q^{58} -8.12697 q^{59} +5.00527 q^{60} +9.93172 q^{61} +0.528970 q^{62} -3.96246 q^{63} -6.67173 q^{64} -2.57562 q^{65} -2.57562 q^{67} -4.69880 q^{68} +5.60649 q^{69} +2.42965 q^{70} -11.5809 q^{71} -0.938770 q^{72} -11.2362 q^{73} -0.431059 q^{74} +1.63384 q^{75} -11.1520 q^{76} +0.238066 q^{78} -8.46529 q^{79} -9.43492 q^{80} +1.00000 q^{81} -1.49313 q^{82} +14.0165 q^{83} +7.70034 q^{84} -6.22765 q^{85} -1.60297 q^{86} -1.34857 q^{87} +1.50035 q^{89} -0.613168 q^{90} -3.96246 q^{91} -10.8952 q^{92} +2.22195 q^{93} +2.33809 q^{94} -14.7805 q^{95} +2.74961 q^{96} +12.5535 q^{97} +2.07142 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 5 q^{3} + 3 q^{4} - 2 q^{5} - q^{6} - 6 q^{7} - 9 q^{8} + 5 q^{9} - 6 q^{10} + 3 q^{12} + 5 q^{13} + 8 q^{14} - 2 q^{15} + 11 q^{16} - 2 q^{17} - q^{18} - 12 q^{19} - 8 q^{20} - 6 q^{21}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.238066 0.168338 0.0841689 0.996452i \(-0.473176\pi\)
0.0841689 + 0.996452i \(0.473176\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.94332 −0.971662
\(5\) −2.57562 −1.15185 −0.575927 0.817501i \(-0.695359\pi\)
−0.575927 + 0.817501i \(0.695359\pi\)
\(6\) 0.238066 0.0971899
\(7\) −3.96246 −1.49767 −0.748834 0.662758i \(-0.769386\pi\)
−0.748834 + 0.662758i \(0.769386\pi\)
\(8\) −0.938770 −0.331905
\(9\) 1.00000 0.333333
\(10\) −0.613168 −0.193901
\(11\) 0 0
\(12\) −1.94332 −0.560990
\(13\) 1.00000 0.277350
\(14\) −0.943325 −0.252114
\(15\) −2.57562 −0.665023
\(16\) 3.66316 0.915790
\(17\) 2.41792 0.586431 0.293216 0.956046i \(-0.405275\pi\)
0.293216 + 0.956046i \(0.405275\pi\)
\(18\) 0.238066 0.0561126
\(19\) 5.73860 1.31653 0.658263 0.752788i \(-0.271292\pi\)
0.658263 + 0.752788i \(0.271292\pi\)
\(20\) 5.00527 1.11921
\(21\) −3.96246 −0.864679
\(22\) 0 0
\(23\) 5.60649 1.16903 0.584516 0.811382i \(-0.301284\pi\)
0.584516 + 0.811382i \(0.301284\pi\)
\(24\) −0.938770 −0.191626
\(25\) 1.63384 0.326767
\(26\) 0.238066 0.0466885
\(27\) 1.00000 0.192450
\(28\) 7.70034 1.45523
\(29\) −1.34857 −0.250423 −0.125212 0.992130i \(-0.539961\pi\)
−0.125212 + 0.992130i \(0.539961\pi\)
\(30\) −0.613168 −0.111949
\(31\) 2.22195 0.399074 0.199537 0.979890i \(-0.436056\pi\)
0.199537 + 0.979890i \(0.436056\pi\)
\(32\) 2.74961 0.486068
\(33\) 0 0
\(34\) 0.575623 0.0987186
\(35\) 10.2058 1.72509
\(36\) −1.94332 −0.323887
\(37\) −1.81067 −0.297673 −0.148836 0.988862i \(-0.547553\pi\)
−0.148836 + 0.988862i \(0.547553\pi\)
\(38\) 1.36616 0.221621
\(39\) 1.00000 0.160128
\(40\) 2.41792 0.382307
\(41\) −6.27194 −0.979513 −0.489757 0.871859i \(-0.662914\pi\)
−0.489757 + 0.871859i \(0.662914\pi\)
\(42\) −0.943325 −0.145558
\(43\) −6.73333 −1.02682 −0.513411 0.858143i \(-0.671619\pi\)
−0.513411 + 0.858143i \(0.671619\pi\)
\(44\) 0 0
\(45\) −2.57562 −0.383951
\(46\) 1.33471 0.196793
\(47\) 9.82122 1.43257 0.716286 0.697807i \(-0.245841\pi\)
0.716286 + 0.697807i \(0.245841\pi\)
\(48\) 3.66316 0.528732
\(49\) 8.70106 1.24301
\(50\) 0.388960 0.0550073
\(51\) 2.41792 0.338576
\(52\) −1.94332 −0.269491
\(53\) −5.46074 −0.750090 −0.375045 0.927007i \(-0.622373\pi\)
−0.375045 + 0.927007i \(0.622373\pi\)
\(54\) 0.238066 0.0323966
\(55\) 0 0
\(56\) 3.71984 0.497084
\(57\) 5.73860 0.760096
\(58\) −0.321048 −0.0421557
\(59\) −8.12697 −1.05804 −0.529021 0.848609i \(-0.677441\pi\)
−0.529021 + 0.848609i \(0.677441\pi\)
\(60\) 5.00527 0.646178
\(61\) 9.93172 1.27163 0.635813 0.771843i \(-0.280665\pi\)
0.635813 + 0.771843i \(0.280665\pi\)
\(62\) 0.528970 0.0671793
\(63\) −3.96246 −0.499223
\(64\) −6.67173 −0.833967
\(65\) −2.57562 −0.319467
\(66\) 0 0
\(67\) −2.57562 −0.314662 −0.157331 0.987546i \(-0.550289\pi\)
−0.157331 + 0.987546i \(0.550289\pi\)
\(68\) −4.69880 −0.569813
\(69\) 5.60649 0.674942
\(70\) 2.42965 0.290399
\(71\) −11.5809 −1.37440 −0.687200 0.726469i \(-0.741160\pi\)
−0.687200 + 0.726469i \(0.741160\pi\)
\(72\) −0.938770 −0.110635
\(73\) −11.2362 −1.31509 −0.657547 0.753414i \(-0.728406\pi\)
−0.657547 + 0.753414i \(0.728406\pi\)
\(74\) −0.431059 −0.0501096
\(75\) 1.63384 0.188659
\(76\) −11.1520 −1.27922
\(77\) 0 0
\(78\) 0.238066 0.0269556
\(79\) −8.46529 −0.952420 −0.476210 0.879332i \(-0.657990\pi\)
−0.476210 + 0.879332i \(0.657990\pi\)
\(80\) −9.43492 −1.05486
\(81\) 1.00000 0.111111
\(82\) −1.49313 −0.164889
\(83\) 14.0165 1.53851 0.769254 0.638944i \(-0.220628\pi\)
0.769254 + 0.638944i \(0.220628\pi\)
\(84\) 7.70034 0.840176
\(85\) −6.22765 −0.675483
\(86\) −1.60297 −0.172853
\(87\) −1.34857 −0.144582
\(88\) 0 0
\(89\) 1.50035 0.159037 0.0795186 0.996833i \(-0.474662\pi\)
0.0795186 + 0.996833i \(0.474662\pi\)
\(90\) −0.613168 −0.0646335
\(91\) −3.96246 −0.415378
\(92\) −10.8952 −1.13591
\(93\) 2.22195 0.230406
\(94\) 2.33809 0.241156
\(95\) −14.7805 −1.51644
\(96\) 2.74961 0.280631
\(97\) 12.5535 1.27462 0.637310 0.770608i \(-0.280047\pi\)
0.637310 + 0.770608i \(0.280047\pi\)
\(98\) 2.07142 0.209245
\(99\) 0 0
\(100\) −3.17507 −0.317507
\(101\) 9.21549 0.916976 0.458488 0.888701i \(-0.348391\pi\)
0.458488 + 0.888701i \(0.348391\pi\)
\(102\) 0.575623 0.0569952
\(103\) 12.4365 1.22540 0.612700 0.790315i \(-0.290083\pi\)
0.612700 + 0.790315i \(0.290083\pi\)
\(104\) −0.938770 −0.0920540
\(105\) 10.2058 0.995984
\(106\) −1.30001 −0.126268
\(107\) −19.2400 −1.86000 −0.929998 0.367564i \(-0.880192\pi\)
−0.929998 + 0.367564i \(0.880192\pi\)
\(108\) −1.94332 −0.186997
\(109\) −11.0193 −1.05546 −0.527729 0.849413i \(-0.676956\pi\)
−0.527729 + 0.849413i \(0.676956\pi\)
\(110\) 0 0
\(111\) −1.81067 −0.171861
\(112\) −14.5151 −1.37155
\(113\) −7.81441 −0.735118 −0.367559 0.930000i \(-0.619806\pi\)
−0.367559 + 0.930000i \(0.619806\pi\)
\(114\) 1.36616 0.127953
\(115\) −14.4402 −1.34656
\(116\) 2.62071 0.243327
\(117\) 1.00000 0.0924500
\(118\) −1.93475 −0.178108
\(119\) −9.58090 −0.878279
\(120\) 2.41792 0.220725
\(121\) 0 0
\(122\) 2.36440 0.214063
\(123\) −6.27194 −0.565522
\(124\) −4.31797 −0.387765
\(125\) 8.66997 0.775466
\(126\) −0.943325 −0.0840380
\(127\) −12.2654 −1.08838 −0.544191 0.838961i \(-0.683163\pi\)
−0.544191 + 0.838961i \(0.683163\pi\)
\(128\) −7.08754 −0.626456
\(129\) −6.73333 −0.592836
\(130\) −0.613168 −0.0537783
\(131\) 13.4389 1.17417 0.587083 0.809527i \(-0.300276\pi\)
0.587083 + 0.809527i \(0.300276\pi\)
\(132\) 0 0
\(133\) −22.7390 −1.97172
\(134\) −0.613168 −0.0529696
\(135\) −2.57562 −0.221674
\(136\) −2.26987 −0.194640
\(137\) −12.2077 −1.04297 −0.521487 0.853259i \(-0.674622\pi\)
−0.521487 + 0.853259i \(0.674622\pi\)
\(138\) 1.33471 0.113618
\(139\) −15.4683 −1.31201 −0.656003 0.754758i \(-0.727754\pi\)
−0.656003 + 0.754758i \(0.727754\pi\)
\(140\) −19.8332 −1.67621
\(141\) 9.82122 0.827096
\(142\) −2.75701 −0.231363
\(143\) 0 0
\(144\) 3.66316 0.305263
\(145\) 3.47341 0.288451
\(146\) −2.67494 −0.221380
\(147\) 8.70106 0.717651
\(148\) 3.51872 0.289237
\(149\) −8.16595 −0.668981 −0.334490 0.942399i \(-0.608564\pi\)
−0.334490 + 0.942399i \(0.608564\pi\)
\(150\) 0.388960 0.0317585
\(151\) −1.33305 −0.108482 −0.0542409 0.998528i \(-0.517274\pi\)
−0.0542409 + 0.998528i \(0.517274\pi\)
\(152\) −5.38723 −0.436962
\(153\) 2.41792 0.195477
\(154\) 0 0
\(155\) −5.72291 −0.459675
\(156\) −1.94332 −0.155591
\(157\) 17.0633 1.36180 0.680900 0.732377i \(-0.261589\pi\)
0.680900 + 0.732377i \(0.261589\pi\)
\(158\) −2.01529 −0.160328
\(159\) −5.46074 −0.433064
\(160\) −7.08197 −0.559879
\(161\) −22.2155 −1.75082
\(162\) 0.238066 0.0187042
\(163\) −14.7786 −1.15755 −0.578774 0.815488i \(-0.696468\pi\)
−0.578774 + 0.815488i \(0.696468\pi\)
\(164\) 12.1884 0.951756
\(165\) 0 0
\(166\) 3.33684 0.258989
\(167\) −19.1853 −1.48460 −0.742300 0.670068i \(-0.766265\pi\)
−0.742300 + 0.670068i \(0.766265\pi\)
\(168\) 3.71984 0.286992
\(169\) 1.00000 0.0769231
\(170\) −1.48259 −0.113709
\(171\) 5.73860 0.438842
\(172\) 13.0850 0.997725
\(173\) 10.8190 0.822550 0.411275 0.911511i \(-0.365084\pi\)
0.411275 + 0.911511i \(0.365084\pi\)
\(174\) −0.321048 −0.0243386
\(175\) −6.47400 −0.489389
\(176\) 0 0
\(177\) −8.12697 −0.610861
\(178\) 0.357183 0.0267720
\(179\) −4.60020 −0.343835 −0.171917 0.985111i \(-0.554996\pi\)
−0.171917 + 0.985111i \(0.554996\pi\)
\(180\) 5.00527 0.373071
\(181\) 11.6717 0.867553 0.433777 0.901020i \(-0.357181\pi\)
0.433777 + 0.901020i \(0.357181\pi\)
\(182\) −0.943325 −0.0699239
\(183\) 9.93172 0.734174
\(184\) −5.26320 −0.388008
\(185\) 4.66361 0.342875
\(186\) 0.528970 0.0387860
\(187\) 0 0
\(188\) −19.0858 −1.39198
\(189\) −3.96246 −0.288226
\(190\) −3.51872 −0.255275
\(191\) 9.10706 0.658964 0.329482 0.944162i \(-0.393126\pi\)
0.329482 + 0.944162i \(0.393126\pi\)
\(192\) −6.67173 −0.481491
\(193\) −2.30178 −0.165685 −0.0828427 0.996563i \(-0.526400\pi\)
−0.0828427 + 0.996563i \(0.526400\pi\)
\(194\) 2.98857 0.214567
\(195\) −2.57562 −0.184444
\(196\) −16.9090 −1.20778
\(197\) 18.4273 1.31289 0.656447 0.754372i \(-0.272059\pi\)
0.656447 + 0.754372i \(0.272059\pi\)
\(198\) 0 0
\(199\) 23.3299 1.65381 0.826905 0.562341i \(-0.190099\pi\)
0.826905 + 0.562341i \(0.190099\pi\)
\(200\) −1.53380 −0.108456
\(201\) −2.57562 −0.181670
\(202\) 2.19389 0.154362
\(203\) 5.34365 0.375051
\(204\) −4.69880 −0.328982
\(205\) 16.1542 1.12826
\(206\) 2.96069 0.206281
\(207\) 5.60649 0.389678
\(208\) 3.66316 0.253994
\(209\) 0 0
\(210\) 2.42965 0.167662
\(211\) −11.5692 −0.796454 −0.398227 0.917287i \(-0.630374\pi\)
−0.398227 + 0.917287i \(0.630374\pi\)
\(212\) 10.6120 0.728834
\(213\) −11.5809 −0.793510
\(214\) −4.58037 −0.313108
\(215\) 17.3425 1.18275
\(216\) −0.938770 −0.0638752
\(217\) −8.80439 −0.597681
\(218\) −2.62332 −0.177673
\(219\) −11.2362 −0.759269
\(220\) 0 0
\(221\) 2.41792 0.162647
\(222\) −0.431059 −0.0289308
\(223\) 10.9915 0.736043 0.368022 0.929817i \(-0.380035\pi\)
0.368022 + 0.929817i \(0.380035\pi\)
\(224\) −10.8952 −0.727968
\(225\) 1.63384 0.108922
\(226\) −1.86034 −0.123748
\(227\) −26.6099 −1.76616 −0.883079 0.469224i \(-0.844534\pi\)
−0.883079 + 0.469224i \(0.844534\pi\)
\(228\) −11.1520 −0.738557
\(229\) −3.98619 −0.263415 −0.131708 0.991289i \(-0.542046\pi\)
−0.131708 + 0.991289i \(0.542046\pi\)
\(230\) −3.43771 −0.226676
\(231\) 0 0
\(232\) 1.26600 0.0831168
\(233\) −2.07106 −0.135679 −0.0678397 0.997696i \(-0.521611\pi\)
−0.0678397 + 0.997696i \(0.521611\pi\)
\(234\) 0.238066 0.0155628
\(235\) −25.2958 −1.65011
\(236\) 15.7933 1.02806
\(237\) −8.46529 −0.549880
\(238\) −2.28088 −0.147848
\(239\) −10.4860 −0.678280 −0.339140 0.940736i \(-0.610136\pi\)
−0.339140 + 0.940736i \(0.610136\pi\)
\(240\) −9.43492 −0.609022
\(241\) 1.27230 0.0819558 0.0409779 0.999160i \(-0.486953\pi\)
0.0409779 + 0.999160i \(0.486953\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −19.3006 −1.23559
\(245\) −22.4106 −1.43176
\(246\) −1.49313 −0.0951988
\(247\) 5.73860 0.365138
\(248\) −2.08590 −0.132455
\(249\) 14.0165 0.888257
\(250\) 2.06402 0.130540
\(251\) −7.14073 −0.450719 −0.225359 0.974276i \(-0.572356\pi\)
−0.225359 + 0.974276i \(0.572356\pi\)
\(252\) 7.70034 0.485076
\(253\) 0 0
\(254\) −2.91998 −0.183216
\(255\) −6.22765 −0.389990
\(256\) 11.6562 0.728510
\(257\) 6.96873 0.434697 0.217349 0.976094i \(-0.430259\pi\)
0.217349 + 0.976094i \(0.430259\pi\)
\(258\) −1.60297 −0.0997968
\(259\) 7.17471 0.445815
\(260\) 5.00527 0.310414
\(261\) −1.34857 −0.0834744
\(262\) 3.19935 0.197657
\(263\) 6.59552 0.406697 0.203348 0.979106i \(-0.434818\pi\)
0.203348 + 0.979106i \(0.434818\pi\)
\(264\) 0 0
\(265\) 14.0648 0.863994
\(266\) −5.41336 −0.331915
\(267\) 1.50035 0.0918202
\(268\) 5.00527 0.305746
\(269\) 1.50492 0.0917565 0.0458783 0.998947i \(-0.485391\pi\)
0.0458783 + 0.998947i \(0.485391\pi\)
\(270\) −0.613168 −0.0373162
\(271\) −18.6849 −1.13503 −0.567515 0.823363i \(-0.692095\pi\)
−0.567515 + 0.823363i \(0.692095\pi\)
\(272\) 8.85722 0.537048
\(273\) −3.96246 −0.239819
\(274\) −2.90623 −0.175572
\(275\) 0 0
\(276\) −10.8952 −0.655815
\(277\) −32.5192 −1.95389 −0.976946 0.213486i \(-0.931518\pi\)
−0.976946 + 0.213486i \(0.931518\pi\)
\(278\) −3.68248 −0.220860
\(279\) 2.22195 0.133025
\(280\) −9.58090 −0.572568
\(281\) −19.7127 −1.17596 −0.587979 0.808876i \(-0.700076\pi\)
−0.587979 + 0.808876i \(0.700076\pi\)
\(282\) 2.33809 0.139232
\(283\) −31.0570 −1.84615 −0.923073 0.384625i \(-0.874331\pi\)
−0.923073 + 0.384625i \(0.874331\pi\)
\(284\) 22.5054 1.33545
\(285\) −14.7805 −0.875520
\(286\) 0 0
\(287\) 24.8523 1.46699
\(288\) 2.74961 0.162023
\(289\) −11.1537 −0.656098
\(290\) 0.826899 0.0485572
\(291\) 12.5535 0.735902
\(292\) 21.8355 1.27783
\(293\) 1.33899 0.0782249 0.0391124 0.999235i \(-0.487547\pi\)
0.0391124 + 0.999235i \(0.487547\pi\)
\(294\) 2.07142 0.120808
\(295\) 20.9320 1.21871
\(296\) 1.69981 0.0987992
\(297\) 0 0
\(298\) −1.94403 −0.112615
\(299\) 5.60649 0.324231
\(300\) −3.17507 −0.183313
\(301\) 26.6805 1.53784
\(302\) −0.317353 −0.0182616
\(303\) 9.21549 0.529416
\(304\) 21.0214 1.20566
\(305\) −25.5804 −1.46473
\(306\) 0.575623 0.0329062
\(307\) −26.8143 −1.53037 −0.765187 0.643808i \(-0.777353\pi\)
−0.765187 + 0.643808i \(0.777353\pi\)
\(308\) 0 0
\(309\) 12.4365 0.707485
\(310\) −1.36243 −0.0773807
\(311\) 27.8859 1.58126 0.790631 0.612293i \(-0.209753\pi\)
0.790631 + 0.612293i \(0.209753\pi\)
\(312\) −0.938770 −0.0531474
\(313\) 1.71284 0.0968155 0.0484077 0.998828i \(-0.484585\pi\)
0.0484077 + 0.998828i \(0.484585\pi\)
\(314\) 4.06219 0.229242
\(315\) 10.2058 0.575031
\(316\) 16.4508 0.925430
\(317\) 32.9427 1.85025 0.925124 0.379665i \(-0.123961\pi\)
0.925124 + 0.379665i \(0.123961\pi\)
\(318\) −1.30001 −0.0729011
\(319\) 0 0
\(320\) 17.1839 0.960608
\(321\) −19.2400 −1.07387
\(322\) −5.28874 −0.294730
\(323\) 13.8755 0.772052
\(324\) −1.94332 −0.107962
\(325\) 1.63384 0.0906289
\(326\) −3.51827 −0.194859
\(327\) −11.0193 −0.609369
\(328\) 5.88792 0.325106
\(329\) −38.9161 −2.14552
\(330\) 0 0
\(331\) −7.18387 −0.394861 −0.197431 0.980317i \(-0.563260\pi\)
−0.197431 + 0.980317i \(0.563260\pi\)
\(332\) −27.2385 −1.49491
\(333\) −1.81067 −0.0992242
\(334\) −4.56735 −0.249914
\(335\) 6.63384 0.362445
\(336\) −14.5151 −0.791864
\(337\) −8.79298 −0.478984 −0.239492 0.970898i \(-0.576981\pi\)
−0.239492 + 0.970898i \(0.576981\pi\)
\(338\) 0.238066 0.0129491
\(339\) −7.81441 −0.424420
\(340\) 12.1023 0.656342
\(341\) 0 0
\(342\) 1.36616 0.0738737
\(343\) −6.74036 −0.363945
\(344\) 6.32105 0.340808
\(345\) −14.4402 −0.777434
\(346\) 2.57562 0.138466
\(347\) 19.1713 1.02917 0.514586 0.857439i \(-0.327946\pi\)
0.514586 + 0.857439i \(0.327946\pi\)
\(348\) 2.62071 0.140485
\(349\) 17.1498 0.918010 0.459005 0.888434i \(-0.348206\pi\)
0.459005 + 0.888434i \(0.348206\pi\)
\(350\) −1.54124 −0.0823826
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) −24.3489 −1.29596 −0.647981 0.761656i \(-0.724386\pi\)
−0.647981 + 0.761656i \(0.724386\pi\)
\(354\) −1.93475 −0.102831
\(355\) 29.8280 1.58311
\(356\) −2.91568 −0.154530
\(357\) −9.58090 −0.507075
\(358\) −1.09515 −0.0578804
\(359\) −14.2222 −0.750618 −0.375309 0.926900i \(-0.622463\pi\)
−0.375309 + 0.926900i \(0.622463\pi\)
\(360\) 2.41792 0.127436
\(361\) 13.9315 0.733239
\(362\) 2.77864 0.146042
\(363\) 0 0
\(364\) 7.70034 0.403607
\(365\) 28.9401 1.51480
\(366\) 2.36440 0.123589
\(367\) −31.1312 −1.62504 −0.812518 0.582935i \(-0.801904\pi\)
−0.812518 + 0.582935i \(0.801904\pi\)
\(368\) 20.5375 1.07059
\(369\) −6.27194 −0.326504
\(370\) 1.11025 0.0577189
\(371\) 21.6379 1.12339
\(372\) −4.31797 −0.223876
\(373\) 21.0326 1.08903 0.544513 0.838753i \(-0.316715\pi\)
0.544513 + 0.838753i \(0.316715\pi\)
\(374\) 0 0
\(375\) 8.66997 0.447715
\(376\) −9.21987 −0.475478
\(377\) −1.34857 −0.0694549
\(378\) −0.943325 −0.0485194
\(379\) 0.403809 0.0207423 0.0103711 0.999946i \(-0.496699\pi\)
0.0103711 + 0.999946i \(0.496699\pi\)
\(380\) 28.7233 1.47347
\(381\) −12.2654 −0.628378
\(382\) 2.16808 0.110929
\(383\) 8.54282 0.436517 0.218259 0.975891i \(-0.429962\pi\)
0.218259 + 0.975891i \(0.429962\pi\)
\(384\) −7.08754 −0.361684
\(385\) 0 0
\(386\) −0.547974 −0.0278911
\(387\) −6.73333 −0.342274
\(388\) −24.3956 −1.23850
\(389\) −6.29897 −0.319370 −0.159685 0.987168i \(-0.551048\pi\)
−0.159685 + 0.987168i \(0.551048\pi\)
\(390\) −0.613168 −0.0310489
\(391\) 13.5560 0.685558
\(392\) −8.16829 −0.412561
\(393\) 13.4389 0.677905
\(394\) 4.38692 0.221010
\(395\) 21.8034 1.09705
\(396\) 0 0
\(397\) −15.5293 −0.779392 −0.389696 0.920944i \(-0.627420\pi\)
−0.389696 + 0.920944i \(0.627420\pi\)
\(398\) 5.55404 0.278399
\(399\) −22.7390 −1.13837
\(400\) 5.98500 0.299250
\(401\) 3.19768 0.159684 0.0798421 0.996808i \(-0.474558\pi\)
0.0798421 + 0.996808i \(0.474558\pi\)
\(402\) −0.613168 −0.0305820
\(403\) 2.22195 0.110683
\(404\) −17.9087 −0.890991
\(405\) −2.57562 −0.127984
\(406\) 1.27214 0.0631352
\(407\) 0 0
\(408\) −2.26987 −0.112375
\(409\) −1.79677 −0.0888448 −0.0444224 0.999013i \(-0.514145\pi\)
−0.0444224 + 0.999013i \(0.514145\pi\)
\(410\) 3.84575 0.189928
\(411\) −12.2077 −0.602161
\(412\) −24.1681 −1.19068
\(413\) 32.2028 1.58459
\(414\) 1.33471 0.0655975
\(415\) −36.1011 −1.77214
\(416\) 2.74961 0.134811
\(417\) −15.4683 −0.757487
\(418\) 0 0
\(419\) −26.4076 −1.29010 −0.645048 0.764142i \(-0.723163\pi\)
−0.645048 + 0.764142i \(0.723163\pi\)
\(420\) −19.8332 −0.967760
\(421\) −31.1102 −1.51622 −0.758108 0.652129i \(-0.773876\pi\)
−0.758108 + 0.652129i \(0.773876\pi\)
\(422\) −2.75422 −0.134073
\(423\) 9.82122 0.477524
\(424\) 5.12638 0.248959
\(425\) 3.95048 0.191627
\(426\) −2.75701 −0.133578
\(427\) −39.3540 −1.90447
\(428\) 37.3895 1.80729
\(429\) 0 0
\(430\) 4.12866 0.199102
\(431\) 19.5564 0.942001 0.471000 0.882133i \(-0.343893\pi\)
0.471000 + 0.882133i \(0.343893\pi\)
\(432\) 3.66316 0.176244
\(433\) −11.7186 −0.563160 −0.281580 0.959538i \(-0.590858\pi\)
−0.281580 + 0.959538i \(0.590858\pi\)
\(434\) −2.09602 −0.100612
\(435\) 3.47341 0.166537
\(436\) 21.4141 1.02555
\(437\) 32.1734 1.53906
\(438\) −2.67494 −0.127814
\(439\) 16.0319 0.765162 0.382581 0.923922i \(-0.375035\pi\)
0.382581 + 0.923922i \(0.375035\pi\)
\(440\) 0 0
\(441\) 8.70106 0.414336
\(442\) 0.575623 0.0273796
\(443\) 31.9047 1.51584 0.757918 0.652350i \(-0.226217\pi\)
0.757918 + 0.652350i \(0.226217\pi\)
\(444\) 3.51872 0.166991
\(445\) −3.86435 −0.183188
\(446\) 2.61669 0.123904
\(447\) −8.16595 −0.386236
\(448\) 26.4364 1.24900
\(449\) −11.1360 −0.525538 −0.262769 0.964859i \(-0.584636\pi\)
−0.262769 + 0.964859i \(0.584636\pi\)
\(450\) 0.388960 0.0183358
\(451\) 0 0
\(452\) 15.1859 0.714286
\(453\) −1.33305 −0.0626320
\(454\) −6.33489 −0.297311
\(455\) 10.2058 0.478455
\(456\) −5.38723 −0.252280
\(457\) −24.5856 −1.15007 −0.575033 0.818130i \(-0.695011\pi\)
−0.575033 + 0.818130i \(0.695011\pi\)
\(458\) −0.948976 −0.0443427
\(459\) 2.41792 0.112859
\(460\) 28.0620 1.30840
\(461\) −28.4979 −1.32728 −0.663640 0.748052i \(-0.730989\pi\)
−0.663640 + 0.748052i \(0.730989\pi\)
\(462\) 0 0
\(463\) 39.7372 1.84675 0.923373 0.383904i \(-0.125421\pi\)
0.923373 + 0.383904i \(0.125421\pi\)
\(464\) −4.94003 −0.229335
\(465\) −5.72291 −0.265394
\(466\) −0.493048 −0.0228400
\(467\) 29.9707 1.38688 0.693439 0.720515i \(-0.256095\pi\)
0.693439 + 0.720515i \(0.256095\pi\)
\(468\) −1.94332 −0.0898302
\(469\) 10.2058 0.471260
\(470\) −6.02205 −0.277777
\(471\) 17.0633 0.786235
\(472\) 7.62936 0.351170
\(473\) 0 0
\(474\) −2.01529 −0.0925656
\(475\) 9.37593 0.430197
\(476\) 18.6188 0.853391
\(477\) −5.46074 −0.250030
\(478\) −2.49635 −0.114180
\(479\) 5.77861 0.264032 0.132016 0.991248i \(-0.457855\pi\)
0.132016 + 0.991248i \(0.457855\pi\)
\(480\) −7.08197 −0.323246
\(481\) −1.81067 −0.0825595
\(482\) 0.302890 0.0137963
\(483\) −22.2155 −1.01084
\(484\) 0 0
\(485\) −32.3332 −1.46818
\(486\) 0.238066 0.0107989
\(487\) −27.0163 −1.22422 −0.612112 0.790771i \(-0.709680\pi\)
−0.612112 + 0.790771i \(0.709680\pi\)
\(488\) −9.32361 −0.422060
\(489\) −14.7786 −0.668310
\(490\) −5.33521 −0.241020
\(491\) 18.7819 0.847616 0.423808 0.905752i \(-0.360693\pi\)
0.423808 + 0.905752i \(0.360693\pi\)
\(492\) 12.1884 0.549497
\(493\) −3.26073 −0.146856
\(494\) 1.36616 0.0614666
\(495\) 0 0
\(496\) 8.13937 0.365468
\(497\) 45.8888 2.05839
\(498\) 3.33684 0.149527
\(499\) −9.05708 −0.405451 −0.202725 0.979236i \(-0.564980\pi\)
−0.202725 + 0.979236i \(0.564980\pi\)
\(500\) −16.8486 −0.753491
\(501\) −19.1853 −0.857134
\(502\) −1.69996 −0.0758730
\(503\) −5.67441 −0.253009 −0.126505 0.991966i \(-0.540376\pi\)
−0.126505 + 0.991966i \(0.540376\pi\)
\(504\) 3.71984 0.165695
\(505\) −23.7356 −1.05622
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 23.8357 1.05754
\(509\) −30.6372 −1.35797 −0.678984 0.734153i \(-0.737580\pi\)
−0.678984 + 0.734153i \(0.737580\pi\)
\(510\) −1.48259 −0.0656502
\(511\) 44.5228 1.96957
\(512\) 16.9500 0.749092
\(513\) 5.73860 0.253365
\(514\) 1.65902 0.0731760
\(515\) −32.0316 −1.41148
\(516\) 13.0850 0.576037
\(517\) 0 0
\(518\) 1.70805 0.0750475
\(519\) 10.8190 0.474900
\(520\) 2.41792 0.106033
\(521\) 3.07201 0.134587 0.0672936 0.997733i \(-0.478564\pi\)
0.0672936 + 0.997733i \(0.478564\pi\)
\(522\) −0.321048 −0.0140519
\(523\) −6.96310 −0.304475 −0.152238 0.988344i \(-0.548648\pi\)
−0.152238 + 0.988344i \(0.548648\pi\)
\(524\) −26.1162 −1.14089
\(525\) −6.47400 −0.282549
\(526\) 1.57017 0.0684625
\(527\) 5.37250 0.234030
\(528\) 0 0
\(529\) 8.43268 0.366638
\(530\) 3.34835 0.145443
\(531\) −8.12697 −0.352680
\(532\) 44.1892 1.91584
\(533\) −6.27194 −0.271668
\(534\) 0.357183 0.0154568
\(535\) 49.5549 2.14244
\(536\) 2.41792 0.104438
\(537\) −4.60020 −0.198513
\(538\) 0.358269 0.0154461
\(539\) 0 0
\(540\) 5.00527 0.215393
\(541\) −0.375581 −0.0161475 −0.00807375 0.999967i \(-0.502570\pi\)
−0.00807375 + 0.999967i \(0.502570\pi\)
\(542\) −4.44824 −0.191068
\(543\) 11.6717 0.500882
\(544\) 6.64834 0.285045
\(545\) 28.3816 1.21573
\(546\) −0.943325 −0.0403706
\(547\) −22.3507 −0.955648 −0.477824 0.878456i \(-0.658574\pi\)
−0.477824 + 0.878456i \(0.658574\pi\)
\(548\) 23.7235 1.01342
\(549\) 9.93172 0.423876
\(550\) 0 0
\(551\) −7.73891 −0.329688
\(552\) −5.26320 −0.224017
\(553\) 33.5433 1.42641
\(554\) −7.74172 −0.328914
\(555\) 4.66361 0.197959
\(556\) 30.0600 1.27483
\(557\) −28.5757 −1.21079 −0.605395 0.795925i \(-0.706985\pi\)
−0.605395 + 0.795925i \(0.706985\pi\)
\(558\) 0.528970 0.0223931
\(559\) −6.73333 −0.284789
\(560\) 37.3855 1.57982
\(561\) 0 0
\(562\) −4.69291 −0.197958
\(563\) 44.9158 1.89297 0.946487 0.322741i \(-0.104604\pi\)
0.946487 + 0.322741i \(0.104604\pi\)
\(564\) −19.0858 −0.803658
\(565\) 20.1270 0.846748
\(566\) −7.39360 −0.310776
\(567\) −3.96246 −0.166408
\(568\) 10.8718 0.456171
\(569\) 33.8306 1.41825 0.709126 0.705082i \(-0.249090\pi\)
0.709126 + 0.705082i \(0.249090\pi\)
\(570\) −3.51872 −0.147383
\(571\) −8.16423 −0.341663 −0.170831 0.985300i \(-0.554645\pi\)
−0.170831 + 0.985300i \(0.554645\pi\)
\(572\) 0 0
\(573\) 9.10706 0.380453
\(574\) 5.91648 0.246949
\(575\) 9.16008 0.382002
\(576\) −6.67173 −0.277989
\(577\) −44.1822 −1.83933 −0.919664 0.392706i \(-0.871539\pi\)
−0.919664 + 0.392706i \(0.871539\pi\)
\(578\) −2.65531 −0.110446
\(579\) −2.30178 −0.0956585
\(580\) −6.74996 −0.280277
\(581\) −55.5396 −2.30417
\(582\) 2.98857 0.123880
\(583\) 0 0
\(584\) 10.5482 0.436487
\(585\) −2.57562 −0.106489
\(586\) 0.318769 0.0131682
\(587\) 43.6118 1.80005 0.900027 0.435835i \(-0.143547\pi\)
0.900027 + 0.435835i \(0.143547\pi\)
\(588\) −16.9090 −0.697315
\(589\) 12.7509 0.525391
\(590\) 4.98319 0.205155
\(591\) 18.4273 0.757999
\(592\) −6.63278 −0.272606
\(593\) −33.2765 −1.36650 −0.683252 0.730183i \(-0.739435\pi\)
−0.683252 + 0.730183i \(0.739435\pi\)
\(594\) 0 0
\(595\) 24.6768 1.01165
\(596\) 15.8691 0.650023
\(597\) 23.3299 0.954828
\(598\) 1.33471 0.0545804
\(599\) −35.8898 −1.46642 −0.733208 0.680005i \(-0.761978\pi\)
−0.733208 + 0.680005i \(0.761978\pi\)
\(600\) −1.53380 −0.0626170
\(601\) −2.29897 −0.0937769 −0.0468885 0.998900i \(-0.514931\pi\)
−0.0468885 + 0.998900i \(0.514931\pi\)
\(602\) 6.35172 0.258877
\(603\) −2.57562 −0.104887
\(604\) 2.59054 0.105408
\(605\) 0 0
\(606\) 2.19389 0.0891208
\(607\) −32.6616 −1.32569 −0.662847 0.748755i \(-0.730652\pi\)
−0.662847 + 0.748755i \(0.730652\pi\)
\(608\) 15.7789 0.639920
\(609\) 5.34365 0.216536
\(610\) −6.08981 −0.246569
\(611\) 9.82122 0.397324
\(612\) −4.69880 −0.189938
\(613\) −4.91723 −0.198605 −0.0993025 0.995057i \(-0.531661\pi\)
−0.0993025 + 0.995057i \(0.531661\pi\)
\(614\) −6.38357 −0.257620
\(615\) 16.1542 0.651399
\(616\) 0 0
\(617\) −26.6795 −1.07408 −0.537038 0.843558i \(-0.680457\pi\)
−0.537038 + 0.843558i \(0.680457\pi\)
\(618\) 2.96069 0.119097
\(619\) −14.5859 −0.586257 −0.293129 0.956073i \(-0.594696\pi\)
−0.293129 + 0.956073i \(0.594696\pi\)
\(620\) 11.1215 0.446649
\(621\) 5.60649 0.224981
\(622\) 6.63867 0.266186
\(623\) −5.94509 −0.238185
\(624\) 3.66316 0.146644
\(625\) −30.4998 −1.21999
\(626\) 0.407769 0.0162977
\(627\) 0 0
\(628\) −33.1595 −1.32321
\(629\) −4.37806 −0.174565
\(630\) 2.42965 0.0967995
\(631\) −10.1596 −0.404447 −0.202224 0.979339i \(-0.564817\pi\)
−0.202224 + 0.979339i \(0.564817\pi\)
\(632\) 7.94696 0.316113
\(633\) −11.5692 −0.459833
\(634\) 7.84253 0.311467
\(635\) 31.5912 1.25366
\(636\) 10.6120 0.420792
\(637\) 8.70106 0.344748
\(638\) 0 0
\(639\) −11.5809 −0.458133
\(640\) 18.2548 0.721585
\(641\) −28.7390 −1.13512 −0.567561 0.823332i \(-0.692113\pi\)
−0.567561 + 0.823332i \(0.692113\pi\)
\(642\) −4.58037 −0.180773
\(643\) 20.2176 0.797305 0.398652 0.917102i \(-0.369478\pi\)
0.398652 + 0.917102i \(0.369478\pi\)
\(644\) 43.1718 1.70121
\(645\) 17.3425 0.682861
\(646\) 3.30327 0.129966
\(647\) 46.7968 1.83977 0.919886 0.392187i \(-0.128281\pi\)
0.919886 + 0.392187i \(0.128281\pi\)
\(648\) −0.938770 −0.0368784
\(649\) 0 0
\(650\) 0.388960 0.0152563
\(651\) −8.80439 −0.345071
\(652\) 28.7196 1.12474
\(653\) 15.7046 0.614568 0.307284 0.951618i \(-0.400580\pi\)
0.307284 + 0.951618i \(0.400580\pi\)
\(654\) −2.62332 −0.102580
\(655\) −34.6136 −1.35247
\(656\) −22.9751 −0.897028
\(657\) −11.2362 −0.438364
\(658\) −9.26460 −0.361172
\(659\) −23.0124 −0.896436 −0.448218 0.893924i \(-0.647941\pi\)
−0.448218 + 0.893924i \(0.647941\pi\)
\(660\) 0 0
\(661\) −35.2126 −1.36961 −0.684806 0.728726i \(-0.740113\pi\)
−0.684806 + 0.728726i \(0.740113\pi\)
\(662\) −1.71023 −0.0664701
\(663\) 2.41792 0.0939042
\(664\) −13.1582 −0.510639
\(665\) 58.5670 2.27113
\(666\) −0.431059 −0.0167032
\(667\) −7.56074 −0.292753
\(668\) 37.2832 1.44253
\(669\) 10.9915 0.424955
\(670\) 1.57929 0.0610132
\(671\) 0 0
\(672\) −10.8952 −0.420292
\(673\) 26.9620 1.03931 0.519655 0.854376i \(-0.326060\pi\)
0.519655 + 0.854376i \(0.326060\pi\)
\(674\) −2.09331 −0.0806311
\(675\) 1.63384 0.0628864
\(676\) −1.94332 −0.0747433
\(677\) −25.0237 −0.961738 −0.480869 0.876792i \(-0.659679\pi\)
−0.480869 + 0.876792i \(0.659679\pi\)
\(678\) −1.86034 −0.0714460
\(679\) −49.7429 −1.90896
\(680\) 5.84633 0.224197
\(681\) −26.6099 −1.01969
\(682\) 0 0
\(683\) −41.9106 −1.60367 −0.801833 0.597548i \(-0.796142\pi\)
−0.801833 + 0.597548i \(0.796142\pi\)
\(684\) −11.1520 −0.426406
\(685\) 31.4424 1.20135
\(686\) −1.60465 −0.0612658
\(687\) −3.98619 −0.152083
\(688\) −24.6653 −0.940354
\(689\) −5.46074 −0.208037
\(690\) −3.43771 −0.130872
\(691\) 25.3836 0.965636 0.482818 0.875721i \(-0.339613\pi\)
0.482818 + 0.875721i \(0.339613\pi\)
\(692\) −21.0248 −0.799241
\(693\) 0 0
\(694\) 4.56404 0.173248
\(695\) 39.8406 1.51124
\(696\) 1.26600 0.0479875
\(697\) −15.1651 −0.574417
\(698\) 4.08279 0.154536
\(699\) −2.07106 −0.0783346
\(700\) 12.5811 0.475521
\(701\) 46.2825 1.74807 0.874034 0.485865i \(-0.161495\pi\)
0.874034 + 0.485865i \(0.161495\pi\)
\(702\) 0.238066 0.00898521
\(703\) −10.3907 −0.391894
\(704\) 0 0
\(705\) −25.2958 −0.952693
\(706\) −5.79664 −0.218160
\(707\) −36.5160 −1.37333
\(708\) 15.7933 0.593550
\(709\) −44.1487 −1.65804 −0.829020 0.559220i \(-0.811101\pi\)
−0.829020 + 0.559220i \(0.811101\pi\)
\(710\) 7.10103 0.266497
\(711\) −8.46529 −0.317473
\(712\) −1.40849 −0.0527853
\(713\) 12.4573 0.466531
\(714\) −2.28088 −0.0853599
\(715\) 0 0
\(716\) 8.93968 0.334091
\(717\) −10.4860 −0.391605
\(718\) −3.38581 −0.126357
\(719\) −9.25157 −0.345026 −0.172513 0.985007i \(-0.555189\pi\)
−0.172513 + 0.985007i \(0.555189\pi\)
\(720\) −9.43492 −0.351619
\(721\) −49.2789 −1.83524
\(722\) 3.31662 0.123432
\(723\) 1.27230 0.0473172
\(724\) −22.6820 −0.842969
\(725\) −2.20334 −0.0818301
\(726\) 0 0
\(727\) −33.2301 −1.23244 −0.616218 0.787575i \(-0.711336\pi\)
−0.616218 + 0.787575i \(0.711336\pi\)
\(728\) 3.71984 0.137866
\(729\) 1.00000 0.0370370
\(730\) 6.88965 0.254997
\(731\) −16.2806 −0.602161
\(732\) −19.3006 −0.713369
\(733\) −26.2204 −0.968474 −0.484237 0.874937i \(-0.660903\pi\)
−0.484237 + 0.874937i \(0.660903\pi\)
\(734\) −7.41128 −0.273555
\(735\) −22.4106 −0.826629
\(736\) 15.4157 0.568229
\(737\) 0 0
\(738\) −1.49313 −0.0549630
\(739\) 14.1542 0.520672 0.260336 0.965518i \(-0.416167\pi\)
0.260336 + 0.965518i \(0.416167\pi\)
\(740\) −9.06291 −0.333159
\(741\) 5.73860 0.210813
\(742\) 5.15125 0.189108
\(743\) 6.63959 0.243583 0.121792 0.992556i \(-0.461136\pi\)
0.121792 + 0.992556i \(0.461136\pi\)
\(744\) −2.08590 −0.0764729
\(745\) 21.0324 0.770568
\(746\) 5.00713 0.183324
\(747\) 14.0165 0.512836
\(748\) 0 0
\(749\) 76.2375 2.78566
\(750\) 2.06402 0.0753674
\(751\) −26.8488 −0.979726 −0.489863 0.871799i \(-0.662953\pi\)
−0.489863 + 0.871799i \(0.662953\pi\)
\(752\) 35.9767 1.31194
\(753\) −7.14073 −0.260223
\(754\) −0.321048 −0.0116919
\(755\) 3.43343 0.124955
\(756\) 7.70034 0.280059
\(757\) 11.9856 0.435624 0.217812 0.975991i \(-0.430108\pi\)
0.217812 + 0.975991i \(0.430108\pi\)
\(758\) 0.0961330 0.00349171
\(759\) 0 0
\(760\) 13.8755 0.503316
\(761\) 13.6453 0.494641 0.247320 0.968934i \(-0.420450\pi\)
0.247320 + 0.968934i \(0.420450\pi\)
\(762\) −2.91998 −0.105780
\(763\) 43.6635 1.58072
\(764\) −17.6980 −0.640291
\(765\) −6.22765 −0.225161
\(766\) 2.03375 0.0734824
\(767\) −8.12697 −0.293448
\(768\) 11.6562 0.420606
\(769\) −9.26305 −0.334034 −0.167017 0.985954i \(-0.553414\pi\)
−0.167017 + 0.985954i \(0.553414\pi\)
\(770\) 0 0
\(771\) 6.96873 0.250973
\(772\) 4.47310 0.160990
\(773\) −30.8916 −1.11109 −0.555546 0.831486i \(-0.687491\pi\)
−0.555546 + 0.831486i \(0.687491\pi\)
\(774\) −1.60297 −0.0576177
\(775\) 3.63030 0.130404
\(776\) −11.7849 −0.423053
\(777\) 7.17471 0.257391
\(778\) −1.49957 −0.0537621
\(779\) −35.9922 −1.28955
\(780\) 5.00527 0.179218
\(781\) 0 0
\(782\) 3.22722 0.115405
\(783\) −1.34857 −0.0481940
\(784\) 31.8734 1.13833
\(785\) −43.9486 −1.56859
\(786\) 3.19935 0.114117
\(787\) −44.7373 −1.59471 −0.797356 0.603510i \(-0.793769\pi\)
−0.797356 + 0.603510i \(0.793769\pi\)
\(788\) −35.8103 −1.27569
\(789\) 6.59552 0.234807
\(790\) 5.19064 0.184675
\(791\) 30.9642 1.10096
\(792\) 0 0
\(793\) 9.93172 0.352686
\(794\) −3.69699 −0.131201
\(795\) 14.0648 0.498827
\(796\) −45.3375 −1.60695
\(797\) 14.6912 0.520390 0.260195 0.965556i \(-0.416213\pi\)
0.260195 + 0.965556i \(0.416213\pi\)
\(798\) −5.41336 −0.191631
\(799\) 23.7469 0.840105
\(800\) 4.49242 0.158831
\(801\) 1.50035 0.0530124
\(802\) 0.761257 0.0268809
\(803\) 0 0
\(804\) 5.00527 0.176522
\(805\) 57.2186 2.01669
\(806\) 0.528970 0.0186322
\(807\) 1.50492 0.0529756
\(808\) −8.65123 −0.304349
\(809\) −30.2159 −1.06233 −0.531167 0.847267i \(-0.678246\pi\)
−0.531167 + 0.847267i \(0.678246\pi\)
\(810\) −0.613168 −0.0215445
\(811\) −20.5495 −0.721589 −0.360794 0.932645i \(-0.617494\pi\)
−0.360794 + 0.932645i \(0.617494\pi\)
\(812\) −10.3844 −0.364423
\(813\) −18.6849 −0.655310
\(814\) 0 0
\(815\) 38.0640 1.33333
\(816\) 8.85722 0.310065
\(817\) −38.6399 −1.35184
\(818\) −0.427750 −0.0149559
\(819\) −3.96246 −0.138459
\(820\) −31.3928 −1.09628
\(821\) 30.1178 1.05112 0.525560 0.850756i \(-0.323856\pi\)
0.525560 + 0.850756i \(0.323856\pi\)
\(822\) −2.90623 −0.101367
\(823\) 4.58345 0.159769 0.0798845 0.996804i \(-0.474545\pi\)
0.0798845 + 0.996804i \(0.474545\pi\)
\(824\) −11.6750 −0.406717
\(825\) 0 0
\(826\) 7.66637 0.266747
\(827\) 10.0800 0.350514 0.175257 0.984523i \(-0.443924\pi\)
0.175257 + 0.984523i \(0.443924\pi\)
\(828\) −10.8952 −0.378635
\(829\) −3.55302 −0.123402 −0.0617008 0.998095i \(-0.519652\pi\)
−0.0617008 + 0.998095i \(0.519652\pi\)
\(830\) −8.59444 −0.298317
\(831\) −32.5192 −1.12808
\(832\) −6.67173 −0.231301
\(833\) 21.0384 0.728939
\(834\) −3.68248 −0.127514
\(835\) 49.4140 1.71004
\(836\) 0 0
\(837\) 2.22195 0.0768019
\(838\) −6.28675 −0.217172
\(839\) 14.6898 0.507149 0.253575 0.967316i \(-0.418394\pi\)
0.253575 + 0.967316i \(0.418394\pi\)
\(840\) −9.58090 −0.330572
\(841\) −27.1814 −0.937288
\(842\) −7.40626 −0.255237
\(843\) −19.7127 −0.678940
\(844\) 22.4826 0.773885
\(845\) −2.57562 −0.0886041
\(846\) 2.33809 0.0803854
\(847\) 0 0
\(848\) −20.0036 −0.686925
\(849\) −31.0570 −1.06587
\(850\) 0.940474 0.0322580
\(851\) −10.1515 −0.347989
\(852\) 22.5054 0.771024
\(853\) 17.0215 0.582804 0.291402 0.956601i \(-0.405878\pi\)
0.291402 + 0.956601i \(0.405878\pi\)
\(854\) −9.36884 −0.320595
\(855\) −14.7805 −0.505482
\(856\) 18.0619 0.617343
\(857\) 27.3037 0.932676 0.466338 0.884607i \(-0.345573\pi\)
0.466338 + 0.884607i \(0.345573\pi\)
\(858\) 0 0
\(859\) 30.8050 1.05105 0.525527 0.850777i \(-0.323868\pi\)
0.525527 + 0.850777i \(0.323868\pi\)
\(860\) −33.7021 −1.14923
\(861\) 24.8523 0.846964
\(862\) 4.65572 0.158574
\(863\) −14.6190 −0.497636 −0.248818 0.968550i \(-0.580042\pi\)
−0.248818 + 0.968550i \(0.580042\pi\)
\(864\) 2.74961 0.0935437
\(865\) −27.8656 −0.947458
\(866\) −2.78980 −0.0948011
\(867\) −11.1537 −0.378798
\(868\) 17.1098 0.580744
\(869\) 0 0
\(870\) 0.826899 0.0280345
\(871\) −2.57562 −0.0872717
\(872\) 10.3446 0.350312
\(873\) 12.5535 0.424873
\(874\) 7.65938 0.259082
\(875\) −34.3544 −1.16139
\(876\) 21.8355 0.737754
\(877\) −0.259385 −0.00875879 −0.00437940 0.999990i \(-0.501394\pi\)
−0.00437940 + 0.999990i \(0.501394\pi\)
\(878\) 3.81665 0.128806
\(879\) 1.33899 0.0451632
\(880\) 0 0
\(881\) −7.65546 −0.257919 −0.128959 0.991650i \(-0.541164\pi\)
−0.128959 + 0.991650i \(0.541164\pi\)
\(882\) 2.07142 0.0697484
\(883\) 7.81748 0.263079 0.131540 0.991311i \(-0.458008\pi\)
0.131540 + 0.991311i \(0.458008\pi\)
\(884\) −4.69880 −0.158038
\(885\) 20.9320 0.703622
\(886\) 7.59541 0.255173
\(887\) −47.2910 −1.58788 −0.793938 0.607999i \(-0.791972\pi\)
−0.793938 + 0.607999i \(0.791972\pi\)
\(888\) 1.69981 0.0570417
\(889\) 48.6013 1.63003
\(890\) −0.919968 −0.0308374
\(891\) 0 0
\(892\) −21.3600 −0.715185
\(893\) 56.3600 1.88602
\(894\) −1.94403 −0.0650182
\(895\) 11.8484 0.396048
\(896\) 28.0841 0.938222
\(897\) 5.60649 0.187195
\(898\) −2.65109 −0.0884679
\(899\) −2.99646 −0.0999375
\(900\) −3.17507 −0.105836
\(901\) −13.2036 −0.439876
\(902\) 0 0
\(903\) 26.6805 0.887872
\(904\) 7.33593 0.243990
\(905\) −30.0620 −0.999294
\(906\) −0.317353 −0.0105433
\(907\) 29.6393 0.984158 0.492079 0.870551i \(-0.336237\pi\)
0.492079 + 0.870551i \(0.336237\pi\)
\(908\) 51.7116 1.71611
\(909\) 9.21549 0.305659
\(910\) 2.42965 0.0805421
\(911\) −1.48572 −0.0492241 −0.0246120 0.999697i \(-0.507835\pi\)
−0.0246120 + 0.999697i \(0.507835\pi\)
\(912\) 21.0214 0.696089
\(913\) 0 0
\(914\) −5.85298 −0.193600
\(915\) −25.5804 −0.845661
\(916\) 7.74647 0.255951
\(917\) −53.2512 −1.75851
\(918\) 0.575623 0.0189984
\(919\) −22.3108 −0.735966 −0.367983 0.929833i \(-0.619952\pi\)
−0.367983 + 0.929833i \(0.619952\pi\)
\(920\) 13.5560 0.446929
\(921\) −26.8143 −0.883562
\(922\) −6.78437 −0.223431
\(923\) −11.5809 −0.381190
\(924\) 0 0
\(925\) −2.95834 −0.0972697
\(926\) 9.46007 0.310877
\(927\) 12.4365 0.408467
\(928\) −3.70805 −0.121723
\(929\) −31.0951 −1.02020 −0.510098 0.860116i \(-0.670391\pi\)
−0.510098 + 0.860116i \(0.670391\pi\)
\(930\) −1.36243 −0.0446758
\(931\) 49.9319 1.63645
\(932\) 4.02474 0.131835
\(933\) 27.8859 0.912942
\(934\) 7.13500 0.233464
\(935\) 0 0
\(936\) −0.938770 −0.0306847
\(937\) −1.99119 −0.0650493 −0.0325247 0.999471i \(-0.510355\pi\)
−0.0325247 + 0.999471i \(0.510355\pi\)
\(938\) 2.42965 0.0793309
\(939\) 1.71284 0.0558964
\(940\) 49.1579 1.60335
\(941\) −25.1503 −0.819876 −0.409938 0.912113i \(-0.634450\pi\)
−0.409938 + 0.912113i \(0.634450\pi\)
\(942\) 4.06219 0.132353
\(943\) −35.1636 −1.14508
\(944\) −29.7704 −0.968944
\(945\) 10.2058 0.331995
\(946\) 0 0
\(947\) 39.5801 1.28618 0.643090 0.765791i \(-0.277652\pi\)
0.643090 + 0.765791i \(0.277652\pi\)
\(948\) 16.4508 0.534297
\(949\) −11.2362 −0.364741
\(950\) 2.23209 0.0724185
\(951\) 32.9427 1.06824
\(952\) 8.99426 0.291506
\(953\) 12.0479 0.390268 0.195134 0.980777i \(-0.437486\pi\)
0.195134 + 0.980777i \(0.437486\pi\)
\(954\) −1.30001 −0.0420895
\(955\) −23.4564 −0.759030
\(956\) 20.3776 0.659059
\(957\) 0 0
\(958\) 1.37569 0.0444465
\(959\) 48.3725 1.56203
\(960\) 17.1839 0.554607
\(961\) −26.0629 −0.840740
\(962\) −0.431059 −0.0138979
\(963\) −19.2400 −0.619999
\(964\) −2.47249 −0.0796334
\(965\) 5.92851 0.190845
\(966\) −5.28874 −0.170162
\(967\) 27.7373 0.891972 0.445986 0.895040i \(-0.352853\pi\)
0.445986 + 0.895040i \(0.352853\pi\)
\(968\) 0 0
\(969\) 13.8755 0.445744
\(970\) −7.69743 −0.247149
\(971\) 46.9084 1.50536 0.752681 0.658385i \(-0.228760\pi\)
0.752681 + 0.658385i \(0.228760\pi\)
\(972\) −1.94332 −0.0623322
\(973\) 61.2925 1.96495
\(974\) −6.43165 −0.206083
\(975\) 1.63384 0.0523246
\(976\) 36.3815 1.16454
\(977\) 11.7035 0.374428 0.187214 0.982319i \(-0.440054\pi\)
0.187214 + 0.982319i \(0.440054\pi\)
\(978\) −3.51827 −0.112502
\(979\) 0 0
\(980\) 43.5512 1.39119
\(981\) −11.0193 −0.351819
\(982\) 4.47133 0.142686
\(983\) 10.1992 0.325305 0.162653 0.986683i \(-0.447995\pi\)
0.162653 + 0.986683i \(0.447995\pi\)
\(984\) 5.88792 0.187700
\(985\) −47.4619 −1.51226
\(986\) −0.776269 −0.0247214
\(987\) −38.9161 −1.23871
\(988\) −11.1520 −0.354791
\(989\) −37.7503 −1.20039
\(990\) 0 0
\(991\) −55.4946 −1.76284 −0.881422 0.472330i \(-0.843413\pi\)
−0.881422 + 0.472330i \(0.843413\pi\)
\(992\) 6.10951 0.193977
\(993\) −7.18387 −0.227973
\(994\) 10.9245 0.346506
\(995\) −60.0890 −1.90495
\(996\) −27.2385 −0.863086
\(997\) 31.8411 1.00842 0.504208 0.863582i \(-0.331784\pi\)
0.504208 + 0.863582i \(0.331784\pi\)
\(998\) −2.15618 −0.0682527
\(999\) −1.81067 −0.0572871
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4719.2.a.bc.1.3 5
11.10 odd 2 4719.2.a.be.1.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4719.2.a.bc.1.3 5 1.1 even 1 trivial
4719.2.a.be.1.3 yes 5 11.10 odd 2