Properties

Label 47.4.a.b
Level $47$
Weight $4$
Character orbit 47.a
Self dual yes
Analytic conductor $2.773$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [47,4,Mod(1,47)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("47.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(47, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 47 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 47.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.77308977027\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 50x^{6} + 124x^{5} + 844x^{4} - 1549x^{3} - 5393x^{2} + 5418x + 10316 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{5} + 1) q^{3} + ( - \beta_{3} + \beta_{2} + 5) q^{4} + ( - \beta_{7} + \beta_{4} + \beta_{3} + \cdots + 2) q^{5} + (2 \beta_{7} - \beta_{6} - 3 \beta_{5} + \cdots + 2) q^{6}+ \cdots + ( - 69 \beta_{7} + 102 \beta_{6} + \cdots - 546) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} + 7 q^{3} + 45 q^{4} + 14 q^{5} + 16 q^{6} + 39 q^{7} + 57 q^{8} + 93 q^{9} + 60 q^{10} + 68 q^{11} - 19 q^{12} + 112 q^{13} - 277 q^{14} - 126 q^{15} - 87 q^{16} - 7 q^{17} - 474 q^{18} + 74 q^{19}+ \cdots - 3816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} - 50x^{6} + 124x^{5} + 844x^{4} - 1549x^{3} - 5393x^{2} + 5418x + 10316 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 457 \nu^{7} - 14084 \nu^{6} + 27766 \nu^{5} + 629470 \nu^{4} - 346298 \nu^{3} - 7251681 \nu^{2} + \cdots + 12792628 ) / 1179168 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 457 \nu^{7} - 14084 \nu^{6} + 27766 \nu^{5} + 629470 \nu^{4} - 346298 \nu^{3} - 8430849 \nu^{2} + \cdots + 28121812 ) / 1179168 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 281 \nu^{7} - 1876 \nu^{6} - 8902 \nu^{5} + 52882 \nu^{4} + 151866 \nu^{3} - 345919 \nu^{2} + \cdots + 89372 ) / 196528 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2575 \nu^{7} - 11596 \nu^{6} - 73882 \nu^{5} + 371294 \nu^{4} + 341174 \nu^{3} - 3349641 \nu^{2} + \cdots + 8061140 ) / 589584 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3305 \nu^{7} - 4580 \nu^{6} - 154358 \nu^{5} + 120514 \nu^{4} + 2188330 \nu^{3} - 282063 \nu^{2} + \cdots - 4690820 ) / 589584 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 8845 \nu^{7} + 4244 \nu^{6} - 377422 \nu^{5} - 280438 \nu^{4} + 4762082 \nu^{3} + 4139301 \nu^{2} + \cdots - 15378628 ) / 1179168 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - \beta_{6} - \beta_{5} + 2\beta_{4} + \beta_{2} + 19\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{7} - 4\beta_{6} - 2\beta_{5} - 2\beta_{4} - 21\beta_{3} + 30\beta_{2} + 6\beta _1 + 237 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 40\beta_{7} - 50\beta_{6} - 21\beta_{5} + 59\beta_{4} - 17\beta_{3} + 49\beta_{2} + 381\beta _1 + 258 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 234\beta_{7} - 200\beta_{6} - 94\beta_{5} - 68\beta_{4} - 434\beta_{3} + 760\beta_{2} + 295\beta _1 + 4882 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 1348\beta_{7} - 1626\beta_{6} - 376\beta_{5} + 1410\beta_{4} - 715\beta_{3} + 1671\beta_{2} + 8074\beta _1 + 8067 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.48227
−4.06926
−2.61832
−1.20418
2.18922
3.53023
4.52397
5.13061
−4.48227 −4.64999 12.0908 −18.6550 20.8425 30.6370 −18.3360 −5.37761 83.6168
1.2 −4.06926 9.82442 8.55884 −3.81656 −39.9781 4.03804 −2.27405 69.5192 15.5305
1.3 −2.61832 −8.85615 −1.14438 13.5187 23.1883 2.58900 23.9430 51.4314 −35.3964
1.4 −1.20418 2.76301 −6.54994 15.5673 −3.32718 21.2611 17.5208 −19.3658 −18.7459
1.5 2.18922 8.24989 −3.20731 4.71272 18.0608 −18.6902 −24.5353 41.0606 10.3172
1.6 3.53023 2.59326 4.46255 −1.86920 9.15480 31.0883 −12.4880 −20.2750 −6.59871
1.7 4.52397 −5.04907 12.4663 19.8253 −22.8418 −6.74296 20.2056 −1.50693 89.6893
1.8 5.13061 2.12464 18.3231 −15.2833 10.9007 −25.1804 52.9639 −22.4859 −78.4128
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(47\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 47.4.a.b 8
3.b odd 2 1 423.4.a.g 8
4.b odd 2 1 752.4.a.i 8
5.b even 2 1 1175.4.a.b 8
7.b odd 2 1 2303.4.a.b 8
47.b odd 2 1 2209.4.a.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
47.4.a.b 8 1.a even 1 1 trivial
423.4.a.g 8 3.b odd 2 1
752.4.a.i 8 4.b odd 2 1
1175.4.a.b 8 5.b even 2 1
2209.4.a.f 8 47.b odd 2 1
2303.4.a.b 8 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 3T_{2}^{7} - 50T_{2}^{6} + 124T_{2}^{5} + 844T_{2}^{4} - 1549T_{2}^{3} - 5393T_{2}^{2} + 5418T_{2} + 10316 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(47))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 3 T^{7} + \cdots + 10316 \) Copy content Toggle raw display
$3$ \( T^{8} - 7 T^{7} + \cdots - 256552 \) Copy content Toggle raw display
$5$ \( T^{8} - 14 T^{7} + \cdots + 39992832 \) Copy content Toggle raw display
$7$ \( T^{8} - 39 T^{7} + \cdots - 671832924 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots - 13840895616 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots - 1112419583616 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 48362680514304 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 25\!\cdots\!72 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots - 320479281547776 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 31\!\cdots\!72 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 15\!\cdots\!32 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 91\!\cdots\!28 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 44\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( (T + 47)^{8} \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots - 12\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 18\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots - 28\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 19\!\cdots\!88 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 30\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 23\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 58\!\cdots\!52 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 26\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 93\!\cdots\!88 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 79\!\cdots\!12 \) Copy content Toggle raw display
show more
show less