Newspace parameters
| Level: | \( N \) | \(=\) | \( 47 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 47.c (of order \(23\), degree \(22\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(0.375296889500\) |
| Analytic rank: | \(0\) |
| Dimension: | \(66\) |
| Relative dimension: | \(3\) over \(\Q(\zeta_{23})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{23}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2.1 | −2.59831 | − | 0.357129i | −0.832772 | + | 0.506420i | 4.69783 | + | 1.31627i | 1.18390 | + | 3.33118i | 2.34465 | − | 1.01843i | 0.00809392 | − | 0.118329i | −6.92511 | − | 3.00800i | −0.943147 | + | 1.82019i | −1.88648 | − | 9.07824i |
| 2.2 | −0.695664 | − | 0.0956168i | 1.82754 | − | 1.11135i | −1.45103 | − | 0.406559i | 0.245360 | + | 0.690377i | −1.37762 | + | 0.598383i | −0.0288100 | + | 0.421187i | 2.25869 | + | 0.981089i | 0.724598 | − | 1.39841i | −0.104677 | − | 0.503731i |
| 2.3 | 1.33105 | + | 0.182949i | −0.887464 | + | 0.539679i | −0.187599 | − | 0.0525628i | −0.103404 | − | 0.290951i | −1.28000 | + | 0.555981i | 0.104560 | − | 1.52862i | −2.70476 | − | 1.17484i | −0.883856 | + | 1.70576i | −0.0844071 | − | 0.406189i |
| 3.1 | −2.08955 | + | 1.27068i | 1.69211 | − | 2.39717i | 1.83145 | − | 3.53455i | 0.399150 | + | 1.92081i | −0.489699 | + | 7.15914i | 0.396775 | − | 0.111171i | 0.330590 | + | 4.83305i | −1.87856 | − | 5.28576i | −3.27479 | − | 3.50645i |
| 3.2 | −0.966383 | + | 0.587670i | −0.921199 | + | 1.30504i | −0.331591 | + | 0.639941i | 0.186227 | + | 0.896176i | 0.123296 | − | 1.80253i | 2.11146 | − | 0.591604i | −0.210001 | − | 3.07010i | 0.150113 | + | 0.422379i | −0.706623 | − | 0.756608i |
| 3.3 | 1.59587 | − | 0.970469i | −1.51474 | + | 2.14590i | 0.684855 | − | 1.32171i | −0.704153 | − | 3.38857i | −0.334798 | + | 4.89457i | −2.45476 | + | 0.687792i | 0.0651834 | + | 0.952947i | −1.30580 | − | 3.67416i | −4.41224 | − | 4.72435i |
| 4.1 | −1.46574 | − | 0.410682i | 0.343609 | − | 0.663135i | 0.270905 | + | 0.164741i | 2.97152 | − | 2.41751i | −0.775980 | + | 0.830872i | −3.61730 | − | 0.497186i | 1.74853 | + | 1.87222i | 1.40836 | + | 1.99519i | −5.34832 | + | 2.32310i |
| 4.2 | −1.38906 | − | 0.389195i | −1.46968 | + | 2.83636i | 0.0691651 | + | 0.0420602i | −1.63627 | + | 1.33120i | 3.14537 | − | 3.36787i | 2.46168 | + | 0.338350i | 1.88953 | + | 2.02319i | −4.15493 | − | 5.88620i | 2.79097 | − | 1.21229i |
| 4.3 | 1.00038 | + | 0.280293i | 0.0747175 | − | 0.144198i | −0.786643 | − | 0.478368i | −1.16821 | + | 0.950406i | 0.115164 | − | 0.123310i | −0.942512 | − | 0.129545i | −2.07107 | − | 2.21758i | 1.71483 | + | 2.42936i | −1.43504 | + | 0.623327i |
| 6.1 | −1.94127 | + | 0.843214i | −0.0788221 | + | 1.15234i | 1.69243 | − | 1.81215i | −3.12146 | + | 1.89820i | −0.818653 | − | 2.30347i | 0.453878 | + | 2.18418i | −0.339896 | + | 0.956375i | 1.65039 | + | 0.226840i | 4.45902 | − | 6.31699i |
| 6.2 | −0.210933 | + | 0.0916210i | −0.129273 | + | 1.88991i | −1.32901 | + | 1.42302i | 2.07900 | − | 1.26427i | −0.145887 | − | 0.410487i | −0.778015 | − | 3.74401i | 0.303978 | − | 0.855313i | −0.582977 | − | 0.0801283i | −0.322695 | + | 0.457155i |
| 6.3 | 0.469654 | − | 0.203999i | 0.153075 | − | 2.23788i | −1.18615 | + | 1.27005i | −0.316902 | + | 0.192713i | −0.384634 | − | 1.08226i | 0.556995 | + | 2.68041i | −0.640935 | + | 1.80342i | −2.01262 | − | 0.276628i | −0.109521 | + | 0.155156i |
| 7.1 | −0.166930 | + | 2.44043i | 0.317531 | − | 0.0889680i | −3.94645 | − | 0.542427i | 1.04338 | − | 1.47813i | 0.164115 | + | 0.789763i | −0.892148 | − | 0.955258i | 0.987175 | − | 4.75055i | −2.47035 | + | 1.50225i | 3.43311 | + | 2.79304i |
| 7.2 | −4.24620e−5 | 0 | 0.000620773i | −0.680374 | + | 0.190632i | 1.98137 | + | 0.272333i | −0.130589 | + | 0.185003i | −8.94490e−5 | 0 | 0.000430452i | −1.88596 | − | 2.01937i | −0.000506380 | 0.00243684i | −2.13669 | + | 1.29935i | −0.000109300 | 0 | 8.89220e-5i | |
| 7.3 | 0.157658 | − | 2.30488i | −1.88340 | + | 0.527704i | −3.30625 | − | 0.454434i | 1.67149 | − | 2.36797i | 0.919361 | + | 4.42421i | 3.09844 | + | 3.31762i | −0.628599 | + | 3.02498i | 0.705464 | − | 0.429002i | −5.19436 | − | 4.22592i |
| 8.1 | −1.94127 | − | 0.843214i | −0.0788221 | − | 1.15234i | 1.69243 | + | 1.81215i | −3.12146 | − | 1.89820i | −0.818653 | + | 2.30347i | 0.453878 | − | 2.18418i | −0.339896 | − | 0.956375i | 1.65039 | − | 0.226840i | 4.45902 | + | 6.31699i |
| 8.2 | −0.210933 | − | 0.0916210i | −0.129273 | − | 1.88991i | −1.32901 | − | 1.42302i | 2.07900 | + | 1.26427i | −0.145887 | + | 0.410487i | −0.778015 | + | 3.74401i | 0.303978 | + | 0.855313i | −0.582977 | + | 0.0801283i | −0.322695 | − | 0.457155i |
| 8.3 | 0.469654 | + | 0.203999i | 0.153075 | + | 2.23788i | −1.18615 | − | 1.27005i | −0.316902 | − | 0.192713i | −0.384634 | + | 1.08226i | 0.556995 | − | 2.68041i | −0.640935 | − | 1.80342i | −2.01262 | + | 0.276628i | −0.109521 | − | 0.155156i |
| 9.1 | −0.910119 | + | 1.75645i | 0.226030 | + | 0.635987i | −1.10344 | − | 1.56321i | −0.813179 | + | 0.353213i | −1.32279 | − | 0.181814i | 0.694533 | − | 0.422355i | −0.169663 | + | 0.0233196i | 1.97374 | − | 1.60576i | 0.119688 | − | 1.74977i |
| 9.2 | −0.210869 | + | 0.406959i | −1.04014 | − | 2.92667i | 1.03221 | + | 1.46231i | 2.03255 | − | 0.882862i | 1.41037 | + | 0.193851i | −2.61080 | + | 1.58766i | −1.72092 | + | 0.236535i | −5.15637 | + | 4.19502i | −0.0693139 | + | 1.01333i |
| See all 66 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 47.c | even | 23 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 47.2.c.a | ✓ | 66 |
| 3.b | odd | 2 | 1 | 423.2.i.a | 66 | ||
| 4.b | odd | 2 | 1 | 752.2.m.c | 66 | ||
| 47.c | even | 23 | 1 | inner | 47.2.c.a | ✓ | 66 |
| 47.c | even | 23 | 1 | 2209.2.a.l | 33 | ||
| 47.d | odd | 46 | 1 | 2209.2.a.m | 33 | ||
| 141.h | odd | 46 | 1 | 423.2.i.a | 66 | ||
| 188.g | odd | 46 | 1 | 752.2.m.c | 66 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 47.2.c.a | ✓ | 66 | 1.a | even | 1 | 1 | trivial |
| 47.2.c.a | ✓ | 66 | 47.c | even | 23 | 1 | inner |
| 423.2.i.a | 66 | 3.b | odd | 2 | 1 | ||
| 423.2.i.a | 66 | 141.h | odd | 46 | 1 | ||
| 752.2.m.c | 66 | 4.b | odd | 2 | 1 | ||
| 752.2.m.c | 66 | 188.g | odd | 46 | 1 | ||
| 2209.2.a.l | 33 | 47.c | even | 23 | 1 | ||
| 2209.2.a.m | 33 | 47.d | odd | 46 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(47, [\chi])\).