Properties

Label 4680.2.g.h.2521.4
Level $4680$
Weight $2$
Character 4680.2521
Analytic conductor $37.370$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4680,2,Mod(2521,4680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4680.2521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4680.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.3699881460\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1560)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2521.4
Root \(2.70156i\) of defining polynomial
Character \(\chi\) \(=\) 4680.2521
Dual form 4680.2.g.h.2521.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +1.70156i q^{7} +3.70156i q^{11} +(2.00000 + 3.00000i) q^{13} -0.298438 q^{17} -5.40312i q^{19} +3.70156 q^{23} -1.00000 q^{25} -2.00000 q^{29} +3.40312i q^{31} -1.70156 q^{35} +3.70156i q^{37} +2.29844i q^{41} +11.4031 q^{43} +8.00000i q^{47} +4.10469 q^{49} -2.29844 q^{53} -3.70156 q^{55} +13.4031i q^{59} +0.298438 q^{61} +(-3.00000 + 2.00000i) q^{65} -8.00000i q^{67} +5.70156i q^{71} -12.8062i q^{73} -6.29844 q^{77} -9.70156 q^{79} -3.40312i q^{83} -0.298438i q^{85} -1.70156i q^{89} +(-5.10469 + 3.40312i) q^{91} +5.40312 q^{95} -3.10469i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{13} - 14 q^{17} + 2 q^{23} - 4 q^{25} - 8 q^{29} + 6 q^{35} + 20 q^{43} - 22 q^{49} - 22 q^{53} - 2 q^{55} + 14 q^{61} - 12 q^{65} - 38 q^{77} - 26 q^{79} + 18 q^{91} - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4680\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(2081\) \(2341\) \(3511\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.70156i 0.643130i 0.946888 + 0.321565i \(0.104209\pi\)
−0.946888 + 0.321565i \(0.895791\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.70156i 1.11606i 0.829820 + 0.558031i \(0.188443\pi\)
−0.829820 + 0.558031i \(0.811557\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.00000i 0.554700 + 0.832050i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.298438 −0.0723818 −0.0361909 0.999345i \(-0.511522\pi\)
−0.0361909 + 0.999345i \(0.511522\pi\)
\(18\) 0 0
\(19\) 5.40312i 1.23956i −0.784775 0.619781i \(-0.787221\pi\)
0.784775 0.619781i \(-0.212779\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.70156 0.771829 0.385915 0.922535i \(-0.373886\pi\)
0.385915 + 0.922535i \(0.373886\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 3.40312i 0.611219i 0.952157 + 0.305610i \(0.0988602\pi\)
−0.952157 + 0.305610i \(0.901140\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.70156 −0.287616
\(36\) 0 0
\(37\) 3.70156i 0.608533i 0.952587 + 0.304267i \(0.0984113\pi\)
−0.952587 + 0.304267i \(0.901589\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.29844i 0.358956i 0.983762 + 0.179478i \(0.0574408\pi\)
−0.983762 + 0.179478i \(0.942559\pi\)
\(42\) 0 0
\(43\) 11.4031 1.73896 0.869480 0.493968i \(-0.164454\pi\)
0.869480 + 0.493968i \(0.164454\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 4.10469 0.586384
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.29844 −0.315715 −0.157857 0.987462i \(-0.550459\pi\)
−0.157857 + 0.987462i \(0.550459\pi\)
\(54\) 0 0
\(55\) −3.70156 −0.499119
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 13.4031i 1.74494i 0.488669 + 0.872469i \(0.337482\pi\)
−0.488669 + 0.872469i \(0.662518\pi\)
\(60\) 0 0
\(61\) 0.298438 0.0382111 0.0191055 0.999817i \(-0.493918\pi\)
0.0191055 + 0.999817i \(0.493918\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 + 2.00000i −0.372104 + 0.248069i
\(66\) 0 0
\(67\) 8.00000i 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.70156i 0.676651i 0.941029 + 0.338325i \(0.109860\pi\)
−0.941029 + 0.338325i \(0.890140\pi\)
\(72\) 0 0
\(73\) 12.8062i 1.49886i −0.662085 0.749429i \(-0.730328\pi\)
0.662085 0.749429i \(-0.269672\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.29844 −0.717774
\(78\) 0 0
\(79\) −9.70156 −1.09151 −0.545756 0.837944i \(-0.683757\pi\)
−0.545756 + 0.837944i \(0.683757\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.40312i 0.373541i −0.982404 0.186771i \(-0.940198\pi\)
0.982404 0.186771i \(-0.0598021\pi\)
\(84\) 0 0
\(85\) 0.298438i 0.0323701i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.70156i 0.180365i −0.995925 0.0901826i \(-0.971255\pi\)
0.995925 0.0901826i \(-0.0287451\pi\)
\(90\) 0 0
\(91\) −5.10469 + 3.40312i −0.535117 + 0.356744i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.40312 0.554349
\(96\) 0 0
\(97\) 3.10469i 0.315233i −0.987500 0.157617i \(-0.949619\pi\)
0.987500 0.157617i \(-0.0503810\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16.8062 −1.67228 −0.836142 0.548513i \(-0.815194\pi\)
−0.836142 + 0.548513i \(0.815194\pi\)
\(102\) 0 0
\(103\) 9.40312 0.926517 0.463259 0.886223i \(-0.346680\pi\)
0.463259 + 0.886223i \(0.346680\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.1047 −1.26688 −0.633439 0.773793i \(-0.718357\pi\)
−0.633439 + 0.773793i \(0.718357\pi\)
\(108\) 0 0
\(109\) 6.00000i 0.574696i −0.957826 0.287348i \(-0.907226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 3.70156i 0.345172i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.507811i 0.0465509i
\(120\) 0 0
\(121\) −2.70156 −0.245597
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −16.8062 −1.49131 −0.745657 0.666330i \(-0.767864\pi\)
−0.745657 + 0.666330i \(0.767864\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 9.19375 0.797199
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.8062i 1.43585i 0.696118 + 0.717927i \(0.254909\pi\)
−0.696118 + 0.717927i \(0.745091\pi\)
\(138\) 0 0
\(139\) −9.10469 −0.772249 −0.386125 0.922447i \(-0.626187\pi\)
−0.386125 + 0.922447i \(0.626187\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.1047 + 7.40312i −0.928621 + 0.619080i
\(144\) 0 0
\(145\) 2.00000i 0.166091i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.29844i 0.679835i 0.940455 + 0.339917i \(0.110399\pi\)
−0.940455 + 0.339917i \(0.889601\pi\)
\(150\) 0 0
\(151\) 7.40312i 0.602458i −0.953552 0.301229i \(-0.902603\pi\)
0.953552 0.301229i \(-0.0973968\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.40312 −0.273346
\(156\) 0 0
\(157\) 2.80625 0.223963 0.111982 0.993710i \(-0.464280\pi\)
0.111982 + 0.993710i \(0.464280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.29844i 0.496386i
\(162\) 0 0
\(163\) 13.7016i 1.07319i 0.843840 + 0.536595i \(0.180290\pi\)
−0.843840 + 0.536595i \(0.819710\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −23.4031 −1.77931 −0.889653 0.456637i \(-0.849054\pi\)
−0.889653 + 0.456637i \(0.849054\pi\)
\(174\) 0 0
\(175\) 1.70156i 0.128626i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.8062 1.40565 0.702823 0.711365i \(-0.251923\pi\)
0.702823 + 0.711365i \(0.251923\pi\)
\(180\) 0 0
\(181\) −11.1047 −0.825405 −0.412702 0.910866i \(-0.635415\pi\)
−0.412702 + 0.910866i \(0.635415\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.70156 −0.272144
\(186\) 0 0
\(187\) 1.10469i 0.0807827i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 6.50781i 0.468442i 0.972183 + 0.234221i \(0.0752540\pi\)
−0.972183 + 0.234221i \(0.924746\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.8062i 0.912407i −0.889875 0.456204i \(-0.849209\pi\)
0.889875 0.456204i \(-0.150791\pi\)
\(198\) 0 0
\(199\) 10.8062 0.766035 0.383017 0.923741i \(-0.374885\pi\)
0.383017 + 0.923741i \(0.374885\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.40312i 0.238852i
\(204\) 0 0
\(205\) −2.29844 −0.160530
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.0000 1.38343
\(210\) 0 0
\(211\) 25.6125 1.76324 0.881619 0.471963i \(-0.156454\pi\)
0.881619 + 0.471963i \(0.156454\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.4031i 0.777687i
\(216\) 0 0
\(217\) −5.79063 −0.393093
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.596876 0.895314i −0.0401502 0.0602253i
\(222\) 0 0
\(223\) 24.0000i 1.60716i 0.595198 + 0.803579i \(0.297074\pi\)
−0.595198 + 0.803579i \(0.702926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 14.8062i 0.982725i −0.870955 0.491363i \(-0.836499\pi\)
0.870955 0.491363i \(-0.163501\pi\)
\(228\) 0 0
\(229\) 8.80625i 0.581933i 0.956733 + 0.290967i \(0.0939769\pi\)
−0.956733 + 0.290967i \(0.906023\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.70156 −0.242497 −0.121249 0.992622i \(-0.538690\pi\)
−0.121249 + 0.992622i \(0.538690\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.70156i 0.627542i 0.949499 + 0.313771i \(0.101592\pi\)
−0.949499 + 0.313771i \(0.898408\pi\)
\(240\) 0 0
\(241\) 11.4031i 0.734540i 0.930114 + 0.367270i \(0.119707\pi\)
−0.930114 + 0.367270i \(0.880293\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.10469i 0.262239i
\(246\) 0 0
\(247\) 16.2094 10.8062i 1.03138 0.687585i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.5969 −1.04759 −0.523793 0.851846i \(-0.675483\pi\)
−0.523793 + 0.851846i \(0.675483\pi\)
\(252\) 0 0
\(253\) 13.7016i 0.861410i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.80625 0.299806 0.149903 0.988701i \(-0.452104\pi\)
0.149903 + 0.988701i \(0.452104\pi\)
\(258\) 0 0
\(259\) −6.29844 −0.391366
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.2094 1.24616 0.623082 0.782157i \(-0.285880\pi\)
0.623082 + 0.782157i \(0.285880\pi\)
\(264\) 0 0
\(265\) 2.29844i 0.141192i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.4031 0.817203 0.408601 0.912713i \(-0.366017\pi\)
0.408601 + 0.912713i \(0.366017\pi\)
\(270\) 0 0
\(271\) 15.4031i 0.935673i 0.883815 + 0.467837i \(0.154966\pi\)
−0.883815 + 0.467837i \(0.845034\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.70156i 0.223213i
\(276\) 0 0
\(277\) −14.8062 −0.889621 −0.444811 0.895625i \(-0.646729\pi\)
−0.444811 + 0.895625i \(0.646729\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.59688i 0.274227i −0.990555 0.137113i \(-0.956218\pi\)
0.990555 0.137113i \(-0.0437824\pi\)
\(282\) 0 0
\(283\) 0.596876 0.0354806 0.0177403 0.999843i \(-0.494353\pi\)
0.0177403 + 0.999843i \(0.494353\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.91093 −0.230855
\(288\) 0 0
\(289\) −16.9109 −0.994761
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) −13.4031 −0.780360
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.40312 + 11.1047i 0.428134 + 0.642201i
\(300\) 0 0
\(301\) 19.4031i 1.11838i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.298438i 0.0170885i
\(306\) 0 0
\(307\) 9.10469i 0.519632i −0.965658 0.259816i \(-0.916338\pi\)
0.965658 0.259816i \(-0.0836619\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.40312 0.419793 0.209896 0.977724i \(-0.432687\pi\)
0.209896 + 0.977724i \(0.432687\pi\)
\(312\) 0 0
\(313\) −32.2094 −1.82058 −0.910291 0.413970i \(-0.864142\pi\)
−0.910291 + 0.413970i \(0.864142\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.19375i 0.179379i −0.995970 0.0896895i \(-0.971413\pi\)
0.995970 0.0896895i \(-0.0285875\pi\)
\(318\) 0 0
\(319\) 7.40312i 0.414495i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.61250i 0.0897217i
\(324\) 0 0
\(325\) −2.00000 3.00000i −0.110940 0.166410i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13.6125 −0.750481
\(330\) 0 0
\(331\) 2.59688i 0.142737i 0.997450 + 0.0713686i \(0.0227367\pi\)
−0.997450 + 0.0713686i \(0.977263\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −32.8062 −1.78707 −0.893535 0.448993i \(-0.851783\pi\)
−0.893535 + 0.448993i \(0.851783\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.5969 −0.682159
\(342\) 0 0
\(343\) 18.8953i 1.02025i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.507811 0.0272607 0.0136304 0.999907i \(-0.495661\pi\)
0.0136304 + 0.999907i \(0.495661\pi\)
\(348\) 0 0
\(349\) 16.8062i 0.899618i −0.893125 0.449809i \(-0.851492\pi\)
0.893125 0.449809i \(-0.148508\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.20937i 0.436941i −0.975844 0.218470i \(-0.929893\pi\)
0.975844 0.218470i \(-0.0701067\pi\)
\(354\) 0 0
\(355\) −5.70156 −0.302607
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000i 0.844448i 0.906492 + 0.422224i \(0.138750\pi\)
−0.906492 + 0.422224i \(0.861250\pi\)
\(360\) 0 0
\(361\) −10.1938 −0.536513
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.8062 0.670310
\(366\) 0 0
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.91093i 0.203046i
\(372\) 0 0
\(373\) 17.6125 0.911941 0.455970 0.889995i \(-0.349292\pi\)
0.455970 + 0.889995i \(0.349292\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 6.00000i −0.206010 0.309016i
\(378\) 0 0
\(379\) 20.8062i 1.06875i 0.845249 + 0.534373i \(0.179452\pi\)
−0.845249 + 0.534373i \(0.820548\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.4031i 0.991453i −0.868479 0.495727i \(-0.834902\pi\)
0.868479 0.495727i \(-0.165098\pi\)
\(384\) 0 0
\(385\) 6.29844i 0.320998i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) −1.10469 −0.0558664
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.70156i 0.488139i
\(396\) 0 0
\(397\) 23.7016i 1.18955i 0.803893 + 0.594774i \(0.202758\pi\)
−0.803893 + 0.594774i \(0.797242\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.2094i 0.509832i 0.966963 + 0.254916i \(0.0820478\pi\)
−0.966963 + 0.254916i \(0.917952\pi\)
\(402\) 0 0
\(403\) −10.2094 + 6.80625i −0.508565 + 0.339043i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.7016 −0.679161
\(408\) 0 0
\(409\) 18.8062i 0.929909i −0.885335 0.464955i \(-0.846071\pi\)
0.885335 0.464955i \(-0.153929\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −22.8062 −1.12222
\(414\) 0 0
\(415\) 3.40312 0.167053
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.59688 0.419985 0.209992 0.977703i \(-0.432656\pi\)
0.209992 + 0.977703i \(0.432656\pi\)
\(420\) 0 0
\(421\) 12.8062i 0.624138i −0.950059 0.312069i \(-0.898978\pi\)
0.950059 0.312069i \(-0.101022\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.298438 0.0144764
\(426\) 0 0
\(427\) 0.507811i 0.0245747i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.19375i 0.250174i −0.992146 0.125087i \(-0.960079\pi\)
0.992146 0.125087i \(-0.0399210\pi\)
\(432\) 0 0
\(433\) 27.6125 1.32697 0.663486 0.748189i \(-0.269076\pi\)
0.663486 + 0.748189i \(0.269076\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.0000i 0.956730i
\(438\) 0 0
\(439\) 29.1047 1.38909 0.694545 0.719449i \(-0.255606\pi\)
0.694545 + 0.719449i \(0.255606\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.7016 0.841027 0.420513 0.907286i \(-0.361850\pi\)
0.420513 + 0.907286i \(0.361850\pi\)
\(444\) 0 0
\(445\) 1.70156 0.0806618
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.9109i 1.31720i −0.752494 0.658599i \(-0.771149\pi\)
0.752494 0.658599i \(-0.228851\pi\)
\(450\) 0 0
\(451\) −8.50781 −0.400617
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.40312 5.10469i −0.159541 0.239311i
\(456\) 0 0
\(457\) 35.1047i 1.64213i −0.570836 0.821064i \(-0.693381\pi\)
0.570836 0.821064i \(-0.306619\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.7172i 1.71009i −0.518554 0.855045i \(-0.673529\pi\)
0.518554 0.855045i \(-0.326471\pi\)
\(462\) 0 0
\(463\) 24.5078i 1.13897i 0.822000 + 0.569487i \(0.192858\pi\)
−0.822000 + 0.569487i \(0.807142\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.8953 −0.504175 −0.252087 0.967704i \(-0.581117\pi\)
−0.252087 + 0.967704i \(0.581117\pi\)
\(468\) 0 0
\(469\) 13.6125 0.628567
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 42.2094i 1.94079i
\(474\) 0 0
\(475\) 5.40312i 0.247912i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 31.3141i 1.43078i 0.698727 + 0.715388i \(0.253750\pi\)
−0.698727 + 0.715388i \(0.746250\pi\)
\(480\) 0 0
\(481\) −11.1047 + 7.40312i −0.506330 + 0.337553i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.10469 0.140977
\(486\) 0 0
\(487\) 16.5078i 0.748040i 0.927421 + 0.374020i \(0.122021\pi\)
−0.927421 + 0.374020i \(0.877979\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17.6125 −0.794841 −0.397420 0.917637i \(-0.630095\pi\)
−0.397420 + 0.917637i \(0.630095\pi\)
\(492\) 0 0
\(493\) 0.596876 0.0268819
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.70156 −0.435175
\(498\) 0 0
\(499\) 14.5969i 0.653446i 0.945120 + 0.326723i \(0.105944\pi\)
−0.945120 + 0.326723i \(0.894056\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.5969 0.472491 0.236246 0.971693i \(-0.424083\pi\)
0.236246 + 0.971693i \(0.424083\pi\)
\(504\) 0 0
\(505\) 16.8062i 0.747868i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 36.7172i 1.62746i 0.581243 + 0.813730i \(0.302567\pi\)
−0.581243 + 0.813730i \(0.697433\pi\)
\(510\) 0 0
\(511\) 21.7906 0.963961
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.40312i 0.414351i
\(516\) 0 0
\(517\) −29.6125 −1.30236
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.2094 1.41112 0.705559 0.708651i \(-0.250696\pi\)
0.705559 + 0.708651i \(0.250696\pi\)
\(522\) 0 0
\(523\) 19.4031 0.848439 0.424220 0.905559i \(-0.360548\pi\)
0.424220 + 0.905559i \(0.360548\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.01562i 0.0442412i
\(528\) 0 0
\(529\) −9.29844 −0.404280
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.89531 + 4.59688i −0.298669 + 0.199113i
\(534\) 0 0
\(535\) 13.1047i 0.566565i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 15.1938i 0.654441i
\(540\) 0 0
\(541\) 14.5969i 0.627569i 0.949494 + 0.313784i \(0.101597\pi\)
−0.949494 + 0.313784i \(0.898403\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −31.4031 −1.34270 −0.671350 0.741140i \(-0.734285\pi\)
−0.671350 + 0.741140i \(0.734285\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.8062i 0.460362i
\(552\) 0 0
\(553\) 16.5078i 0.701984i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0000i 0.593199i −0.955002 0.296600i \(-0.904147\pi\)
0.955002 0.296600i \(-0.0958526\pi\)
\(558\) 0 0
\(559\) 22.8062 + 34.2094i 0.964602 + 1.44690i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.8953 −0.796343 −0.398171 0.917311i \(-0.630355\pi\)
−0.398171 + 0.917311i \(0.630355\pi\)
\(564\) 0 0
\(565\) 14.0000i 0.588984i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 19.3141 0.808268 0.404134 0.914700i \(-0.367573\pi\)
0.404134 + 0.914700i \(0.367573\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.70156 −0.154366
\(576\) 0 0
\(577\) 1.49219i 0.0621207i −0.999518 0.0310603i \(-0.990112\pi\)
0.999518 0.0310603i \(-0.00988840\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.79063 0.240236
\(582\) 0 0
\(583\) 8.50781i 0.352358i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.20937i 0.256288i 0.991756 + 0.128144i \(0.0409020\pi\)
−0.991756 + 0.128144i \(0.959098\pi\)
\(588\) 0 0
\(589\) 18.3875 0.757644
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.0000i 0.903432i 0.892162 + 0.451716i \(0.149188\pi\)
−0.892162 + 0.451716i \(0.850812\pi\)
\(594\) 0 0
\(595\) 0.507811 0.0208182
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 17.1938 0.702518 0.351259 0.936278i \(-0.385754\pi\)
0.351259 + 0.936278i \(0.385754\pi\)
\(600\) 0 0
\(601\) 36.1203 1.47338 0.736689 0.676232i \(-0.236388\pi\)
0.736689 + 0.676232i \(0.236388\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.70156i 0.109834i
\(606\) 0 0
\(607\) −4.20937 −0.170853 −0.0854266 0.996344i \(-0.527225\pi\)
−0.0854266 + 0.996344i \(0.527225\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0000 + 16.0000i −0.970936 + 0.647291i
\(612\) 0 0
\(613\) 3.10469i 0.125397i −0.998033 0.0626986i \(-0.980029\pi\)
0.998033 0.0626986i \(-0.0199707\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.6125i 1.11164i −0.831304 0.555819i \(-0.812405\pi\)
0.831304 0.555819i \(-0.187595\pi\)
\(618\) 0 0
\(619\) 22.0000i 0.884255i −0.896952 0.442127i \(-0.854224\pi\)
0.896952 0.442127i \(-0.145776\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.89531 0.115998
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.10469i 0.0440467i
\(630\) 0 0
\(631\) 6.20937i 0.247191i −0.992333 0.123596i \(-0.960557\pi\)
0.992333 0.123596i \(-0.0394426\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.8062i 0.666936i
\(636\) 0 0
\(637\) 8.20937 + 12.3141i 0.325267 + 0.487901i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.0156 0.751072 0.375536 0.926808i \(-0.377459\pi\)
0.375536 + 0.926808i \(0.377459\pi\)
\(642\) 0 0
\(643\) 24.5078i 0.966494i −0.875484 0.483247i \(-0.839457\pi\)
0.875484 0.483247i \(-0.160543\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.9109 1.17592 0.587960 0.808890i \(-0.299931\pi\)
0.587960 + 0.808890i \(0.299931\pi\)
\(648\) 0 0
\(649\) −49.6125 −1.94746
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.4031 −0.446239 −0.223119 0.974791i \(-0.571624\pi\)
−0.223119 + 0.974791i \(0.571624\pi\)
\(654\) 0 0
\(655\) 12.0000i 0.468879i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −21.0156 −0.818652 −0.409326 0.912388i \(-0.634236\pi\)
−0.409326 + 0.912388i \(0.634236\pi\)
\(660\) 0 0
\(661\) 25.4031i 0.988067i −0.869443 0.494034i \(-0.835522\pi\)
0.869443 0.494034i \(-0.164478\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.19375i 0.356518i
\(666\) 0 0
\(667\) −7.40312 −0.286650
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.10469i 0.0426459i
\(672\) 0 0
\(673\) 14.5969 0.562668 0.281334 0.959610i \(-0.409223\pi\)
0.281334 + 0.959610i \(0.409223\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.70156 0.372861 0.186431 0.982468i \(-0.440308\pi\)
0.186431 + 0.982468i \(0.440308\pi\)
\(678\) 0 0
\(679\) 5.28282 0.202736
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.5969i 1.40034i −0.713976 0.700170i \(-0.753107\pi\)
0.713976 0.700170i \(-0.246893\pi\)
\(684\) 0 0
\(685\) −16.8062 −0.642134
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.59688 6.89531i −0.175127 0.262691i
\(690\) 0 0
\(691\) 31.6125i 1.20260i −0.799025 0.601298i \(-0.794650\pi\)
0.799025 0.601298i \(-0.205350\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.10469i 0.345360i
\(696\) 0 0
\(697\) 0.685941i 0.0259819i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −35.0156 −1.32252 −0.661261 0.750156i \(-0.729978\pi\)
−0.661261 + 0.750156i \(0.729978\pi\)
\(702\) 0 0
\(703\) 20.0000 0.754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 28.5969i 1.07550i
\(708\) 0 0
\(709\) 28.2094i 1.05943i 0.848177 + 0.529713i \(0.177700\pi\)
−0.848177 + 0.529713i \(0.822300\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.5969i 0.471757i
\(714\) 0 0
\(715\) −7.40312 11.1047i −0.276861 0.415292i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.4031 −0.574440 −0.287220 0.957865i \(-0.592731\pi\)
−0.287220 + 0.957865i \(0.592731\pi\)
\(720\) 0 0
\(721\) 16.0000i 0.595871i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −11.1938 −0.415153 −0.207577 0.978219i \(-0.566558\pi\)
−0.207577 + 0.978219i \(0.566558\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.40312 −0.125869
\(732\) 0 0
\(733\) 43.7016i 1.61415i −0.590446 0.807077i \(-0.701048\pi\)
0.590446 0.807077i \(-0.298952\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.6125 1.09079
\(738\) 0 0
\(739\) 36.8062i 1.35394i 0.736011 + 0.676970i \(0.236707\pi\)
−0.736011 + 0.676970i \(0.763293\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.0000i 1.46746i −0.679442 0.733729i \(-0.737778\pi\)
0.679442 0.733729i \(-0.262222\pi\)
\(744\) 0 0
\(745\) −8.29844 −0.304031
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22.2984i 0.814767i
\(750\) 0 0
\(751\) 42.2984 1.54349 0.771746 0.635931i \(-0.219384\pi\)
0.771746 + 0.635931i \(0.219384\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.40312 0.269427
\(756\) 0 0
\(757\) 6.80625 0.247377 0.123689 0.992321i \(-0.460528\pi\)
0.123689 + 0.992321i \(0.460528\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.4031i 0.413363i −0.978408 0.206681i \(-0.933734\pi\)
0.978408 0.206681i \(-0.0662664\pi\)
\(762\) 0 0
\(763\) 10.2094 0.369604
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −40.2094 + 26.8062i −1.45188 + 0.967918i
\(768\) 0 0
\(769\) 30.8062i 1.11090i −0.831549 0.555451i \(-0.812546\pi\)
0.831549 0.555451i \(-0.187454\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 44.8062i 1.61157i 0.592209 + 0.805784i \(0.298256\pi\)
−0.592209 + 0.805784i \(0.701744\pi\)
\(774\) 0 0
\(775\) 3.40312i 0.122244i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.4187 0.444948
\(780\) 0 0
\(781\) −21.1047 −0.755185
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.80625i 0.100159i
\(786\) 0 0
\(787\) 52.0000i 1.85360i −0.375555 0.926800i \(-0.622548\pi\)
0.375555 0.926800i \(-0.377452\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23.8219i 0.847008i
\(792\) 0 0
\(793\) 0.596876 + 0.895314i 0.0211957 + 0.0317935i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −53.5234 −1.89590 −0.947949 0.318423i \(-0.896847\pi\)
−0.947949 + 0.318423i \(0.896847\pi\)
\(798\) 0 0
\(799\) 2.38750i 0.0844638i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 47.4031 1.67282
\(804\) 0 0
\(805\) −6.29844 −0.221991
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29.4031 1.03376 0.516879 0.856058i \(-0.327094\pi\)
0.516879 + 0.856058i \(0.327094\pi\)
\(810\) 0 0
\(811\) 32.8062i 1.15198i 0.817456 + 0.575992i \(0.195384\pi\)
−0.817456 + 0.575992i \(0.804616\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.7016 −0.479945
\(816\) 0 0
\(817\) 61.6125i 2.15555i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.50781i 0.227124i 0.993531 + 0.113562i \(0.0362261\pi\)
−0.993531 + 0.113562i \(0.963774\pi\)
\(822\) 0 0
\(823\) 47.6125 1.65967 0.829834 0.558011i \(-0.188435\pi\)
0.829834 + 0.558011i \(0.188435\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.19375i 0.180604i −0.995914 0.0903022i \(-0.971217\pi\)
0.995914 0.0903022i \(-0.0287833\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.22499 −0.0424435
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.29844i 0.0793509i 0.999213 + 0.0396754i \(0.0126324\pi\)
−0.999213 + 0.0396754i \(0.987368\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.0000 5.00000i −0.412813 0.172005i
\(846\) 0 0
\(847\) 4.59688i 0.157951i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.7016i 0.469684i
\(852\) 0 0
\(853\) 7.10469i 0.243260i 0.992576 + 0.121630i \(0.0388121\pi\)
−0.992576 + 0.121630i \(0.961188\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −45.3141 −1.54790 −0.773949 0.633247i \(-0.781722\pi\)
−0.773949 + 0.633247i \(0.781722\pi\)
\(858\) 0 0
\(859\) 12.5078 0.426761 0.213380 0.976969i \(-0.431553\pi\)
0.213380 + 0.976969i \(0.431553\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43.4031i 1.47746i −0.674002 0.738730i \(-0.735426\pi\)
0.674002 0.738730i \(-0.264574\pi\)
\(864\) 0 0
\(865\) 23.4031i 0.795730i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 35.9109i 1.21820i
\(870\) 0 0
\(871\) 24.0000 16.0000i 0.813209 0.542139i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.70156 0.0575233
\(876\) 0 0
\(877\) 0.387503i 0.0130850i 0.999979 + 0.00654252i \(0.00208256\pi\)
−0.999979 + 0.00654252i \(0.997917\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.209373 −0.00705395 −0.00352697 0.999994i \(-0.501123\pi\)
−0.00352697 + 0.999994i \(0.501123\pi\)
\(882\) 0 0
\(883\) −44.4187 −1.49481 −0.747405 0.664369i \(-0.768700\pi\)
−0.747405 + 0.664369i \(0.768700\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.31406 0.178429 0.0892143 0.996012i \(-0.471564\pi\)
0.0892143 + 0.996012i \(0.471564\pi\)
\(888\) 0 0
\(889\) 28.5969i 0.959108i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 43.2250 1.44647
\(894\) 0 0
\(895\) 18.8062i 0.628624i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.80625i 0.227001i
\(900\) 0 0
\(901\) 0.685941 0.0228520
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.1047i 0.369132i
\(906\) 0 0
\(907\) 24.0000 0.796907 0.398453 0.917189i \(-0.369547\pi\)
0.398453 + 0.917189i \(0.369547\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.8219 1.71694 0.858468 0.512868i \(-0.171417\pi\)
0.858468 + 0.512868i \(0.171417\pi\)
\(912\) 0 0
\(913\) 12.5969 0.416896
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.4187i 0.674286i
\(918\) 0 0
\(919\) −13.7016 −0.451973 −0.225986 0.974130i \(-0.572560\pi\)
−0.225986 + 0.974130i \(0.572560\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −17.1047 + 11.4031i −0.563008 + 0.375338i
\(924\) 0 0
\(925\) 3.70156i 0.121707i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.5078i 0.804075i 0.915623 + 0.402038i \(0.131698\pi\)
−0.915623 + 0.402038i \(0.868302\pi\)
\(930\) 0 0
\(931\) 22.1781i 0.726859i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.10469 0.0361271
\(936\) 0 0
\(937\) −59.6125 −1.94746 −0.973728 0.227716i \(-0.926874\pi\)
−0.973728 + 0.227716i \(0.926874\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.49219i 0.0486440i 0.999704 + 0.0243220i \(0.00774269\pi\)
−0.999704 + 0.0243220i \(0.992257\pi\)
\(942\) 0 0
\(943\) 8.50781i 0.277052i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.0000i 0.649913i −0.945729 0.324956i \(-0.894650\pi\)
0.945729 0.324956i \(-0.105350\pi\)
\(948\) 0 0
\(949\) 38.4187 25.6125i 1.24713 0.831417i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 56.1203 1.81792 0.908958 0.416889i \(-0.136880\pi\)
0.908958 + 0.416889i \(0.136880\pi\)
\(954\) 0 0
\(955\) 4.00000i 0.129437i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −28.5969 −0.923441
\(960\) 0 0
\(961\) 19.4187 0.626411
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.50781 −0.209494
\(966\) 0 0
\(967\) 8.00000i 0.257263i 0.991692 + 0.128631i \(0.0410584\pi\)
−0.991692 + 0.128631i \(0.958942\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −38.2094 −1.22620 −0.613099 0.790006i \(-0.710077\pi\)
−0.613099 + 0.790006i \(0.710077\pi\)
\(972\) 0 0
\(973\) 15.4922i 0.496657i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.4031i 0.812718i 0.913714 + 0.406359i \(0.133202\pi\)
−0.913714 + 0.406359i \(0.866798\pi\)
\(978\) 0 0
\(979\) 6.29844 0.201299
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.4187i 0.906417i −0.891404 0.453209i \(-0.850279\pi\)
0.891404 0.453209i \(-0.149721\pi\)
\(984\) 0 0
\(985\) 12.8062 0.408041
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 42.2094 1.34218
\(990\) 0 0
\(991\) 14.8953 0.473165 0.236583 0.971611i \(-0.423973\pi\)
0.236583 + 0.971611i \(0.423973\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.8062i 0.342581i
\(996\) 0 0
\(997\) −44.0000 −1.39349 −0.696747 0.717317i \(-0.745370\pi\)
−0.696747 + 0.717317i \(0.745370\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4680.2.g.h.2521.4 4
3.2 odd 2 1560.2.g.f.961.2 4
12.11 even 2 3120.2.g.r.961.1 4
13.12 even 2 inner 4680.2.g.h.2521.1 4
39.38 odd 2 1560.2.g.f.961.3 yes 4
156.155 even 2 3120.2.g.r.961.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1560.2.g.f.961.2 4 3.2 odd 2
1560.2.g.f.961.3 yes 4 39.38 odd 2
3120.2.g.r.961.1 4 12.11 even 2
3120.2.g.r.961.4 4 156.155 even 2
4680.2.g.h.2521.1 4 13.12 even 2 inner
4680.2.g.h.2521.4 4 1.1 even 1 trivial