Properties

Label 468.3.e.a
Level $468$
Weight $3$
Character orbit 468.e
Self dual yes
Analytic conductor $12.752$
Analytic rank $0$
Dimension $1$
CM discriminant -52
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,3,Mod(415,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.415"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 468.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.7520763721\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} - 12 q^{7} - 8 q^{8} + 4 q^{11} - 13 q^{13} + 24 q^{14} + 16 q^{16} + 18 q^{17} + 12 q^{19} - 8 q^{22} + 25 q^{25} + 26 q^{26} - 48 q^{28} - 6 q^{29} + 36 q^{31} - 32 q^{32} - 36 q^{34}+ \cdots - 190 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
415.1
0
−2.00000 0 4.00000 0 0 −12.0000 −8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.b odd 2 1 CM by \(\Q(\sqrt{-13}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.3.e.a 1
3.b odd 2 1 52.3.b.b yes 1
4.b odd 2 1 468.3.e.b 1
12.b even 2 1 52.3.b.a 1
13.b even 2 1 468.3.e.b 1
24.f even 2 1 832.3.c.b 1
24.h odd 2 1 832.3.c.a 1
39.d odd 2 1 52.3.b.a 1
52.b odd 2 1 CM 468.3.e.a 1
156.h even 2 1 52.3.b.b yes 1
312.b odd 2 1 832.3.c.b 1
312.h even 2 1 832.3.c.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.3.b.a 1 12.b even 2 1
52.3.b.a 1 39.d odd 2 1
52.3.b.b yes 1 3.b odd 2 1
52.3.b.b yes 1 156.h even 2 1
468.3.e.a 1 1.a even 1 1 trivial
468.3.e.a 1 52.b odd 2 1 CM
468.3.e.b 1 4.b odd 2 1
468.3.e.b 1 13.b even 2 1
832.3.c.a 1 24.h odd 2 1
832.3.c.a 1 312.h even 2 1
832.3.c.b 1 24.f even 2 1
832.3.c.b 1 312.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(468, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 12 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 12 \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T + 13 \) Copy content Toggle raw display
$17$ \( T - 18 \) Copy content Toggle raw display
$19$ \( T - 12 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 36 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 68 \) Copy content Toggle raw display
$53$ \( T - 102 \) Copy content Toggle raw display
$59$ \( T - 116 \) Copy content Toggle raw display
$61$ \( T + 86 \) Copy content Toggle raw display
$67$ \( T - 108 \) Copy content Toggle raw display
$71$ \( T - 92 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 68 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less