Properties

Label 468.2.x
Level $468$
Weight $2$
Character orbit 468.x
Rep. character $\chi_{468}(155,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $160$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 468 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(468, [\chi])\).

Total New Old
Modular forms 176 176 0
Cusp forms 160 160 0
Eisenstein series 16 16 0

Trace form

\( 160 q - 2 q^{4} - 8 q^{9} - 22 q^{12} - 2 q^{13} - 6 q^{14} - 2 q^{16} - 10 q^{22} - 68 q^{25} - 12 q^{29} - 18 q^{30} + 46 q^{36} + 12 q^{38} - 12 q^{40} + 28 q^{42} - 34 q^{48} - 60 q^{49} + 16 q^{52}+ \cdots - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(468, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
468.2.x.a 468.x 468.x $160$ $3.737$ None 468.2.x.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$