Properties

Label 465.2.c.a.94.7
Level $465$
Weight $2$
Character 465.94
Analytic conductor $3.713$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(94,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.94"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.1016580161536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 12x^{8} + 48x^{6} + 72x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 94.7
Root \(-0.815403i\) of defining polynomial
Character \(\chi\) \(=\) 465.94
Dual form 465.2.c.a.94.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.697747i q^{2} -1.00000i q^{3} +1.51315 q^{4} +(0.815403 - 2.08209i) q^{5} +0.697747 q^{6} -0.302253i q^{7} +2.45129i q^{8} -1.00000 q^{9} +(1.45277 + 0.568945i) q^{10} +2.71947 q^{11} -1.51315i q^{12} +3.96444i q^{13} +0.210896 q^{14} +(-2.08209 - 0.815403i) q^{15} +1.31592 q^{16} -6.05458i q^{17} -0.697747i q^{18} -0.452774 q^{19} +(1.23383 - 3.15052i) q^{20} -0.302253 q^{21} +1.89750i q^{22} -4.37050i q^{23} +2.45129 q^{24} +(-3.67024 - 3.39549i) q^{25} -2.76617 q^{26} +1.00000i q^{27} -0.457355i q^{28} +3.48564 q^{29} +(0.568945 - 1.45277i) q^{30} -1.00000 q^{31} +5.82076i q^{32} -2.71947i q^{33} +4.22456 q^{34} +(-0.629320 - 0.246458i) q^{35} -1.51315 q^{36} +1.56089i q^{37} -0.315922i q^{38} +3.96444 q^{39} +(5.10381 + 1.99879i) q^{40} -9.00441 q^{41} -0.210896i q^{42} +8.93693i q^{43} +4.11496 q^{44} +(-0.815403 + 2.08209i) q^{45} +3.04950 q^{46} -6.64299i q^{47} -1.31592i q^{48} +6.90864 q^{49} +(2.36919 - 2.56089i) q^{50} -6.05458 q^{51} +5.99879i q^{52} +8.49423i q^{53} -0.697747 q^{54} +(2.21746 - 5.66218i) q^{55} +0.740910 q^{56} +0.452774i q^{57} +2.43209i q^{58} +3.25033 q^{59} +(-3.15052 - 1.23383i) q^{60} -5.35535 q^{61} -0.697747i q^{62} +0.302253i q^{63} -1.42957 q^{64} +(8.25433 + 3.23262i) q^{65} +1.89750 q^{66} +4.26548i q^{67} -9.16149i q^{68} -4.37050 q^{69} +(0.171966 - 0.439106i) q^{70} +8.83190 q^{71} -2.45129i q^{72} +10.4968i q^{73} -1.08911 q^{74} +(-3.39549 + 3.67024i) q^{75} -0.685115 q^{76} -0.821968i q^{77} +2.76617i q^{78} -14.6348 q^{79} +(1.07301 - 2.73987i) q^{80} +1.00000 q^{81} -6.28279i q^{82} +10.2063i q^{83} -0.457355 q^{84} +(-12.6062 - 4.93693i) q^{85} -6.23571 q^{86} -3.48564i q^{87} +6.66619i q^{88} -15.6279 q^{89} +(-1.45277 - 0.568945i) q^{90} +1.19827 q^{91} -6.61323i q^{92} +1.00000i q^{93} +4.63512 q^{94} +(-0.369194 + 0.942719i) q^{95} +5.82076 q^{96} +8.85267i q^{97} +4.82048i q^{98} -2.71947 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 6 q^{4} - 6 q^{6} - 10 q^{9} + 2 q^{10} - 32 q^{14} + 2 q^{15} + 6 q^{16} + 8 q^{19} + 28 q^{20} - 16 q^{21} + 18 q^{24} - 2 q^{25} - 12 q^{26} - 8 q^{29} + 4 q^{30} - 10 q^{31} - 12 q^{34} + 4 q^{35}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.697747i 0.493381i 0.969094 + 0.246691i \(0.0793432\pi\)
−0.969094 + 0.246691i \(0.920657\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.51315 0.756575
\(5\) 0.815403 2.08209i 0.364659 0.931141i
\(6\) 0.697747 0.284854
\(7\) 0.302253i 0.114241i −0.998367 0.0571205i \(-0.981808\pi\)
0.998367 0.0571205i \(-0.0181919\pi\)
\(8\) 2.45129i 0.866661i
\(9\) −1.00000 −0.333333
\(10\) 1.45277 + 0.568945i 0.459408 + 0.179916i
\(11\) 2.71947 0.819950 0.409975 0.912097i \(-0.365537\pi\)
0.409975 + 0.912097i \(0.365537\pi\)
\(12\) 1.51315i 0.436809i
\(13\) 3.96444i 1.09954i 0.835317 + 0.549769i \(0.185284\pi\)
−0.835317 + 0.549769i \(0.814716\pi\)
\(14\) 0.210896 0.0563644
\(15\) −2.08209 0.815403i −0.537594 0.210536i
\(16\) 1.31592 0.328980
\(17\) 6.05458i 1.46845i −0.678905 0.734226i \(-0.737545\pi\)
0.678905 0.734226i \(-0.262455\pi\)
\(18\) 0.697747i 0.164460i
\(19\) −0.452774 −0.103874 −0.0519368 0.998650i \(-0.516539\pi\)
−0.0519368 + 0.998650i \(0.516539\pi\)
\(20\) 1.23383 3.15052i 0.275892 0.704478i
\(21\) −0.302253 −0.0659571
\(22\) 1.89750i 0.404548i
\(23\) 4.37050i 0.911313i −0.890156 0.455657i \(-0.849404\pi\)
0.890156 0.455657i \(-0.150596\pi\)
\(24\) 2.45129 0.500367
\(25\) −3.67024 3.39549i −0.734047 0.679099i
\(26\) −2.76617 −0.542491
\(27\) 1.00000i 0.192450i
\(28\) 0.457355i 0.0864319i
\(29\) 3.48564 0.647267 0.323633 0.946183i \(-0.395096\pi\)
0.323633 + 0.946183i \(0.395096\pi\)
\(30\) 0.568945 1.45277i 0.103875 0.265239i
\(31\) −1.00000 −0.179605
\(32\) 5.82076i 1.02897i
\(33\) 2.71947i 0.473398i
\(34\) 4.22456 0.724507
\(35\) −0.629320 0.246458i −0.106375 0.0416591i
\(36\) −1.51315 −0.252192
\(37\) 1.56089i 0.256609i 0.991735 + 0.128305i \(0.0409535\pi\)
−0.991735 + 0.128305i \(0.959046\pi\)
\(38\) 0.315922i 0.0512493i
\(39\) 3.96444 0.634818
\(40\) 5.10381 + 1.99879i 0.806984 + 0.316036i
\(41\) −9.00441 −1.40625 −0.703126 0.711065i \(-0.748213\pi\)
−0.703126 + 0.711065i \(0.748213\pi\)
\(42\) 0.210896i 0.0325420i
\(43\) 8.93693i 1.36287i 0.731879 + 0.681434i \(0.238643\pi\)
−0.731879 + 0.681434i \(0.761357\pi\)
\(44\) 4.11496 0.620353
\(45\) −0.815403 + 2.08209i −0.121553 + 0.310380i
\(46\) 3.04950 0.449625
\(47\) 6.64299i 0.968979i −0.874797 0.484490i \(-0.839005\pi\)
0.874797 0.484490i \(-0.160995\pi\)
\(48\) 1.31592i 0.189937i
\(49\) 6.90864 0.986949
\(50\) 2.36919 2.56089i 0.335055 0.362165i
\(51\) −6.05458 −0.847811
\(52\) 5.99879i 0.831882i
\(53\) 8.49423i 1.16677i 0.812195 + 0.583386i \(0.198272\pi\)
−0.812195 + 0.583386i \(0.801728\pi\)
\(54\) −0.697747 −0.0949513
\(55\) 2.21746 5.66218i 0.299002 0.763489i
\(56\) 0.740910 0.0990083
\(57\) 0.452774i 0.0599714i
\(58\) 2.43209i 0.319349i
\(59\) 3.25033 0.423156 0.211578 0.977361i \(-0.432140\pi\)
0.211578 + 0.977361i \(0.432140\pi\)
\(60\) −3.15052 1.23383i −0.406730 0.159286i
\(61\) −5.35535 −0.685682 −0.342841 0.939393i \(-0.611389\pi\)
−0.342841 + 0.939393i \(0.611389\pi\)
\(62\) 0.697747i 0.0886139i
\(63\) 0.302253i 0.0380804i
\(64\) −1.42957 −0.178696
\(65\) 8.25433 + 3.23262i 1.02382 + 0.400957i
\(66\) 1.89750 0.233566
\(67\) 4.26548i 0.521111i 0.965459 + 0.260556i \(0.0839057\pi\)
−0.965459 + 0.260556i \(0.916094\pi\)
\(68\) 9.16149i 1.11099i
\(69\) −4.37050 −0.526147
\(70\) 0.171966 0.439106i 0.0205538 0.0524832i
\(71\) 8.83190 1.04815 0.524077 0.851671i \(-0.324410\pi\)
0.524077 + 0.851671i \(0.324410\pi\)
\(72\) 2.45129i 0.288887i
\(73\) 10.4968i 1.22855i 0.789091 + 0.614276i \(0.210552\pi\)
−0.789091 + 0.614276i \(0.789448\pi\)
\(74\) −1.08911 −0.126606
\(75\) −3.39549 + 3.67024i −0.392078 + 0.423802i
\(76\) −0.685115 −0.0785881
\(77\) 0.821968i 0.0936719i
\(78\) 2.76617i 0.313207i
\(79\) −14.6348 −1.64654 −0.823270 0.567650i \(-0.807853\pi\)
−0.823270 + 0.567650i \(0.807853\pi\)
\(80\) 1.07301 2.73987i 0.119966 0.306327i
\(81\) 1.00000 0.111111
\(82\) 6.28279i 0.693818i
\(83\) 10.2063i 1.12029i 0.828395 + 0.560144i \(0.189254\pi\)
−0.828395 + 0.560144i \(0.810746\pi\)
\(84\) −0.457355 −0.0499015
\(85\) −12.6062 4.93693i −1.36734 0.535485i
\(86\) −6.23571 −0.672414
\(87\) 3.48564i 0.373700i
\(88\) 6.66619i 0.710619i
\(89\) −15.6279 −1.65656 −0.828279 0.560316i \(-0.810680\pi\)
−0.828279 + 0.560316i \(0.810680\pi\)
\(90\) −1.45277 0.568945i −0.153136 0.0599720i
\(91\) 1.19827 0.125612
\(92\) 6.61323i 0.689477i
\(93\) 1.00000i 0.103695i
\(94\) 4.63512 0.478076
\(95\) −0.369194 + 0.942719i −0.0378785 + 0.0967209i
\(96\) 5.82076 0.594078
\(97\) 8.85267i 0.898853i 0.893317 + 0.449426i \(0.148372\pi\)
−0.893317 + 0.449426i \(0.851628\pi\)
\(98\) 4.82048i 0.486942i
\(99\) −2.71947 −0.273317
\(100\) −5.55362 5.13789i −0.555362 0.513789i
\(101\) −18.9217 −1.88278 −0.941390 0.337321i \(-0.890479\pi\)
−0.941390 + 0.337321i \(0.890479\pi\)
\(102\) 4.22456i 0.418294i
\(103\) 1.14577i 0.112896i −0.998406 0.0564478i \(-0.982023\pi\)
0.998406 0.0564478i \(-0.0179775\pi\)
\(104\) −9.71798 −0.952926
\(105\) −0.246458 + 0.629320i −0.0240519 + 0.0614154i
\(106\) −5.92682 −0.575663
\(107\) 8.34317i 0.806565i −0.915076 0.403282i \(-0.867869\pi\)
0.915076 0.403282i \(-0.132131\pi\)
\(108\) 1.51315i 0.145603i
\(109\) 15.8135 1.51466 0.757328 0.653034i \(-0.226504\pi\)
0.757328 + 0.653034i \(0.226504\pi\)
\(110\) 3.95077 + 1.54723i 0.376691 + 0.147522i
\(111\) 1.56089 0.148153
\(112\) 0.397742i 0.0375831i
\(113\) 3.55793i 0.334702i −0.985897 0.167351i \(-0.946479\pi\)
0.985897 0.167351i \(-0.0535213\pi\)
\(114\) −0.315922 −0.0295888
\(115\) −9.09980 3.56372i −0.848561 0.332319i
\(116\) 5.27429 0.489706
\(117\) 3.96444i 0.366512i
\(118\) 2.26790i 0.208777i
\(119\) −1.83002 −0.167758
\(120\) 1.99879 5.10381i 0.182464 0.465912i
\(121\) −3.60451 −0.327682
\(122\) 3.73668i 0.338303i
\(123\) 9.00441i 0.811900i
\(124\) −1.51315 −0.135885
\(125\) −10.0625 + 4.87308i −0.900014 + 0.435862i
\(126\) −0.210896 −0.0187881
\(127\) 5.58891i 0.495936i 0.968768 + 0.247968i \(0.0797628\pi\)
−0.968768 + 0.247968i \(0.920237\pi\)
\(128\) 10.6440i 0.940809i
\(129\) 8.93693 0.786853
\(130\) −2.25555 + 5.75943i −0.197824 + 0.505136i
\(131\) 14.5221 1.26880 0.634401 0.773004i \(-0.281247\pi\)
0.634401 + 0.773004i \(0.281247\pi\)
\(132\) 4.11496i 0.358161i
\(133\) 0.136853i 0.0118666i
\(134\) −2.97622 −0.257107
\(135\) 2.08209 + 0.815403i 0.179198 + 0.0701787i
\(136\) 14.8415 1.27265
\(137\) 2.20929i 0.188752i 0.995537 + 0.0943761i \(0.0300856\pi\)
−0.995537 + 0.0943761i \(0.969914\pi\)
\(138\) 3.04950i 0.259591i
\(139\) 1.96283 0.166485 0.0832425 0.996529i \(-0.473472\pi\)
0.0832425 + 0.996529i \(0.473472\pi\)
\(140\) −0.952256 0.372929i −0.0804803 0.0315182i
\(141\) −6.64299 −0.559441
\(142\) 6.16243i 0.517140i
\(143\) 10.7812i 0.901565i
\(144\) −1.31592 −0.109660
\(145\) 2.84220 7.25743i 0.236032 0.602697i
\(146\) −7.32407 −0.606145
\(147\) 6.90864i 0.569815i
\(148\) 2.36187i 0.194144i
\(149\) −15.5134 −1.27091 −0.635455 0.772138i \(-0.719187\pi\)
−0.635455 + 0.772138i \(0.719187\pi\)
\(150\) −2.56089 2.36919i −0.209096 0.193444i
\(151\) 3.50914 0.285570 0.142785 0.989754i \(-0.454394\pi\)
0.142785 + 0.989754i \(0.454394\pi\)
\(152\) 1.10988i 0.0900232i
\(153\) 6.05458i 0.489484i
\(154\) 0.573525 0.0462160
\(155\) −0.815403 + 2.08209i −0.0654948 + 0.167238i
\(156\) 5.99879 0.480287
\(157\) 23.0764i 1.84170i −0.389920 0.920849i \(-0.627497\pi\)
0.389920 0.920849i \(-0.372503\pi\)
\(158\) 10.2114i 0.812372i
\(159\) 8.49423 0.673636
\(160\) 12.1194 + 4.74626i 0.958120 + 0.375225i
\(161\) −1.32100 −0.104109
\(162\) 0.697747i 0.0548201i
\(163\) 16.6343i 1.30290i −0.758691 0.651450i \(-0.774161\pi\)
0.758691 0.651450i \(-0.225839\pi\)
\(164\) −13.6250 −1.06393
\(165\) −5.66218 2.21746i −0.440800 0.172629i
\(166\) −7.12142 −0.552730
\(167\) 5.65485i 0.437585i −0.975771 0.218793i \(-0.929788\pi\)
0.975771 0.218793i \(-0.0702118\pi\)
\(168\) 0.740910i 0.0571625i
\(169\) −2.71677 −0.208982
\(170\) 3.44472 8.79594i 0.264198 0.674618i
\(171\) 0.452774 0.0346245
\(172\) 13.5229i 1.03111i
\(173\) 14.1686i 1.07722i 0.842555 + 0.538610i \(0.181051\pi\)
−0.842555 + 0.538610i \(0.818949\pi\)
\(174\) 2.43209 0.184376
\(175\) −1.02630 + 1.10934i −0.0775810 + 0.0838583i
\(176\) 3.57860 0.269747
\(177\) 3.25033i 0.244309i
\(178\) 10.9043i 0.817315i
\(179\) 5.04745 0.377264 0.188632 0.982048i \(-0.439595\pi\)
0.188632 + 0.982048i \(0.439595\pi\)
\(180\) −1.23383 + 3.15052i −0.0919640 + 0.234826i
\(181\) −2.43964 −0.181337 −0.0906687 0.995881i \(-0.528900\pi\)
−0.0906687 + 0.995881i \(0.528900\pi\)
\(182\) 0.836085i 0.0619748i
\(183\) 5.35535i 0.395879i
\(184\) 10.7134 0.789800
\(185\) 3.24993 + 1.27276i 0.238940 + 0.0935750i
\(186\) −0.697747 −0.0511613
\(187\) 16.4652i 1.20406i
\(188\) 10.0518i 0.733106i
\(189\) 0.302253 0.0219857
\(190\) −0.657779 0.257604i −0.0477203 0.0186885i
\(191\) 4.10435 0.296981 0.148490 0.988914i \(-0.452559\pi\)
0.148490 + 0.988914i \(0.452559\pi\)
\(192\) 1.42957i 0.103170i
\(193\) 16.5430i 1.19079i 0.803432 + 0.595396i \(0.203005\pi\)
−0.803432 + 0.595396i \(0.796995\pi\)
\(194\) −6.17692 −0.443477
\(195\) 3.23262 8.25433i 0.231492 0.591105i
\(196\) 10.4538 0.746701
\(197\) 15.5640i 1.10889i 0.832221 + 0.554443i \(0.187069\pi\)
−0.832221 + 0.554443i \(0.812931\pi\)
\(198\) 1.89750i 0.134849i
\(199\) 2.17021 0.153842 0.0769212 0.997037i \(-0.475491\pi\)
0.0769212 + 0.997037i \(0.475491\pi\)
\(200\) 8.32333 8.99680i 0.588548 0.636170i
\(201\) 4.26548 0.300864
\(202\) 13.2025i 0.928928i
\(203\) 1.05355i 0.0739445i
\(204\) −9.16149 −0.641433
\(205\) −7.34222 + 18.7480i −0.512803 + 1.30942i
\(206\) 0.799454 0.0557006
\(207\) 4.37050i 0.303771i
\(208\) 5.21689i 0.361726i
\(209\) −1.23130 −0.0851711
\(210\) −0.439106 0.171966i −0.0303012 0.0118667i
\(211\) 19.8604 1.36724 0.683622 0.729836i \(-0.260404\pi\)
0.683622 + 0.729836i \(0.260404\pi\)
\(212\) 12.8530i 0.882750i
\(213\) 8.83190i 0.605152i
\(214\) 5.82142 0.397944
\(215\) 18.6075 + 7.28720i 1.26902 + 0.496983i
\(216\) −2.45129 −0.166789
\(217\) 0.302253i 0.0205183i
\(218\) 11.0338i 0.747303i
\(219\) 10.4968 0.709305
\(220\) 3.35535 8.56773i 0.226218 0.577636i
\(221\) 24.0030 1.61462
\(222\) 1.08911i 0.0730962i
\(223\) 2.56154i 0.171534i −0.996315 0.0857668i \(-0.972666\pi\)
0.996315 0.0857668i \(-0.0273340\pi\)
\(224\) 1.75934 0.117551
\(225\) 3.67024 + 3.39549i 0.244682 + 0.226366i
\(226\) 2.48253 0.165136
\(227\) 4.46459i 0.296325i −0.988963 0.148163i \(-0.952664\pi\)
0.988963 0.148163i \(-0.0473359\pi\)
\(228\) 0.685115i 0.0453729i
\(229\) 5.62097 0.371444 0.185722 0.982602i \(-0.440538\pi\)
0.185722 + 0.982602i \(0.440538\pi\)
\(230\) 2.48658 6.34936i 0.163960 0.418664i
\(231\) −0.821968 −0.0540815
\(232\) 8.54430i 0.560961i
\(233\) 4.15427i 0.272155i 0.990698 + 0.136077i \(0.0434496\pi\)
−0.990698 + 0.136077i \(0.956550\pi\)
\(234\) 2.76617 0.180830
\(235\) −13.8313 5.41671i −0.902256 0.353347i
\(236\) 4.91823 0.320149
\(237\) 14.6348i 0.950631i
\(238\) 1.27689i 0.0827684i
\(239\) −19.9161 −1.28827 −0.644134 0.764913i \(-0.722782\pi\)
−0.644134 + 0.764913i \(0.722782\pi\)
\(240\) −2.73987 1.07301i −0.176858 0.0692623i
\(241\) −23.9190 −1.54076 −0.770380 0.637584i \(-0.779934\pi\)
−0.770380 + 0.637584i \(0.779934\pi\)
\(242\) 2.51503i 0.161672i
\(243\) 1.00000i 0.0641500i
\(244\) −8.10345 −0.518770
\(245\) 5.63333 14.3844i 0.359900 0.918989i
\(246\) −6.28279 −0.400576
\(247\) 1.79500i 0.114213i
\(248\) 2.45129i 0.155657i
\(249\) 10.2063 0.646799
\(250\) −3.40018 7.02105i −0.215046 0.444050i
\(251\) 25.3168 1.59798 0.798992 0.601341i \(-0.205367\pi\)
0.798992 + 0.601341i \(0.205367\pi\)
\(252\) 0.457355i 0.0288106i
\(253\) 11.8854i 0.747231i
\(254\) −3.89964 −0.244685
\(255\) −4.93693 + 12.6062i −0.309162 + 0.789432i
\(256\) −10.2860 −0.642874
\(257\) 3.55326i 0.221646i −0.993840 0.110823i \(-0.964651\pi\)
0.993840 0.110823i \(-0.0353487\pi\)
\(258\) 6.23571i 0.388218i
\(259\) 0.471786 0.0293153
\(260\) 12.4900 + 4.89143i 0.774600 + 0.303354i
\(261\) −3.48564 −0.215756
\(262\) 10.1327i 0.626003i
\(263\) 10.2740i 0.633524i 0.948505 + 0.316762i \(0.102596\pi\)
−0.948505 + 0.316762i \(0.897404\pi\)
\(264\) 6.66619 0.410276
\(265\) 17.6858 + 6.92622i 1.08643 + 0.425474i
\(266\) −0.0954884 −0.00585477
\(267\) 15.6279i 0.956414i
\(268\) 6.45431i 0.394260i
\(269\) −8.38317 −0.511131 −0.255565 0.966792i \(-0.582262\pi\)
−0.255565 + 0.966792i \(0.582262\pi\)
\(270\) −0.568945 + 1.45277i −0.0346249 + 0.0884130i
\(271\) 8.34595 0.506980 0.253490 0.967338i \(-0.418421\pi\)
0.253490 + 0.967338i \(0.418421\pi\)
\(272\) 7.96736i 0.483092i
\(273\) 1.19827i 0.0725223i
\(274\) −1.54152 −0.0931268
\(275\) −9.98108 9.23393i −0.601882 0.556827i
\(276\) −6.61323 −0.398070
\(277\) 6.19221i 0.372054i 0.982545 + 0.186027i \(0.0595611\pi\)
−0.982545 + 0.186027i \(0.940439\pi\)
\(278\) 1.36956i 0.0821406i
\(279\) 1.00000 0.0598684
\(280\) 0.604141 1.54265i 0.0361043 0.0921907i
\(281\) 19.6063 1.16962 0.584808 0.811172i \(-0.301170\pi\)
0.584808 + 0.811172i \(0.301170\pi\)
\(282\) 4.63512i 0.276018i
\(283\) 32.4535i 1.92916i −0.263789 0.964581i \(-0.584972\pi\)
0.263789 0.964581i \(-0.415028\pi\)
\(284\) 13.3640 0.793007
\(285\) 0.942719 + 0.369194i 0.0558418 + 0.0218691i
\(286\) −7.52251 −0.444815
\(287\) 2.72161i 0.160652i
\(288\) 5.82076i 0.342991i
\(289\) −19.6580 −1.15635
\(290\) 5.06385 + 1.98314i 0.297359 + 0.116454i
\(291\) 8.85267 0.518953
\(292\) 15.8832i 0.929491i
\(293\) 14.7700i 0.862873i −0.902143 0.431437i \(-0.858007\pi\)
0.902143 0.431437i \(-0.141993\pi\)
\(294\) 4.82048 0.281136
\(295\) 2.65033 6.76748i 0.154308 0.394018i
\(296\) −3.82620 −0.222393
\(297\) 2.71947i 0.157799i
\(298\) 10.8244i 0.627043i
\(299\) 17.3266 1.00202
\(300\) −5.13789 + 5.55362i −0.296636 + 0.320638i
\(301\) 2.70122 0.155696
\(302\) 2.44849i 0.140895i
\(303\) 18.9217i 1.08702i
\(304\) −0.595815 −0.0341724
\(305\) −4.36677 + 11.1503i −0.250041 + 0.638467i
\(306\) −4.22456 −0.241502
\(307\) 23.5695i 1.34518i −0.740015 0.672590i \(-0.765182\pi\)
0.740015 0.672590i \(-0.234818\pi\)
\(308\) 1.24376i 0.0708698i
\(309\) −1.14577 −0.0651803
\(310\) −1.45277 0.568945i −0.0825120 0.0323139i
\(311\) −9.96325 −0.564964 −0.282482 0.959273i \(-0.591158\pi\)
−0.282482 + 0.959273i \(0.591158\pi\)
\(312\) 9.71798i 0.550172i
\(313\) 10.1209i 0.572067i −0.958220 0.286033i \(-0.907663\pi\)
0.958220 0.286033i \(-0.0923368\pi\)
\(314\) 16.1015 0.908659
\(315\) 0.629320 + 0.246458i 0.0354582 + 0.0138864i
\(316\) −22.1446 −1.24573
\(317\) 2.12717i 0.119474i −0.998214 0.0597370i \(-0.980974\pi\)
0.998214 0.0597370i \(-0.0190262\pi\)
\(318\) 5.92682i 0.332359i
\(319\) 9.47907 0.530726
\(320\) −1.16568 + 2.97650i −0.0651632 + 0.166391i
\(321\) −8.34317 −0.465670
\(322\) 0.921723i 0.0513656i
\(323\) 2.74136i 0.152533i
\(324\) 1.51315 0.0840639
\(325\) 13.4612 14.5504i 0.746694 0.807112i
\(326\) 11.6065 0.642827
\(327\) 15.8135i 0.874487i
\(328\) 22.0724i 1.21874i
\(329\) −2.00787 −0.110697
\(330\) 1.54723 3.95077i 0.0851720 0.217483i
\(331\) 5.67365 0.311852 0.155926 0.987769i \(-0.450164\pi\)
0.155926 + 0.987769i \(0.450164\pi\)
\(332\) 15.4437i 0.847582i
\(333\) 1.56089i 0.0855365i
\(334\) 3.94565 0.215896
\(335\) 8.88113 + 3.47809i 0.485228 + 0.190028i
\(336\) −0.397742 −0.0216986
\(337\) 8.30083i 0.452175i −0.974107 0.226087i \(-0.927407\pi\)
0.974107 0.226087i \(-0.0725935\pi\)
\(338\) 1.89562i 0.103108i
\(339\) −3.55793 −0.193240
\(340\) −19.0751 7.47031i −1.03449 0.405134i
\(341\) −2.71947 −0.147267
\(342\) 0.315922i 0.0170831i
\(343\) 4.20394i 0.226991i
\(344\) −21.9070 −1.18115
\(345\) −3.56372 + 9.09980i −0.191864 + 0.489917i
\(346\) −9.88611 −0.531481
\(347\) 16.8933i 0.906879i −0.891287 0.453440i \(-0.850197\pi\)
0.891287 0.453440i \(-0.149803\pi\)
\(348\) 5.27429i 0.282732i
\(349\) 11.1328 0.595925 0.297963 0.954578i \(-0.403693\pi\)
0.297963 + 0.954578i \(0.403693\pi\)
\(350\) −0.774039 0.716097i −0.0413741 0.0382770i
\(351\) −3.96444 −0.211606
\(352\) 15.8293i 0.843707i
\(353\) 2.73101i 0.145357i 0.997355 + 0.0726784i \(0.0231547\pi\)
−0.997355 + 0.0726784i \(0.976845\pi\)
\(354\) 2.26790 0.120538
\(355\) 7.20156 18.3889i 0.382219 0.975979i
\(356\) −23.6474 −1.25331
\(357\) 1.83002i 0.0968549i
\(358\) 3.52184i 0.186135i
\(359\) −7.53229 −0.397539 −0.198770 0.980046i \(-0.563695\pi\)
−0.198770 + 0.980046i \(0.563695\pi\)
\(360\) −5.10381 1.99879i −0.268995 0.105345i
\(361\) −18.7950 −0.989210
\(362\) 1.70225i 0.0894685i
\(363\) 3.60451i 0.189188i
\(364\) 1.81315 0.0950351
\(365\) 21.8552 + 8.55908i 1.14395 + 0.448003i
\(366\) −3.73668 −0.195319
\(367\) 25.4201i 1.32692i −0.748213 0.663458i \(-0.769088\pi\)
0.748213 0.663458i \(-0.230912\pi\)
\(368\) 5.75124i 0.299804i
\(369\) 9.00441 0.468751
\(370\) −0.888062 + 2.26763i −0.0461682 + 0.117888i
\(371\) 2.56741 0.133293
\(372\) 1.51315i 0.0784532i
\(373\) 12.8612i 0.665929i −0.942939 0.332965i \(-0.891951\pi\)
0.942939 0.332965i \(-0.108049\pi\)
\(374\) 11.4886 0.594059
\(375\) 4.87308 + 10.0625i 0.251645 + 0.519623i
\(376\) 16.2839 0.839777
\(377\) 13.8186i 0.711694i
\(378\) 0.210896i 0.0108473i
\(379\) −27.2868 −1.40163 −0.700816 0.713342i \(-0.747180\pi\)
−0.700816 + 0.713342i \(0.747180\pi\)
\(380\) −0.558645 + 1.42647i −0.0286579 + 0.0731766i
\(381\) 5.58891 0.286329
\(382\) 2.86380i 0.146525i
\(383\) 19.4253i 0.992586i −0.868155 0.496293i \(-0.834694\pi\)
0.868155 0.496293i \(-0.165306\pi\)
\(384\) 10.6440 0.543176
\(385\) −1.71141 0.670235i −0.0872218 0.0341584i
\(386\) −11.5428 −0.587515
\(387\) 8.93693i 0.454290i
\(388\) 13.3954i 0.680049i
\(389\) −33.8195 −1.71471 −0.857357 0.514722i \(-0.827895\pi\)
−0.857357 + 0.514722i \(0.827895\pi\)
\(390\) 5.75943 + 2.25555i 0.291640 + 0.114214i
\(391\) −26.4616 −1.33822
\(392\) 16.9351i 0.855350i
\(393\) 14.5221i 0.732543i
\(394\) −10.8597 −0.547104
\(395\) −11.9332 + 30.4710i −0.600426 + 1.53316i
\(396\) −4.11496 −0.206784
\(397\) 5.75310i 0.288740i 0.989524 + 0.144370i \(0.0461155\pi\)
−0.989524 + 0.144370i \(0.953884\pi\)
\(398\) 1.51426i 0.0759030i
\(399\) 0.136853 0.00685120
\(400\) −4.82974 4.46820i −0.241487 0.223410i
\(401\) 30.9973 1.54793 0.773965 0.633228i \(-0.218270\pi\)
0.773965 + 0.633228i \(0.218270\pi\)
\(402\) 2.97622i 0.148441i
\(403\) 3.96444i 0.197483i
\(404\) −28.6314 −1.42446
\(405\) 0.815403 2.08209i 0.0405177 0.103460i
\(406\) 0.735108 0.0364828
\(407\) 4.24480i 0.210407i
\(408\) 14.8415i 0.734765i
\(409\) −0.233213 −0.0115316 −0.00576582 0.999983i \(-0.501835\pi\)
−0.00576582 + 0.999983i \(0.501835\pi\)
\(410\) −13.0814 5.12301i −0.646043 0.253007i
\(411\) 2.20929 0.108976
\(412\) 1.73371i 0.0854140i
\(413\) 0.982422i 0.0483418i
\(414\) −3.04950 −0.149875
\(415\) 21.2505 + 8.32226i 1.04315 + 0.408524i
\(416\) −23.0760 −1.13140
\(417\) 1.96283i 0.0961202i
\(418\) 0.859138i 0.0420218i
\(419\) −3.34632 −0.163478 −0.0817391 0.996654i \(-0.526047\pi\)
−0.0817391 + 0.996654i \(0.526047\pi\)
\(420\) −0.372929 + 0.952256i −0.0181970 + 0.0464653i
\(421\) −9.12325 −0.444640 −0.222320 0.974974i \(-0.571363\pi\)
−0.222320 + 0.974974i \(0.571363\pi\)
\(422\) 13.8575i 0.674573i
\(423\) 6.64299i 0.322993i
\(424\) −20.8218 −1.01120
\(425\) −20.5583 + 22.2217i −0.997224 + 1.07791i
\(426\) 6.16243 0.298571
\(427\) 1.61867i 0.0783331i
\(428\) 12.6245i 0.610226i
\(429\) 10.7812 0.520519
\(430\) −5.08462 + 12.9833i −0.245202 + 0.626112i
\(431\) 21.4495 1.03318 0.516592 0.856231i \(-0.327200\pi\)
0.516592 + 0.856231i \(0.327200\pi\)
\(432\) 1.31592i 0.0633123i
\(433\) 12.9480i 0.622242i 0.950370 + 0.311121i \(0.100704\pi\)
−0.950370 + 0.311121i \(0.899296\pi\)
\(434\) −0.210896 −0.0101233
\(435\) −7.25743 2.84220i −0.347967 0.136273i
\(436\) 23.9282 1.14595
\(437\) 1.97885i 0.0946613i
\(438\) 7.32407i 0.349958i
\(439\) 36.5832 1.74602 0.873011 0.487701i \(-0.162164\pi\)
0.873011 + 0.487701i \(0.162164\pi\)
\(440\) 13.8796 + 5.43564i 0.661686 + 0.259134i
\(441\) −6.90864 −0.328983
\(442\) 16.7480i 0.796622i
\(443\) 18.4925i 0.878604i −0.898339 0.439302i \(-0.855226\pi\)
0.898339 0.439302i \(-0.144774\pi\)
\(444\) 2.36187 0.112089
\(445\) −12.7431 + 32.5388i −0.604079 + 1.54249i
\(446\) 1.78731 0.0846315
\(447\) 15.5134i 0.733760i
\(448\) 0.432092i 0.0204144i
\(449\) −14.1531 −0.667924 −0.333962 0.942587i \(-0.608386\pi\)
−0.333962 + 0.942587i \(0.608386\pi\)
\(450\) −2.36919 + 2.56089i −0.111685 + 0.120722i
\(451\) −24.4872 −1.15306
\(452\) 5.38368i 0.253227i
\(453\) 3.50914i 0.164874i
\(454\) 3.11515 0.146201
\(455\) 0.977069 2.49490i 0.0458057 0.116963i
\(456\) −1.10988 −0.0519749
\(457\) 14.2373i 0.665994i −0.942928 0.332997i \(-0.891940\pi\)
0.942928 0.332997i \(-0.108060\pi\)
\(458\) 3.92201i 0.183264i
\(459\) 6.05458 0.282604
\(460\) −13.7694 5.39245i −0.642000 0.251424i
\(461\) 5.69980 0.265466 0.132733 0.991152i \(-0.457625\pi\)
0.132733 + 0.991152i \(0.457625\pi\)
\(462\) 0.573525i 0.0266828i
\(463\) 10.1278i 0.470677i 0.971913 + 0.235339i \(0.0756199\pi\)
−0.971913 + 0.235339i \(0.924380\pi\)
\(464\) 4.58683 0.212938
\(465\) 2.08209 + 0.815403i 0.0965548 + 0.0378134i
\(466\) −2.89862 −0.134276
\(467\) 14.9241i 0.690604i 0.938492 + 0.345302i \(0.112224\pi\)
−0.938492 + 0.345302i \(0.887776\pi\)
\(468\) 5.99879i 0.277294i
\(469\) 1.28926 0.0595323
\(470\) 3.77949 9.65076i 0.174335 0.445156i
\(471\) −23.0764 −1.06330
\(472\) 7.96748i 0.366733i
\(473\) 24.3037i 1.11748i
\(474\) −10.2114 −0.469023
\(475\) 1.66179 + 1.53739i 0.0762481 + 0.0705404i
\(476\) −2.76909 −0.126921
\(477\) 8.49423i 0.388924i
\(478\) 13.8964i 0.635607i
\(479\) 5.73952 0.262246 0.131123 0.991366i \(-0.458142\pi\)
0.131123 + 0.991366i \(0.458142\pi\)
\(480\) 4.74626 12.1194i 0.216636 0.553171i
\(481\) −6.18807 −0.282152
\(482\) 16.6894i 0.760183i
\(483\) 1.32100i 0.0601076i
\(484\) −5.45416 −0.247916
\(485\) 18.4321 + 7.21850i 0.836959 + 0.327775i
\(486\) 0.697747 0.0316504
\(487\) 29.2234i 1.32424i 0.749398 + 0.662120i \(0.230343\pi\)
−0.749398 + 0.662120i \(0.769657\pi\)
\(488\) 13.1275i 0.594254i
\(489\) −16.6343 −0.752230
\(490\) 10.0367 + 3.93064i 0.453412 + 0.177568i
\(491\) −24.4759 −1.10458 −0.552292 0.833651i \(-0.686247\pi\)
−0.552292 + 0.833651i \(0.686247\pi\)
\(492\) 13.6250i 0.614263i
\(493\) 21.1041i 0.950480i
\(494\) 1.25245 0.0563505
\(495\) −2.21746 + 5.66218i −0.0996675 + 0.254496i
\(496\) −1.31592 −0.0590866
\(497\) 2.66947i 0.119742i
\(498\) 7.12142i 0.319119i
\(499\) 43.1187 1.93026 0.965128 0.261777i \(-0.0843086\pi\)
0.965128 + 0.261777i \(0.0843086\pi\)
\(500\) −15.2260 + 7.37370i −0.680928 + 0.329762i
\(501\) −5.65485 −0.252640
\(502\) 17.6647i 0.788416i
\(503\) 3.57111i 0.159228i 0.996826 + 0.0796140i \(0.0253688\pi\)
−0.996826 + 0.0796140i \(0.974631\pi\)
\(504\) −0.740910 −0.0330028
\(505\) −15.4288 + 39.3968i −0.686573 + 1.75313i
\(506\) 8.29302 0.368670
\(507\) 2.71677i 0.120656i
\(508\) 8.45686i 0.375213i
\(509\) −36.1976 −1.60443 −0.802215 0.597036i \(-0.796345\pi\)
−0.802215 + 0.597036i \(0.796345\pi\)
\(510\) −8.79594 3.44472i −0.389491 0.152535i
\(511\) 3.17268 0.140351
\(512\) 14.1111i 0.623627i
\(513\) 0.452774i 0.0199905i
\(514\) 2.47927 0.109356
\(515\) −2.38559 0.934261i −0.105122 0.0411685i
\(516\) 13.5229 0.595313
\(517\) 18.0654i 0.794514i
\(518\) 0.329187i 0.0144636i
\(519\) 14.1686 0.621934
\(520\) −7.92407 + 20.2338i −0.347494 + 0.887309i
\(521\) 20.1464 0.882630 0.441315 0.897352i \(-0.354512\pi\)
0.441315 + 0.897352i \(0.354512\pi\)
\(522\) 2.43209i 0.106450i
\(523\) 26.2012i 1.14570i 0.819661 + 0.572848i \(0.194162\pi\)
−0.819661 + 0.572848i \(0.805838\pi\)
\(524\) 21.9741 0.959943
\(525\) 1.10934 + 1.02630i 0.0484156 + 0.0447914i
\(526\) −7.16867 −0.312569
\(527\) 6.05458i 0.263742i
\(528\) 3.57860i 0.155739i
\(529\) 3.89869 0.169508
\(530\) −4.83275 + 12.3402i −0.209921 + 0.536024i
\(531\) −3.25033 −0.141052
\(532\) 0.207078i 0.00897799i
\(533\) 35.6974i 1.54623i
\(534\) −10.9043 −0.471877
\(535\) −17.3713 6.80305i −0.751025 0.294121i
\(536\) −10.4559 −0.451627
\(537\) 5.04745i 0.217813i
\(538\) 5.84933i 0.252182i
\(539\) 18.7878 0.809249
\(540\) 3.15052 + 1.23383i 0.135577 + 0.0530955i
\(541\) 13.9835 0.601196 0.300598 0.953751i \(-0.402814\pi\)
0.300598 + 0.953751i \(0.402814\pi\)
\(542\) 5.82335i 0.250134i
\(543\) 2.43964i 0.104695i
\(544\) 35.2423 1.51100
\(545\) 12.8944 32.9252i 0.552334 1.41036i
\(546\) 0.836085 0.0357811
\(547\) 41.0507i 1.75520i −0.479392 0.877601i \(-0.659143\pi\)
0.479392 0.877601i \(-0.340857\pi\)
\(548\) 3.34298i 0.142805i
\(549\) 5.35535 0.228561
\(550\) 6.44294 6.96426i 0.274728 0.296957i
\(551\) −1.57821 −0.0672339
\(552\) 10.7134i 0.455991i
\(553\) 4.42341i 0.188103i
\(554\) −4.32059 −0.183564
\(555\) 1.27276 3.24993i 0.0540256 0.137952i
\(556\) 2.97006 0.125958
\(557\) 6.60110i 0.279697i 0.990173 + 0.139849i \(0.0446616\pi\)
−0.990173 + 0.139849i \(0.955338\pi\)
\(558\) 0.697747i 0.0295380i
\(559\) −35.4299 −1.49852
\(560\) −0.828136 0.324320i −0.0349951 0.0137050i
\(561\) −16.4652 −0.695163
\(562\) 13.6803i 0.577067i
\(563\) 21.0671i 0.887872i −0.896059 0.443936i \(-0.853582\pi\)
0.896059 0.443936i \(-0.146418\pi\)
\(564\) −10.0518 −0.423259
\(565\) −7.40795 2.90115i −0.311655 0.122052i
\(566\) 22.6443 0.951812
\(567\) 0.302253i 0.0126935i
\(568\) 21.6495i 0.908394i
\(569\) 10.5055 0.440412 0.220206 0.975453i \(-0.429327\pi\)
0.220206 + 0.975453i \(0.429327\pi\)
\(570\) −0.257604 + 0.657779i −0.0107898 + 0.0275513i
\(571\) −16.4974 −0.690393 −0.345196 0.938530i \(-0.612188\pi\)
−0.345196 + 0.938530i \(0.612188\pi\)
\(572\) 16.3135i 0.682102i
\(573\) 4.10435i 0.171462i
\(574\) −1.89900 −0.0792626
\(575\) −14.8400 + 16.0408i −0.618872 + 0.668947i
\(576\) 1.42957 0.0595654
\(577\) 21.4180i 0.891642i −0.895122 0.445821i \(-0.852912\pi\)
0.895122 0.445821i \(-0.147088\pi\)
\(578\) 13.7163i 0.570522i
\(579\) 16.5430 0.687504
\(580\) 4.30068 10.9816i 0.178576 0.455985i
\(581\) 3.08489 0.127983
\(582\) 6.17692i 0.256042i
\(583\) 23.0998i 0.956694i
\(584\) −25.7306 −1.06474
\(585\) −8.25433 3.23262i −0.341275 0.133652i
\(586\) 10.3057 0.425725
\(587\) 46.8914i 1.93542i −0.252076 0.967708i \(-0.581113\pi\)
0.252076 0.967708i \(-0.418887\pi\)
\(588\) 10.4538i 0.431108i
\(589\) 0.452774 0.0186562
\(590\) 4.72199 + 1.84926i 0.194401 + 0.0761326i
\(591\) 15.5640 0.640216
\(592\) 2.05401i 0.0844195i
\(593\) 41.4585i 1.70250i −0.524764 0.851248i \(-0.675846\pi\)
0.524764 0.851248i \(-0.324154\pi\)
\(594\) −1.89750 −0.0778553
\(595\) −1.49220 + 3.81027i −0.0611744 + 0.156206i
\(596\) −23.4741 −0.961538
\(597\) 2.17021i 0.0888210i
\(598\) 12.0896i 0.494379i
\(599\) 7.10882 0.290459 0.145229 0.989398i \(-0.453608\pi\)
0.145229 + 0.989398i \(0.453608\pi\)
\(600\) −8.99680 8.32333i −0.367293 0.339799i
\(601\) 29.2479 1.19305 0.596523 0.802596i \(-0.296548\pi\)
0.596523 + 0.802596i \(0.296548\pi\)
\(602\) 1.88476i 0.0768173i
\(603\) 4.26548i 0.173704i
\(604\) 5.30986 0.216055
\(605\) −2.93913 + 7.50492i −0.119492 + 0.305119i
\(606\) −13.2025 −0.536317
\(607\) 0.717581i 0.0291257i 0.999894 + 0.0145629i \(0.00463566\pi\)
−0.999894 + 0.0145629i \(0.995364\pi\)
\(608\) 2.63549i 0.106883i
\(609\) −1.05355 −0.0426918
\(610\) −7.78012 3.04690i −0.315008 0.123365i
\(611\) 26.3357 1.06543
\(612\) 9.16149i 0.370331i
\(613\) 38.5954i 1.55885i −0.626493 0.779427i \(-0.715510\pi\)
0.626493 0.779427i \(-0.284490\pi\)
\(614\) 16.4455 0.663687
\(615\) 18.7480 + 7.34222i 0.755993 + 0.296067i
\(616\) 2.01488 0.0811818
\(617\) 40.7474i 1.64043i −0.572056 0.820214i \(-0.693854\pi\)
0.572056 0.820214i \(-0.306146\pi\)
\(618\) 0.799454i 0.0321588i
\(619\) 34.8629 1.40126 0.700628 0.713526i \(-0.252903\pi\)
0.700628 + 0.713526i \(0.252903\pi\)
\(620\) −1.23383 + 3.15052i −0.0495517 + 0.126528i
\(621\) 4.37050 0.175382
\(622\) 6.95182i 0.278743i
\(623\) 4.72360i 0.189247i
\(624\) 5.21689 0.208843
\(625\) 1.94125 + 24.9245i 0.0776501 + 0.996981i
\(626\) 7.06182 0.282247
\(627\) 1.23130i 0.0491735i
\(628\) 34.9181i 1.39338i
\(629\) 9.45056 0.376819
\(630\) −0.171966 + 0.439106i −0.00685127 + 0.0174944i
\(631\) 22.2668 0.886426 0.443213 0.896416i \(-0.353839\pi\)
0.443213 + 0.896416i \(0.353839\pi\)
\(632\) 35.8740i 1.42699i
\(633\) 19.8604i 0.789379i
\(634\) 1.48423 0.0589462
\(635\) 11.6366 + 4.55722i 0.461786 + 0.180848i
\(636\) 12.8530 0.509656
\(637\) 27.3889i 1.08519i
\(638\) 6.61399i 0.261850i
\(639\) −8.83190 −0.349385
\(640\) 22.1619 + 8.67918i 0.876026 + 0.343075i
\(641\) −27.6637 −1.09265 −0.546326 0.837572i \(-0.683974\pi\)
−0.546326 + 0.837572i \(0.683974\pi\)
\(642\) 5.82142i 0.229753i
\(643\) 33.2383i 1.31079i 0.755285 + 0.655396i \(0.227498\pi\)
−0.755285 + 0.655396i \(0.772502\pi\)
\(644\) −1.99887 −0.0787666
\(645\) 7.28720 18.6075i 0.286933 0.732671i
\(646\) −1.91277 −0.0752571
\(647\) 40.6171i 1.59682i 0.602113 + 0.798411i \(0.294326\pi\)
−0.602113 + 0.798411i \(0.705674\pi\)
\(648\) 2.45129i 0.0962957i
\(649\) 8.83915 0.346967
\(650\) 10.1525 + 9.39252i 0.398214 + 0.368405i
\(651\) 0.302253 0.0118462
\(652\) 25.1702i 0.985742i
\(653\) 17.9837i 0.703755i −0.936046 0.351878i \(-0.885543\pi\)
0.936046 0.351878i \(-0.114457\pi\)
\(654\) 11.0338 0.431456
\(655\) 11.8414 30.2364i 0.462680 1.18143i
\(656\) −11.8491 −0.462629
\(657\) 10.4968i 0.409517i
\(658\) 1.40098i 0.0546160i
\(659\) −11.2464 −0.438096 −0.219048 0.975714i \(-0.570295\pi\)
−0.219048 + 0.975714i \(0.570295\pi\)
\(660\) −8.56773 3.35535i −0.333499 0.130607i
\(661\) −38.5168 −1.49813 −0.749065 0.662496i \(-0.769497\pi\)
−0.749065 + 0.662496i \(0.769497\pi\)
\(662\) 3.95877i 0.153862i
\(663\) 24.0030i 0.932200i
\(664\) −25.0186 −0.970911
\(665\) 0.284940 + 0.111590i 0.0110495 + 0.00432728i
\(666\) 1.08911 0.0422021
\(667\) 15.2340i 0.589863i
\(668\) 8.55663i 0.331066i
\(669\) −2.56154 −0.0990350
\(670\) −2.42682 + 6.19678i −0.0937563 + 0.239402i
\(671\) −14.5637 −0.562225
\(672\) 1.75934i 0.0678682i
\(673\) 40.8275i 1.57378i 0.617091 + 0.786892i \(0.288311\pi\)
−0.617091 + 0.786892i \(0.711689\pi\)
\(674\) 5.79187 0.223095
\(675\) 3.39549 3.67024i 0.130693 0.141267i
\(676\) −4.11088 −0.158111
\(677\) 15.4388i 0.593362i 0.954977 + 0.296681i \(0.0958798\pi\)
−0.954977 + 0.296681i \(0.904120\pi\)
\(678\) 2.48253i 0.0953412i
\(679\) 2.67575 0.102686
\(680\) 12.1018 30.9015i 0.464084 1.18502i
\(681\) −4.46459 −0.171084
\(682\) 1.89750i 0.0726589i
\(683\) 35.3435i 1.35238i 0.736726 + 0.676191i \(0.236371\pi\)
−0.736726 + 0.676191i \(0.763629\pi\)
\(684\) 0.685115 0.0261960
\(685\) 4.59995 + 1.80146i 0.175755 + 0.0688303i
\(686\) 2.93328 0.111993
\(687\) 5.62097i 0.214453i
\(688\) 11.7603i 0.448357i
\(689\) −33.6748 −1.28291
\(690\) −6.34936 2.48658i −0.241716 0.0946623i
\(691\) 43.0687 1.63841 0.819206 0.573500i \(-0.194415\pi\)
0.819206 + 0.573500i \(0.194415\pi\)
\(692\) 21.4393i 0.814998i
\(693\) 0.821968i 0.0312240i
\(694\) 11.7872 0.447437
\(695\) 1.60050 4.08680i 0.0607103 0.155021i
\(696\) 8.54430 0.323871
\(697\) 54.5179i 2.06501i
\(698\) 7.76787i 0.294018i
\(699\) 4.15427 0.157129
\(700\) −1.55294 + 1.67860i −0.0586958 + 0.0634451i
\(701\) −32.6431 −1.23291 −0.616457 0.787388i \(-0.711433\pi\)
−0.616457 + 0.787388i \(0.711433\pi\)
\(702\) 2.76617i 0.104402i
\(703\) 0.706733i 0.0266549i
\(704\) −3.88766 −0.146522
\(705\) −5.41671 + 13.8313i −0.204005 + 0.520918i
\(706\) −1.90555 −0.0717163
\(707\) 5.71915i 0.215091i
\(708\) 4.91823i 0.184838i
\(709\) −7.48673 −0.281170 −0.140585 0.990069i \(-0.544898\pi\)
−0.140585 + 0.990069i \(0.544898\pi\)
\(710\) 12.8308 + 5.02486i 0.481530 + 0.188580i
\(711\) 14.6348 0.548847
\(712\) 38.3086i 1.43567i
\(713\) 4.37050i 0.163677i
\(714\) −1.27689 −0.0477864
\(715\) 22.4474 + 8.79099i 0.839484 + 0.328764i
\(716\) 7.63754 0.285428
\(717\) 19.9161i 0.743782i
\(718\) 5.25563i 0.196138i
\(719\) 22.0914 0.823870 0.411935 0.911213i \(-0.364853\pi\)
0.411935 + 0.911213i \(0.364853\pi\)
\(720\) −1.07301 + 2.73987i −0.0399886 + 0.102109i
\(721\) −0.346312 −0.0128973
\(722\) 13.1141i 0.488058i
\(723\) 23.9190i 0.889559i
\(724\) −3.69155 −0.137195
\(725\) −12.7931 11.8355i −0.475124 0.439558i
\(726\) −2.51503 −0.0933416
\(727\) 10.9437i 0.405881i 0.979191 + 0.202940i \(0.0650497\pi\)
−0.979191 + 0.202940i \(0.934950\pi\)
\(728\) 2.93729i 0.108863i
\(729\) −1.00000 −0.0370370
\(730\) −5.97207 + 15.2494i −0.221036 + 0.564406i
\(731\) 54.1094 2.00131
\(732\) 8.10345i 0.299512i
\(733\) 16.8981i 0.624145i 0.950058 + 0.312072i \(0.101023\pi\)
−0.950058 + 0.312072i \(0.898977\pi\)
\(734\) 17.7368 0.654676
\(735\) −14.3844 5.63333i −0.530578 0.207788i
\(736\) 25.4396 0.937718
\(737\) 11.5998i 0.427285i
\(738\) 6.28279i 0.231273i
\(739\) 43.3677 1.59531 0.797654 0.603115i \(-0.206074\pi\)
0.797654 + 0.603115i \(0.206074\pi\)
\(740\) 4.91763 + 1.92587i 0.180776 + 0.0707965i
\(741\) −1.79500 −0.0659408
\(742\) 1.79140i 0.0657644i
\(743\) 21.6647i 0.794799i −0.917646 0.397400i \(-0.869913\pi\)
0.917646 0.397400i \(-0.130087\pi\)
\(744\) −2.45129 −0.0898686
\(745\) −12.6497 + 32.3004i −0.463449 + 1.18340i
\(746\) 8.97388 0.328557
\(747\) 10.2063i 0.373430i
\(748\) 24.9144i 0.910959i
\(749\) −2.52175 −0.0921428
\(750\) −7.02105 + 3.40018i −0.256372 + 0.124157i
\(751\) −44.2265 −1.61385 −0.806923 0.590656i \(-0.798869\pi\)
−0.806923 + 0.590656i \(0.798869\pi\)
\(752\) 8.74165i 0.318775i
\(753\) 25.3168i 0.922597i
\(754\) −9.64188 −0.351136
\(755\) 2.86136 7.30636i 0.104136 0.265906i
\(756\) 0.457355 0.0166338
\(757\) 13.3596i 0.485565i −0.970081 0.242782i \(-0.921940\pi\)
0.970081 0.242782i \(-0.0780601\pi\)
\(758\) 19.0393i 0.691539i
\(759\) −11.8854 −0.431414
\(760\) −2.31088 0.905000i −0.0838243 0.0328278i
\(761\) −33.7383 −1.22301 −0.611507 0.791239i \(-0.709436\pi\)
−0.611507 + 0.791239i \(0.709436\pi\)
\(762\) 3.89964i 0.141269i
\(763\) 4.77968i 0.173036i
\(764\) 6.21050 0.224688
\(765\) 12.6062 + 4.93693i 0.455779 + 0.178495i
\(766\) 13.5539 0.489723
\(767\) 12.8857i 0.465276i
\(768\) 10.2860i 0.371163i
\(769\) 46.9399 1.69269 0.846347 0.532631i \(-0.178797\pi\)
0.846347 + 0.532631i \(0.178797\pi\)
\(770\) 0.467654 1.19413i 0.0168531 0.0430336i
\(771\) −3.55326 −0.127968
\(772\) 25.0321i 0.900924i
\(773\) 22.0050i 0.791463i 0.918366 + 0.395732i \(0.129509\pi\)
−0.918366 + 0.395732i \(0.870491\pi\)
\(774\) 6.23571 0.224138
\(775\) 3.67024 + 3.39549i 0.131839 + 0.121970i
\(776\) −21.7005 −0.779001
\(777\) 0.471786i 0.0169252i
\(778\) 23.5974i 0.846008i
\(779\) 4.07696 0.146072
\(780\) 4.89143 12.4900i 0.175141 0.447215i
\(781\) 24.0181 0.859433
\(782\) 18.4635i 0.660253i
\(783\) 3.48564i 0.124567i
\(784\) 9.09123 0.324687
\(785\) −48.0472 18.8166i −1.71488 0.671592i
\(786\) 10.1327 0.361423
\(787\) 9.52883i 0.339666i −0.985473 0.169833i \(-0.945677\pi\)
0.985473 0.169833i \(-0.0543229\pi\)
\(788\) 23.5506i 0.838956i
\(789\) 10.2740 0.365765
\(790\) −21.2610 8.32638i −0.756433 0.296239i
\(791\) −1.07540 −0.0382367
\(792\) 6.66619i 0.236873i
\(793\) 21.2310i 0.753933i
\(794\) −4.01421 −0.142459
\(795\) 6.92622 17.6858i 0.245648 0.627250i
\(796\) 3.28386 0.116393
\(797\) 46.7651i 1.65650i −0.560356 0.828252i \(-0.689336\pi\)
0.560356 0.828252i \(-0.310664\pi\)
\(798\) 0.0954884i 0.00338025i
\(799\) −40.2205 −1.42290
\(800\) 19.7643 21.3635i 0.698775 0.755315i
\(801\) 15.6279 0.552186
\(802\) 21.6282i 0.763720i
\(803\) 28.5456i 1.00735i
\(804\) 6.45431 0.227626
\(805\) −1.07715 + 2.75045i −0.0379645 + 0.0969405i
\(806\) 2.76617 0.0974343
\(807\) 8.38317i 0.295102i
\(808\) 46.3825i 1.63173i
\(809\) 41.5538 1.46095 0.730477 0.682938i \(-0.239298\pi\)
0.730477 + 0.682938i \(0.239298\pi\)
\(810\) 1.45277 + 0.568945i 0.0510453 + 0.0199907i
\(811\) 30.9980 1.08849 0.544244 0.838927i \(-0.316817\pi\)
0.544244 + 0.838927i \(0.316817\pi\)
\(812\) 1.59417i 0.0559445i
\(813\) 8.34595i 0.292705i
\(814\) −2.96179 −0.103811
\(815\) −34.6342 13.5637i −1.21318 0.475115i
\(816\) −7.96736 −0.278913
\(817\) 4.04641i 0.141566i
\(818\) 0.162723i 0.00568949i
\(819\) −1.19827 −0.0418708
\(820\) −11.1099 + 28.3686i −0.387974 + 0.990673i
\(821\) 0.962809 0.0336023 0.0168011 0.999859i \(-0.494652\pi\)
0.0168011 + 0.999859i \(0.494652\pi\)
\(822\) 1.54152i 0.0537668i
\(823\) 42.5061i 1.48167i −0.671687 0.740835i \(-0.734430\pi\)
0.671687 0.740835i \(-0.265570\pi\)
\(824\) 2.80860 0.0978423
\(825\) −9.23393 + 9.98108i −0.321484 + 0.347497i
\(826\) 0.685482 0.0238510
\(827\) 12.1193i 0.421429i 0.977548 + 0.210714i \(0.0675790\pi\)
−0.977548 + 0.210714i \(0.932421\pi\)
\(828\) 6.61323i 0.229826i
\(829\) 15.8215 0.549503 0.274752 0.961515i \(-0.411404\pi\)
0.274752 + 0.961515i \(0.411404\pi\)
\(830\) −5.80683 + 14.8275i −0.201558 + 0.514669i
\(831\) 6.19221 0.214805
\(832\) 5.66744i 0.196483i
\(833\) 41.8290i 1.44929i
\(834\) 1.36956 0.0474239
\(835\) −11.7739 4.61098i −0.407454 0.159570i
\(836\) −1.86315 −0.0644383
\(837\) 1.00000i 0.0345651i
\(838\) 2.33488i 0.0806571i
\(839\) −36.7412 −1.26845 −0.634224 0.773149i \(-0.718680\pi\)
−0.634224 + 0.773149i \(0.718680\pi\)
\(840\) −1.54265 0.604141i −0.0532263 0.0208448i
\(841\) −16.8503 −0.581046
\(842\) 6.36572i 0.219377i
\(843\) 19.6063i 0.675278i
\(844\) 30.0517 1.03442
\(845\) −2.21526 + 5.65657i −0.0762073 + 0.194592i
\(846\) −4.63512 −0.159359
\(847\) 1.08947i 0.0374348i
\(848\) 11.1777i 0.383845i
\(849\) −32.4535 −1.11380
\(850\) −15.5051 14.3445i −0.531822 0.492012i
\(851\) 6.82189 0.233852
\(852\) 13.3640i 0.457843i
\(853\) 1.32430i 0.0453430i −0.999743 0.0226715i \(-0.992783\pi\)
0.999743 0.0226715i \(-0.00721718\pi\)
\(854\) −1.12942 −0.0386481
\(855\) 0.369194 0.942719i 0.0126262 0.0322403i
\(856\) 20.4515 0.699018
\(857\) 25.8324i 0.882417i 0.897405 + 0.441208i \(0.145450\pi\)
−0.897405 + 0.441208i \(0.854550\pi\)
\(858\) 7.52251i 0.256814i
\(859\) −55.6807 −1.89980 −0.949901 0.312550i \(-0.898817\pi\)
−0.949901 + 0.312550i \(0.898817\pi\)
\(860\) 28.1560 + 11.0266i 0.960111 + 0.376005i
\(861\) 2.72161 0.0927523
\(862\) 14.9663i 0.509754i
\(863\) 28.8255i 0.981230i 0.871376 + 0.490615i \(0.163228\pi\)
−0.871376 + 0.490615i \(0.836772\pi\)
\(864\) −5.82076 −0.198026
\(865\) 29.5004 + 11.5531i 1.00304 + 0.392819i
\(866\) −9.03444 −0.307003
\(867\) 19.6580i 0.667620i
\(868\) 0.457355i 0.0155236i
\(869\) −39.7988 −1.35008
\(870\) 1.98314 5.06385i 0.0672346 0.171680i
\(871\) −16.9102 −0.572981
\(872\) 38.7634i 1.31269i
\(873\) 8.85267i 0.299618i
\(874\) −1.38074 −0.0467041
\(875\) 1.47291 + 3.04141i 0.0497933 + 0.102819i
\(876\) 15.8832 0.536642
\(877\) 30.4326i 1.02764i 0.857899 + 0.513818i \(0.171769\pi\)
−0.857899 + 0.513818i \(0.828231\pi\)
\(878\) 25.5258i 0.861454i
\(879\) −14.7700 −0.498180
\(880\) 2.91800 7.45099i 0.0983659 0.251173i
\(881\) 22.0975 0.744483 0.372242 0.928136i \(-0.378589\pi\)
0.372242 + 0.928136i \(0.378589\pi\)
\(882\) 4.82048i 0.162314i
\(883\) 57.3452i 1.92982i 0.262579 + 0.964910i \(0.415427\pi\)
−0.262579 + 0.964910i \(0.584573\pi\)
\(884\) 36.3202 1.22158
\(885\) −6.76748 2.65033i −0.227486 0.0890897i
\(886\) 12.9031 0.433487
\(887\) 5.33250i 0.179048i 0.995985 + 0.0895240i \(0.0285346\pi\)
−0.995985 + 0.0895240i \(0.971465\pi\)
\(888\) 3.82620i 0.128399i
\(889\) 1.68927 0.0566562
\(890\) −22.7039 8.89143i −0.761035 0.298041i
\(891\) 2.71947 0.0911055
\(892\) 3.87600i 0.129778i
\(893\) 3.00777i 0.100651i
\(894\) −10.8244 −0.362023
\(895\) 4.11570 10.5093i 0.137573 0.351286i
\(896\) 3.21720 0.107479
\(897\) 17.3266i 0.578518i
\(898\) 9.87524i 0.329541i
\(899\) −3.48564 −0.116253
\(900\) 5.55362 + 5.13789i 0.185121 + 0.171263i
\(901\) 51.4290 1.71335
\(902\) 17.0858i 0.568896i
\(903\) 2.70122i 0.0898909i
\(904\) 8.72151 0.290073
\(905\) −1.98929 + 5.07957i −0.0661264 + 0.168851i
\(906\) 2.44849 0.0813457
\(907\) 1.99170i 0.0661334i −0.999453 0.0330667i \(-0.989473\pi\)
0.999453 0.0330667i \(-0.0105274\pi\)
\(908\) 6.75560i 0.224192i
\(909\) 18.9217 0.627593
\(910\) 1.74081 + 0.681747i 0.0577072 + 0.0225997i
\(911\) 21.8337 0.723383 0.361691 0.932298i \(-0.382199\pi\)
0.361691 + 0.932298i \(0.382199\pi\)
\(912\) 0.595815i 0.0197294i
\(913\) 27.7557i 0.918580i
\(914\) 9.93404 0.328589
\(915\) 11.1503 + 4.36677i 0.368619 + 0.144361i
\(916\) 8.50537 0.281025
\(917\) 4.38935i 0.144949i
\(918\) 4.22456i 0.139431i
\(919\) −32.1622 −1.06093 −0.530466 0.847706i \(-0.677983\pi\)
−0.530466 + 0.847706i \(0.677983\pi\)
\(920\) 8.73571 22.3062i 0.288008 0.735415i
\(921\) −23.5695 −0.776640
\(922\) 3.97702i 0.130976i
\(923\) 35.0135i 1.15248i
\(924\) −1.24376 −0.0409167
\(925\) 5.30000 5.72885i 0.174263 0.188363i
\(926\) −7.06661 −0.232223
\(927\) 1.14577i 0.0376319i
\(928\) 20.2891i 0.666021i
\(929\) 8.94389 0.293439 0.146720 0.989178i \(-0.453128\pi\)
0.146720 + 0.989178i \(0.453128\pi\)
\(930\) −0.568945 + 1.45277i −0.0186564 + 0.0476383i
\(931\) −3.12806 −0.102518
\(932\) 6.28603i 0.205906i
\(933\) 9.96325i 0.326182i
\(934\) −10.4132 −0.340731
\(935\) −34.2822 13.4258i −1.12115 0.439071i
\(936\) 9.71798 0.317642
\(937\) 44.9105i 1.46716i 0.679602 + 0.733581i \(0.262153\pi\)
−0.679602 + 0.733581i \(0.737847\pi\)
\(938\) 0.899574i 0.0293721i
\(939\) −10.1209 −0.330283
\(940\) −20.9289 8.19630i −0.682625 0.267334i
\(941\) −13.2411 −0.431647 −0.215824 0.976432i \(-0.569244\pi\)
−0.215824 + 0.976432i \(0.569244\pi\)
\(942\) 16.1015i 0.524615i
\(943\) 39.3538i 1.28154i
\(944\) 4.27717 0.139210
\(945\) 0.246458 0.629320i 0.00801729 0.0204718i
\(946\) −16.9578 −0.551346
\(947\) 15.1047i 0.490836i 0.969417 + 0.245418i \(0.0789252\pi\)
−0.969417 + 0.245418i \(0.921075\pi\)
\(948\) 22.1446i 0.719223i
\(949\) −41.6137 −1.35084
\(950\) −1.07271 + 1.15951i −0.0348033 + 0.0376194i
\(951\) −2.12717 −0.0689783
\(952\) 4.48590i 0.145389i
\(953\) 47.2438i 1.53038i −0.643807 0.765188i \(-0.722646\pi\)
0.643807 0.765188i \(-0.277354\pi\)
\(954\) 5.92682 0.191888
\(955\) 3.34670 8.54565i 0.108297 0.276531i
\(956\) −30.1361 −0.974671
\(957\) 9.47907i 0.306415i
\(958\) 4.00473i 0.129387i
\(959\) 0.667765 0.0215633
\(960\) 2.97650 + 1.16568i 0.0960661 + 0.0376220i
\(961\) 1.00000 0.0322581
\(962\) 4.31770i 0.139208i
\(963\) 8.34317i 0.268855i
\(964\) −36.1931 −1.16570
\(965\) 34.4441 + 13.4892i 1.10880 + 0.434234i
\(966\) −0.921723 −0.0296560
\(967\) 9.85886i 0.317040i 0.987356 + 0.158520i \(0.0506722\pi\)
−0.987356 + 0.158520i \(0.949328\pi\)
\(968\) 8.83568i 0.283990i
\(969\) 2.74136 0.0880652
\(970\) −5.03668 + 12.8609i −0.161718 + 0.412940i
\(971\) 3.20360 0.102808 0.0514042 0.998678i \(-0.483630\pi\)
0.0514042 + 0.998678i \(0.483630\pi\)
\(972\) 1.51315i 0.0485343i
\(973\) 0.593272i 0.0190194i
\(974\) −20.3905 −0.653355
\(975\) −14.5504 13.4612i −0.465986 0.431104i
\(976\) −7.04722 −0.225576
\(977\) 31.1531i 0.996676i −0.866983 0.498338i \(-0.833944\pi\)
0.866983 0.498338i \(-0.166056\pi\)
\(978\) 11.6065i 0.371136i
\(979\) −42.4996 −1.35829
\(980\) 8.52407 21.7658i 0.272291 0.695284i
\(981\) −15.8135 −0.504885
\(982\) 17.0780i 0.544981i
\(983\) 33.1726i 1.05804i −0.848609 0.529021i \(-0.822559\pi\)
0.848609 0.529021i \(-0.177441\pi\)
\(984\) −22.0724 −0.703642
\(985\) 32.4056 + 12.6909i 1.03253 + 0.404366i
\(986\) 14.7253 0.468949
\(987\) 2.00787i 0.0639111i
\(988\) 2.71610i 0.0864106i
\(989\) 39.0589 1.24200
\(990\) −3.95077 1.54723i −0.125564 0.0491741i
\(991\) −40.0379 −1.27185 −0.635923 0.771752i \(-0.719380\pi\)
−0.635923 + 0.771752i \(0.719380\pi\)
\(992\) 5.82076i 0.184809i
\(993\) 5.67365i 0.180048i
\(994\) 1.86262 0.0590786
\(995\) 1.76960 4.51859i 0.0561001 0.143249i
\(996\) 15.4437 0.489352
\(997\) 32.1083i 1.01688i 0.861097 + 0.508441i \(0.169778\pi\)
−0.861097 + 0.508441i \(0.830222\pi\)
\(998\) 30.0859i 0.952353i
\(999\) −1.56089 −0.0493845
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.c.a.94.7 yes 10
3.2 odd 2 1395.2.c.f.559.4 10
5.2 odd 4 2325.2.a.x.1.2 5
5.3 odd 4 2325.2.a.w.1.4 5
5.4 even 2 inner 465.2.c.a.94.4 10
15.2 even 4 6975.2.a.bs.1.4 5
15.8 even 4 6975.2.a.bv.1.2 5
15.14 odd 2 1395.2.c.f.559.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.c.a.94.4 10 5.4 even 2 inner
465.2.c.a.94.7 yes 10 1.1 even 1 trivial
1395.2.c.f.559.4 10 3.2 odd 2
1395.2.c.f.559.7 10 15.14 odd 2
2325.2.a.w.1.4 5 5.3 odd 4
2325.2.a.x.1.2 5 5.2 odd 4
6975.2.a.bs.1.4 5 15.2 even 4
6975.2.a.bv.1.2 5 15.8 even 4