Properties

Label 465.2.a.e.1.3
Level $465$
Weight $2$
Character 465.1
Self dual yes
Analytic conductor $3.713$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(1,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.51414\) of defining polynomial
Character \(\chi\) \(=\) 465.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51414 q^{2} -1.00000 q^{3} +4.32088 q^{4} -1.00000 q^{5} -2.51414 q^{6} +0.485863 q^{7} +5.83502 q^{8} +1.00000 q^{9} -2.51414 q^{10} +5.02827 q^{11} -4.32088 q^{12} +3.51414 q^{13} +1.22153 q^{14} +1.00000 q^{15} +6.02827 q^{16} -1.32088 q^{17} +2.51414 q^{18} -6.64177 q^{19} -4.32088 q^{20} -0.485863 q^{21} +12.6418 q^{22} +0.292611 q^{23} -5.83502 q^{24} +1.00000 q^{25} +8.83502 q^{26} -1.00000 q^{27} +2.09936 q^{28} -9.86330 q^{29} +2.51414 q^{30} +1.00000 q^{31} +3.48586 q^{32} -5.02827 q^{33} -3.32088 q^{34} -0.485863 q^{35} +4.32088 q^{36} +5.51414 q^{37} -16.6983 q^{38} -3.51414 q^{39} -5.83502 q^{40} -7.02827 q^{41} -1.22153 q^{42} -1.02827 q^{43} +21.7266 q^{44} -1.00000 q^{45} +0.735663 q^{46} -6.93438 q^{47} -6.02827 q^{48} -6.76394 q^{49} +2.51414 q^{50} +1.32088 q^{51} +15.1842 q^{52} -1.70739 q^{53} -2.51414 q^{54} -5.02827 q^{55} +2.83502 q^{56} +6.64177 q^{57} -24.7977 q^{58} -2.19325 q^{59} +4.32088 q^{60} -2.00000 q^{61} +2.51414 q^{62} +0.485863 q^{63} -3.29261 q^{64} -3.51414 q^{65} -12.6418 q^{66} +9.12763 q^{67} -5.70739 q^{68} -0.292611 q^{69} -1.22153 q^{70} +13.4768 q^{71} +5.83502 q^{72} +12.5424 q^{73} +13.8633 q^{74} -1.00000 q^{75} -28.6983 q^{76} +2.44305 q^{77} -8.83502 q^{78} -0.349158 q^{79} -6.02827 q^{80} +1.00000 q^{81} -17.6700 q^{82} +10.9344 q^{83} -2.09936 q^{84} +1.32088 q^{85} -2.58522 q^{86} +9.86330 q^{87} +29.3401 q^{88} +5.03374 q^{89} -2.51414 q^{90} +1.70739 q^{91} +1.26434 q^{92} -1.00000 q^{93} -17.4340 q^{94} +6.64177 q^{95} -3.48586 q^{96} +10.4431 q^{97} -17.0055 q^{98} +5.02827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 3 q^{3} + 5 q^{4} - 3 q^{5} - q^{6} + 8 q^{7} + 3 q^{8} + 3 q^{9} - q^{10} + 2 q^{11} - 5 q^{12} + 4 q^{13} - 8 q^{14} + 3 q^{15} + 5 q^{16} + 4 q^{17} + q^{18} - 4 q^{19} - 5 q^{20} - 8 q^{21}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51414 1.77776 0.888882 0.458137i \(-0.151483\pi\)
0.888882 + 0.458137i \(0.151483\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.32088 2.16044
\(5\) −1.00000 −0.447214
\(6\) −2.51414 −1.02639
\(7\) 0.485863 0.183639 0.0918195 0.995776i \(-0.470732\pi\)
0.0918195 + 0.995776i \(0.470732\pi\)
\(8\) 5.83502 2.06299
\(9\) 1.00000 0.333333
\(10\) −2.51414 −0.795040
\(11\) 5.02827 1.51608 0.758041 0.652207i \(-0.226157\pi\)
0.758041 + 0.652207i \(0.226157\pi\)
\(12\) −4.32088 −1.24733
\(13\) 3.51414 0.974646 0.487323 0.873222i \(-0.337973\pi\)
0.487323 + 0.873222i \(0.337973\pi\)
\(14\) 1.22153 0.326467
\(15\) 1.00000 0.258199
\(16\) 6.02827 1.50707
\(17\) −1.32088 −0.320362 −0.160181 0.987088i \(-0.551208\pi\)
−0.160181 + 0.987088i \(0.551208\pi\)
\(18\) 2.51414 0.592588
\(19\) −6.64177 −1.52373 −0.761863 0.647738i \(-0.775715\pi\)
−0.761863 + 0.647738i \(0.775715\pi\)
\(20\) −4.32088 −0.966179
\(21\) −0.485863 −0.106024
\(22\) 12.6418 2.69523
\(23\) 0.292611 0.0610135 0.0305068 0.999535i \(-0.490288\pi\)
0.0305068 + 0.999535i \(0.490288\pi\)
\(24\) −5.83502 −1.19107
\(25\) 1.00000 0.200000
\(26\) 8.83502 1.73269
\(27\) −1.00000 −0.192450
\(28\) 2.09936 0.396741
\(29\) −9.86330 −1.83157 −0.915784 0.401671i \(-0.868429\pi\)
−0.915784 + 0.401671i \(0.868429\pi\)
\(30\) 2.51414 0.459017
\(31\) 1.00000 0.179605
\(32\) 3.48586 0.616219
\(33\) −5.02827 −0.875310
\(34\) −3.32088 −0.569527
\(35\) −0.485863 −0.0821258
\(36\) 4.32088 0.720147
\(37\) 5.51414 0.906519 0.453259 0.891379i \(-0.350261\pi\)
0.453259 + 0.891379i \(0.350261\pi\)
\(38\) −16.6983 −2.70882
\(39\) −3.51414 −0.562712
\(40\) −5.83502 −0.922598
\(41\) −7.02827 −1.09763 −0.548816 0.835943i \(-0.684921\pi\)
−0.548816 + 0.835943i \(0.684921\pi\)
\(42\) −1.22153 −0.188486
\(43\) −1.02827 −0.156810 −0.0784051 0.996922i \(-0.524983\pi\)
−0.0784051 + 0.996922i \(0.524983\pi\)
\(44\) 21.7266 3.27541
\(45\) −1.00000 −0.149071
\(46\) 0.735663 0.108468
\(47\) −6.93438 −1.01148 −0.505742 0.862685i \(-0.668781\pi\)
−0.505742 + 0.862685i \(0.668781\pi\)
\(48\) −6.02827 −0.870106
\(49\) −6.76394 −0.966277
\(50\) 2.51414 0.355553
\(51\) 1.32088 0.184961
\(52\) 15.1842 2.10567
\(53\) −1.70739 −0.234528 −0.117264 0.993101i \(-0.537412\pi\)
−0.117264 + 0.993101i \(0.537412\pi\)
\(54\) −2.51414 −0.342131
\(55\) −5.02827 −0.678012
\(56\) 2.83502 0.378846
\(57\) 6.64177 0.879724
\(58\) −24.7977 −3.25609
\(59\) −2.19325 −0.285537 −0.142769 0.989756i \(-0.545600\pi\)
−0.142769 + 0.989756i \(0.545600\pi\)
\(60\) 4.32088 0.557824
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 2.51414 0.319296
\(63\) 0.485863 0.0612130
\(64\) −3.29261 −0.411576
\(65\) −3.51414 −0.435875
\(66\) −12.6418 −1.55609
\(67\) 9.12763 1.11512 0.557559 0.830137i \(-0.311738\pi\)
0.557559 + 0.830137i \(0.311738\pi\)
\(68\) −5.70739 −0.692123
\(69\) −0.292611 −0.0352262
\(70\) −1.22153 −0.146000
\(71\) 13.4768 1.59940 0.799700 0.600399i \(-0.204992\pi\)
0.799700 + 0.600399i \(0.204992\pi\)
\(72\) 5.83502 0.687664
\(73\) 12.5424 1.46798 0.733989 0.679161i \(-0.237656\pi\)
0.733989 + 0.679161i \(0.237656\pi\)
\(74\) 13.8633 1.61158
\(75\) −1.00000 −0.115470
\(76\) −28.6983 −3.29192
\(77\) 2.44305 0.278412
\(78\) −8.83502 −1.00037
\(79\) −0.349158 −0.0392834 −0.0196417 0.999807i \(-0.506253\pi\)
−0.0196417 + 0.999807i \(0.506253\pi\)
\(80\) −6.02827 −0.673982
\(81\) 1.00000 0.111111
\(82\) −17.6700 −1.95133
\(83\) 10.9344 1.20020 0.600102 0.799923i \(-0.295127\pi\)
0.600102 + 0.799923i \(0.295127\pi\)
\(84\) −2.09936 −0.229059
\(85\) 1.32088 0.143270
\(86\) −2.58522 −0.278772
\(87\) 9.86330 1.05746
\(88\) 29.3401 3.12766
\(89\) 5.03374 0.533575 0.266788 0.963755i \(-0.414038\pi\)
0.266788 + 0.963755i \(0.414038\pi\)
\(90\) −2.51414 −0.265013
\(91\) 1.70739 0.178983
\(92\) 1.26434 0.131816
\(93\) −1.00000 −0.103695
\(94\) −17.4340 −1.79818
\(95\) 6.64177 0.681431
\(96\) −3.48586 −0.355774
\(97\) 10.4431 1.06033 0.530166 0.847894i \(-0.322130\pi\)
0.530166 + 0.847894i \(0.322130\pi\)
\(98\) −17.0055 −1.71781
\(99\) 5.02827 0.505361
\(100\) 4.32088 0.432088
\(101\) −11.6135 −1.15559 −0.577793 0.816183i \(-0.696086\pi\)
−0.577793 + 0.816183i \(0.696086\pi\)
\(102\) 3.32088 0.328817
\(103\) −3.76940 −0.371410 −0.185705 0.982606i \(-0.559457\pi\)
−0.185705 + 0.982606i \(0.559457\pi\)
\(104\) 20.5051 2.01069
\(105\) 0.485863 0.0474154
\(106\) −4.29261 −0.416935
\(107\) −6.73566 −0.651161 −0.325581 0.945514i \(-0.605560\pi\)
−0.325581 + 0.945514i \(0.605560\pi\)
\(108\) −4.32088 −0.415777
\(109\) −3.90611 −0.374137 −0.187069 0.982347i \(-0.559899\pi\)
−0.187069 + 0.982347i \(0.559899\pi\)
\(110\) −12.6418 −1.20535
\(111\) −5.51414 −0.523379
\(112\) 2.92892 0.276757
\(113\) −15.0848 −1.41906 −0.709530 0.704675i \(-0.751093\pi\)
−0.709530 + 0.704675i \(0.751093\pi\)
\(114\) 16.6983 1.56394
\(115\) −0.292611 −0.0272861
\(116\) −42.6182 −3.95700
\(117\) 3.51414 0.324882
\(118\) −5.51414 −0.507617
\(119\) −0.641769 −0.0588309
\(120\) 5.83502 0.532662
\(121\) 14.2835 1.29850
\(122\) −5.02827 −0.455239
\(123\) 7.02827 0.633718
\(124\) 4.32088 0.388027
\(125\) −1.00000 −0.0894427
\(126\) 1.22153 0.108822
\(127\) −6.25526 −0.555065 −0.277532 0.960716i \(-0.589517\pi\)
−0.277532 + 0.960716i \(0.589517\pi\)
\(128\) −15.2498 −1.34790
\(129\) 1.02827 0.0905345
\(130\) −8.83502 −0.774883
\(131\) −22.1186 −1.93251 −0.966254 0.257592i \(-0.917071\pi\)
−0.966254 + 0.257592i \(0.917071\pi\)
\(132\) −21.7266 −1.89106
\(133\) −3.22699 −0.279816
\(134\) 22.9481 1.98242
\(135\) 1.00000 0.0860663
\(136\) −7.70739 −0.660903
\(137\) −14.6044 −1.24774 −0.623870 0.781528i \(-0.714441\pi\)
−0.623870 + 0.781528i \(0.714441\pi\)
\(138\) −0.735663 −0.0626238
\(139\) 12.8970 1.09391 0.546956 0.837161i \(-0.315786\pi\)
0.546956 + 0.837161i \(0.315786\pi\)
\(140\) −2.09936 −0.177428
\(141\) 6.93438 0.583980
\(142\) 33.8825 2.84336
\(143\) 17.6700 1.47764
\(144\) 6.02827 0.502356
\(145\) 9.86330 0.819102
\(146\) 31.5333 2.60972
\(147\) 6.76394 0.557880
\(148\) 23.8259 1.95848
\(149\) 16.3118 1.33632 0.668158 0.744020i \(-0.267083\pi\)
0.668158 + 0.744020i \(0.267083\pi\)
\(150\) −2.51414 −0.205278
\(151\) 19.3774 1.57691 0.788457 0.615090i \(-0.210881\pi\)
0.788457 + 0.615090i \(0.210881\pi\)
\(152\) −38.7549 −3.14343
\(153\) −1.32088 −0.106787
\(154\) 6.14217 0.494950
\(155\) −1.00000 −0.0803219
\(156\) −15.1842 −1.21571
\(157\) −3.80128 −0.303375 −0.151688 0.988428i \(-0.548471\pi\)
−0.151688 + 0.988428i \(0.548471\pi\)
\(158\) −0.877832 −0.0698366
\(159\) 1.70739 0.135405
\(160\) −3.48586 −0.275582
\(161\) 0.142169 0.0112045
\(162\) 2.51414 0.197529
\(163\) 12.5424 0.982397 0.491199 0.871048i \(-0.336559\pi\)
0.491199 + 0.871048i \(0.336559\pi\)
\(164\) −30.3684 −2.37137
\(165\) 5.02827 0.391451
\(166\) 27.4905 2.13368
\(167\) 22.2553 1.72216 0.861082 0.508466i \(-0.169787\pi\)
0.861082 + 0.508466i \(0.169787\pi\)
\(168\) −2.83502 −0.218727
\(169\) −0.650842 −0.0500647
\(170\) 3.32088 0.254700
\(171\) −6.64177 −0.507909
\(172\) −4.44305 −0.338780
\(173\) −10.9717 −0.834165 −0.417082 0.908869i \(-0.636947\pi\)
−0.417082 + 0.908869i \(0.636947\pi\)
\(174\) 24.7977 1.87991
\(175\) 0.485863 0.0367278
\(176\) 30.3118 2.28484
\(177\) 2.19325 0.164855
\(178\) 12.6555 0.948570
\(179\) −15.9253 −1.19031 −0.595157 0.803610i \(-0.702910\pi\)
−0.595157 + 0.803610i \(0.702910\pi\)
\(180\) −4.32088 −0.322060
\(181\) −8.05655 −0.598838 −0.299419 0.954122i \(-0.596793\pi\)
−0.299419 + 0.954122i \(0.596793\pi\)
\(182\) 4.29261 0.318189
\(183\) 2.00000 0.147844
\(184\) 1.70739 0.125870
\(185\) −5.51414 −0.405407
\(186\) −2.51414 −0.184345
\(187\) −6.64177 −0.485694
\(188\) −29.9627 −2.18525
\(189\) −0.485863 −0.0353413
\(190\) 16.6983 1.21142
\(191\) 6.19325 0.448128 0.224064 0.974574i \(-0.428068\pi\)
0.224064 + 0.974574i \(0.428068\pi\)
\(192\) 3.29261 0.237624
\(193\) −2.25526 −0.162337 −0.0811687 0.996700i \(-0.525865\pi\)
−0.0811687 + 0.996700i \(0.525865\pi\)
\(194\) 26.2553 1.88502
\(195\) 3.51414 0.251653
\(196\) −29.2262 −2.08759
\(197\) 9.32088 0.664086 0.332043 0.943264i \(-0.392262\pi\)
0.332043 + 0.943264i \(0.392262\pi\)
\(198\) 12.6418 0.898411
\(199\) 16.5479 1.17305 0.586524 0.809932i \(-0.300496\pi\)
0.586524 + 0.809932i \(0.300496\pi\)
\(200\) 5.83502 0.412598
\(201\) −9.12763 −0.643814
\(202\) −29.1979 −2.05436
\(203\) −4.79221 −0.336347
\(204\) 5.70739 0.399597
\(205\) 7.02827 0.490876
\(206\) −9.47679 −0.660279
\(207\) 0.292611 0.0203378
\(208\) 21.1842 1.46886
\(209\) −33.3966 −2.31009
\(210\) 1.22153 0.0842933
\(211\) 25.0101 1.72177 0.860884 0.508801i \(-0.169911\pi\)
0.860884 + 0.508801i \(0.169911\pi\)
\(212\) −7.37743 −0.506684
\(213\) −13.4768 −0.923414
\(214\) −16.9344 −1.15761
\(215\) 1.02827 0.0701277
\(216\) −5.83502 −0.397023
\(217\) 0.485863 0.0329825
\(218\) −9.82048 −0.665127
\(219\) −12.5424 −0.847538
\(220\) −21.7266 −1.46481
\(221\) −4.64177 −0.312239
\(222\) −13.8633 −0.930443
\(223\) 19.2835 1.29132 0.645661 0.763625i \(-0.276582\pi\)
0.645661 + 0.763625i \(0.276582\pi\)
\(224\) 1.69365 0.113162
\(225\) 1.00000 0.0666667
\(226\) −37.9253 −2.52275
\(227\) 23.4340 1.55537 0.777684 0.628655i \(-0.216394\pi\)
0.777684 + 0.628655i \(0.216394\pi\)
\(228\) 28.6983 1.90059
\(229\) −25.0283 −1.65391 −0.826957 0.562265i \(-0.809930\pi\)
−0.826957 + 0.562265i \(0.809930\pi\)
\(230\) −0.735663 −0.0485082
\(231\) −2.44305 −0.160741
\(232\) −57.5525 −3.77851
\(233\) 18.7175 1.22623 0.613113 0.789995i \(-0.289917\pi\)
0.613113 + 0.789995i \(0.289917\pi\)
\(234\) 8.83502 0.577563
\(235\) 6.93438 0.452349
\(236\) −9.47679 −0.616887
\(237\) 0.349158 0.0226803
\(238\) −1.61350 −0.104587
\(239\) −3.86876 −0.250249 −0.125125 0.992141i \(-0.539933\pi\)
−0.125125 + 0.992141i \(0.539933\pi\)
\(240\) 6.02827 0.389123
\(241\) −1.61350 −0.103934 −0.0519672 0.998649i \(-0.516549\pi\)
−0.0519672 + 0.998649i \(0.516549\pi\)
\(242\) 35.9108 2.30843
\(243\) −1.00000 −0.0641500
\(244\) −8.64177 −0.553233
\(245\) 6.76394 0.432132
\(246\) 17.6700 1.12660
\(247\) −23.3401 −1.48509
\(248\) 5.83502 0.370524
\(249\) −10.9344 −0.692938
\(250\) −2.51414 −0.159008
\(251\) −25.4713 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(252\) 2.09936 0.132247
\(253\) 1.47133 0.0925015
\(254\) −15.7266 −0.986774
\(255\) −1.32088 −0.0827170
\(256\) −31.7549 −1.98468
\(257\) 18.0192 1.12401 0.562003 0.827135i \(-0.310031\pi\)
0.562003 + 0.827135i \(0.310031\pi\)
\(258\) 2.58522 0.160949
\(259\) 2.67912 0.166472
\(260\) −15.1842 −0.941683
\(261\) −9.86330 −0.610523
\(262\) −55.6091 −3.43554
\(263\) 1.15951 0.0714987 0.0357494 0.999361i \(-0.488618\pi\)
0.0357494 + 0.999361i \(0.488618\pi\)
\(264\) −29.3401 −1.80576
\(265\) 1.70739 0.104884
\(266\) −8.11310 −0.497446
\(267\) −5.03374 −0.308060
\(268\) 39.4394 2.40915
\(269\) −7.80675 −0.475986 −0.237993 0.971267i \(-0.576489\pi\)
−0.237993 + 0.971267i \(0.576489\pi\)
\(270\) 2.51414 0.153006
\(271\) 17.7831 1.08025 0.540124 0.841585i \(-0.318377\pi\)
0.540124 + 0.841585i \(0.318377\pi\)
\(272\) −7.96265 −0.482807
\(273\) −1.70739 −0.103336
\(274\) −36.7175 −2.21819
\(275\) 5.02827 0.303216
\(276\) −1.26434 −0.0761041
\(277\) 25.9390 1.55853 0.779263 0.626697i \(-0.215594\pi\)
0.779263 + 0.626697i \(0.215594\pi\)
\(278\) 32.4249 1.94472
\(279\) 1.00000 0.0598684
\(280\) −2.83502 −0.169425
\(281\) −13.0283 −0.777202 −0.388601 0.921406i \(-0.627041\pi\)
−0.388601 + 0.921406i \(0.627041\pi\)
\(282\) 17.4340 1.03818
\(283\) 15.9006 0.945195 0.472598 0.881278i \(-0.343316\pi\)
0.472598 + 0.881278i \(0.343316\pi\)
\(284\) 58.2317 3.45541
\(285\) −6.64177 −0.393424
\(286\) 44.4249 2.62690
\(287\) −3.41478 −0.201568
\(288\) 3.48586 0.205406
\(289\) −15.2553 −0.897368
\(290\) 24.7977 1.45617
\(291\) −10.4431 −0.612183
\(292\) 54.1943 3.17148
\(293\) −29.4340 −1.71955 −0.859776 0.510672i \(-0.829397\pi\)
−0.859776 + 0.510672i \(0.829397\pi\)
\(294\) 17.0055 0.991779
\(295\) 2.19325 0.127696
\(296\) 32.1751 1.87014
\(297\) −5.02827 −0.291770
\(298\) 41.0101 2.37565
\(299\) 1.02827 0.0594666
\(300\) −4.32088 −0.249466
\(301\) −0.499600 −0.0287965
\(302\) 48.7175 2.80338
\(303\) 11.6135 0.667178
\(304\) −40.0384 −2.29636
\(305\) 2.00000 0.114520
\(306\) −3.32088 −0.189842
\(307\) 9.96812 0.568911 0.284455 0.958689i \(-0.408187\pi\)
0.284455 + 0.958689i \(0.408187\pi\)
\(308\) 10.5561 0.601492
\(309\) 3.76940 0.214434
\(310\) −2.51414 −0.142793
\(311\) 15.9945 0.906967 0.453483 0.891265i \(-0.350181\pi\)
0.453483 + 0.891265i \(0.350181\pi\)
\(312\) −20.5051 −1.16087
\(313\) −22.8542 −1.29180 −0.645899 0.763423i \(-0.723517\pi\)
−0.645899 + 0.763423i \(0.723517\pi\)
\(314\) −9.55695 −0.539330
\(315\) −0.485863 −0.0273753
\(316\) −1.50867 −0.0848695
\(317\) 14.6044 0.820266 0.410133 0.912026i \(-0.365482\pi\)
0.410133 + 0.912026i \(0.365482\pi\)
\(318\) 4.29261 0.240718
\(319\) −49.5953 −2.77681
\(320\) 3.29261 0.184063
\(321\) 6.73566 0.375948
\(322\) 0.357432 0.0199189
\(323\) 8.77301 0.488143
\(324\) 4.32088 0.240049
\(325\) 3.51414 0.194929
\(326\) 31.5333 1.74647
\(327\) 3.90611 0.216008
\(328\) −41.0101 −2.26441
\(329\) −3.36916 −0.185748
\(330\) 12.6418 0.695906
\(331\) −8.16137 −0.448589 −0.224295 0.974521i \(-0.572008\pi\)
−0.224295 + 0.974521i \(0.572008\pi\)
\(332\) 47.2462 2.59297
\(333\) 5.51414 0.302173
\(334\) 55.9528 3.06160
\(335\) −9.12763 −0.498696
\(336\) −2.92892 −0.159785
\(337\) −11.8825 −0.647281 −0.323640 0.946180i \(-0.604907\pi\)
−0.323640 + 0.946180i \(0.604907\pi\)
\(338\) −1.63631 −0.0890033
\(339\) 15.0848 0.819295
\(340\) 5.70739 0.309527
\(341\) 5.02827 0.272296
\(342\) −16.6983 −0.902942
\(343\) −6.68739 −0.361085
\(344\) −6.00000 −0.323498
\(345\) 0.292611 0.0157536
\(346\) −27.5844 −1.48295
\(347\) −18.3684 −0.986065 −0.493033 0.870011i \(-0.664112\pi\)
−0.493033 + 0.870011i \(0.664112\pi\)
\(348\) 42.6182 2.28457
\(349\) 11.2462 0.601995 0.300997 0.953625i \(-0.402680\pi\)
0.300997 + 0.953625i \(0.402680\pi\)
\(350\) 1.22153 0.0652933
\(351\) −3.51414 −0.187571
\(352\) 17.5279 0.934239
\(353\) 25.3593 1.34974 0.674869 0.737937i \(-0.264200\pi\)
0.674869 + 0.737937i \(0.264200\pi\)
\(354\) 5.51414 0.293073
\(355\) −13.4768 −0.715274
\(356\) 21.7502 1.15276
\(357\) 0.641769 0.0339660
\(358\) −40.0384 −2.11610
\(359\) 15.2890 0.806923 0.403461 0.914997i \(-0.367807\pi\)
0.403461 + 0.914997i \(0.367807\pi\)
\(360\) −5.83502 −0.307533
\(361\) 25.1131 1.32174
\(362\) −20.2553 −1.06459
\(363\) −14.2835 −0.749691
\(364\) 7.37743 0.386683
\(365\) −12.5424 −0.656500
\(366\) 5.02827 0.262832
\(367\) 6.05655 0.316149 0.158075 0.987427i \(-0.449471\pi\)
0.158075 + 0.987427i \(0.449471\pi\)
\(368\) 1.76394 0.0919516
\(369\) −7.02827 −0.365877
\(370\) −13.8633 −0.720718
\(371\) −0.829557 −0.0430685
\(372\) −4.32088 −0.224027
\(373\) 8.06748 0.417718 0.208859 0.977946i \(-0.433025\pi\)
0.208859 + 0.977946i \(0.433025\pi\)
\(374\) −16.6983 −0.863449
\(375\) 1.00000 0.0516398
\(376\) −40.4623 −2.08668
\(377\) −34.6610 −1.78513
\(378\) −1.22153 −0.0628285
\(379\) −36.8114 −1.89088 −0.945438 0.325803i \(-0.894365\pi\)
−0.945438 + 0.325803i \(0.894365\pi\)
\(380\) 28.6983 1.47219
\(381\) 6.25526 0.320467
\(382\) 15.5707 0.796666
\(383\) −3.63270 −0.185622 −0.0928111 0.995684i \(-0.529585\pi\)
−0.0928111 + 0.995684i \(0.529585\pi\)
\(384\) 15.2498 0.778213
\(385\) −2.44305 −0.124509
\(386\) −5.67004 −0.288598
\(387\) −1.02827 −0.0522701
\(388\) 45.1232 2.29078
\(389\) 15.2781 0.774629 0.387315 0.921948i \(-0.373403\pi\)
0.387315 + 0.921948i \(0.373403\pi\)
\(390\) 8.83502 0.447379
\(391\) −0.386505 −0.0195464
\(392\) −39.4677 −1.99342
\(393\) 22.1186 1.11573
\(394\) 23.4340 1.18059
\(395\) 0.349158 0.0175681
\(396\) 21.7266 1.09180
\(397\) −18.5852 −0.932766 −0.466383 0.884583i \(-0.654443\pi\)
−0.466383 + 0.884583i \(0.654443\pi\)
\(398\) 41.6036 2.08540
\(399\) 3.22699 0.161552
\(400\) 6.02827 0.301414
\(401\) 6.19325 0.309276 0.154638 0.987971i \(-0.450579\pi\)
0.154638 + 0.987971i \(0.450579\pi\)
\(402\) −22.9481 −1.14455
\(403\) 3.51414 0.175052
\(404\) −50.1806 −2.49658
\(405\) −1.00000 −0.0496904
\(406\) −12.0483 −0.597946
\(407\) 27.7266 1.37436
\(408\) 7.70739 0.381573
\(409\) −32.0565 −1.58509 −0.792547 0.609811i \(-0.791245\pi\)
−0.792547 + 0.609811i \(0.791245\pi\)
\(410\) 17.6700 0.872661
\(411\) 14.6044 0.720383
\(412\) −16.2871 −0.802410
\(413\) −1.06562 −0.0524357
\(414\) 0.735663 0.0361559
\(415\) −10.9344 −0.536748
\(416\) 12.2498 0.600596
\(417\) −12.8970 −0.631570
\(418\) −83.9637 −4.10680
\(419\) 9.78860 0.478205 0.239102 0.970994i \(-0.423147\pi\)
0.239102 + 0.970994i \(0.423147\pi\)
\(420\) 2.09936 0.102438
\(421\) −14.2745 −0.695695 −0.347847 0.937551i \(-0.613087\pi\)
−0.347847 + 0.937551i \(0.613087\pi\)
\(422\) 62.8789 3.06090
\(423\) −6.93438 −0.337161
\(424\) −9.96265 −0.483829
\(425\) −1.32088 −0.0640723
\(426\) −33.8825 −1.64161
\(427\) −0.971726 −0.0470251
\(428\) −29.1040 −1.40680
\(429\) −17.6700 −0.853118
\(430\) 2.58522 0.124670
\(431\) −22.8350 −1.09992 −0.549962 0.835190i \(-0.685358\pi\)
−0.549962 + 0.835190i \(0.685358\pi\)
\(432\) −6.02827 −0.290035
\(433\) 13.8259 0.664433 0.332216 0.943203i \(-0.392204\pi\)
0.332216 + 0.943203i \(0.392204\pi\)
\(434\) 1.22153 0.0586351
\(435\) −9.86330 −0.472909
\(436\) −16.8778 −0.808302
\(437\) −1.94345 −0.0929679
\(438\) −31.5333 −1.50672
\(439\) 39.8506 1.90197 0.950983 0.309243i \(-0.100076\pi\)
0.950983 + 0.309243i \(0.100076\pi\)
\(440\) −29.3401 −1.39873
\(441\) −6.76394 −0.322092
\(442\) −11.6700 −0.555087
\(443\) −10.1504 −0.482262 −0.241131 0.970493i \(-0.577518\pi\)
−0.241131 + 0.970493i \(0.577518\pi\)
\(444\) −23.8259 −1.13073
\(445\) −5.03374 −0.238622
\(446\) 48.4815 2.29566
\(447\) −16.3118 −0.771522
\(448\) −1.59976 −0.0755815
\(449\) −3.75020 −0.176983 −0.0884914 0.996077i \(-0.528205\pi\)
−0.0884914 + 0.996077i \(0.528205\pi\)
\(450\) 2.51414 0.118518
\(451\) −35.3401 −1.66410
\(452\) −65.1798 −3.06580
\(453\) −19.3774 −0.910431
\(454\) 58.9162 2.76508
\(455\) −1.70739 −0.0800436
\(456\) 38.7549 1.81486
\(457\) −1.70193 −0.0796127 −0.0398064 0.999207i \(-0.512674\pi\)
−0.0398064 + 0.999207i \(0.512674\pi\)
\(458\) −62.9245 −2.94027
\(459\) 1.32088 0.0616536
\(460\) −1.26434 −0.0589500
\(461\) 7.40931 0.345086 0.172543 0.985002i \(-0.444802\pi\)
0.172543 + 0.985002i \(0.444802\pi\)
\(462\) −6.14217 −0.285760
\(463\) −30.3865 −1.41218 −0.706090 0.708122i \(-0.749543\pi\)
−0.706090 + 0.708122i \(0.749543\pi\)
\(464\) −59.4586 −2.76030
\(465\) 1.00000 0.0463739
\(466\) 47.0584 2.17994
\(467\) 17.1040 0.791480 0.395740 0.918363i \(-0.370488\pi\)
0.395740 + 0.918363i \(0.370488\pi\)
\(468\) 15.1842 0.701889
\(469\) 4.43478 0.204779
\(470\) 17.4340 0.804170
\(471\) 3.80128 0.175154
\(472\) −12.7977 −0.589061
\(473\) −5.17044 −0.237737
\(474\) 0.877832 0.0403202
\(475\) −6.64177 −0.304745
\(476\) −2.77301 −0.127101
\(477\) −1.70739 −0.0781760
\(478\) −9.72659 −0.444884
\(479\) 21.2890 0.972719 0.486360 0.873759i \(-0.338324\pi\)
0.486360 + 0.873759i \(0.338324\pi\)
\(480\) 3.48586 0.159107
\(481\) 19.3774 0.883535
\(482\) −4.05655 −0.184771
\(483\) −0.142169 −0.00646890
\(484\) 61.7175 2.80534
\(485\) −10.4431 −0.474195
\(486\) −2.51414 −0.114044
\(487\) 20.4996 0.928926 0.464463 0.885593i \(-0.346247\pi\)
0.464463 + 0.885593i \(0.346247\pi\)
\(488\) −11.6700 −0.528278
\(489\) −12.5424 −0.567187
\(490\) 17.0055 0.768229
\(491\) −31.0667 −1.40202 −0.701010 0.713152i \(-0.747267\pi\)
−0.701010 + 0.713152i \(0.747267\pi\)
\(492\) 30.3684 1.36911
\(493\) 13.0283 0.586764
\(494\) −58.6802 −2.64015
\(495\) −5.02827 −0.226004
\(496\) 6.02827 0.270677
\(497\) 6.54787 0.293712
\(498\) −27.4905 −1.23188
\(499\) 15.3401 0.686717 0.343358 0.939205i \(-0.388435\pi\)
0.343358 + 0.939205i \(0.388435\pi\)
\(500\) −4.32088 −0.193236
\(501\) −22.2553 −0.994292
\(502\) −64.0384 −2.85817
\(503\) −14.9344 −0.665891 −0.332946 0.942946i \(-0.608043\pi\)
−0.332946 + 0.942946i \(0.608043\pi\)
\(504\) 2.83502 0.126282
\(505\) 11.6135 0.516794
\(506\) 3.69912 0.164446
\(507\) 0.650842 0.0289049
\(508\) −27.0283 −1.19919
\(509\) −1.22153 −0.0541432 −0.0270716 0.999633i \(-0.508618\pi\)
−0.0270716 + 0.999633i \(0.508618\pi\)
\(510\) −3.32088 −0.147051
\(511\) 6.09389 0.269578
\(512\) −49.3365 −2.18038
\(513\) 6.64177 0.293241
\(514\) 45.3027 1.99822
\(515\) 3.76940 0.166100
\(516\) 4.44305 0.195594
\(517\) −34.8680 −1.53349
\(518\) 6.73566 0.295948
\(519\) 10.9717 0.481605
\(520\) −20.5051 −0.899207
\(521\) 4.57429 0.200403 0.100202 0.994967i \(-0.468051\pi\)
0.100202 + 0.994967i \(0.468051\pi\)
\(522\) −24.7977 −1.08536
\(523\) −29.7831 −1.30233 −0.651163 0.758938i \(-0.725719\pi\)
−0.651163 + 0.758938i \(0.725719\pi\)
\(524\) −95.5717 −4.17507
\(525\) −0.485863 −0.0212048
\(526\) 2.91518 0.127108
\(527\) −1.32088 −0.0575386
\(528\) −30.3118 −1.31915
\(529\) −22.9144 −0.996277
\(530\) 4.29261 0.186459
\(531\) −2.19325 −0.0951790
\(532\) −13.9435 −0.604525
\(533\) −24.6983 −1.06980
\(534\) −12.6555 −0.547657
\(535\) 6.73566 0.291208
\(536\) 53.2599 2.30048
\(537\) 15.9253 0.687228
\(538\) −19.6272 −0.846190
\(539\) −34.0109 −1.46495
\(540\) 4.32088 0.185941
\(541\) −3.04748 −0.131021 −0.0655106 0.997852i \(-0.520868\pi\)
−0.0655106 + 0.997852i \(0.520868\pi\)
\(542\) 44.7092 1.92043
\(543\) 8.05655 0.345740
\(544\) −4.60442 −0.197413
\(545\) 3.90611 0.167319
\(546\) −4.29261 −0.183707
\(547\) 9.82595 0.420127 0.210064 0.977688i \(-0.432633\pi\)
0.210064 + 0.977688i \(0.432633\pi\)
\(548\) −63.1040 −2.69567
\(549\) −2.00000 −0.0853579
\(550\) 12.6418 0.539047
\(551\) 65.5097 2.79081
\(552\) −1.70739 −0.0726713
\(553\) −0.169643 −0.00721396
\(554\) 65.2143 2.77069
\(555\) 5.51414 0.234062
\(556\) 55.7266 2.36333
\(557\) −38.7922 −1.64368 −0.821839 0.569719i \(-0.807052\pi\)
−0.821839 + 0.569719i \(0.807052\pi\)
\(558\) 2.51414 0.106432
\(559\) −3.61350 −0.152835
\(560\) −2.92892 −0.123769
\(561\) 6.64177 0.280416
\(562\) −32.7549 −1.38168
\(563\) 2.73566 0.115294 0.0576472 0.998337i \(-0.481640\pi\)
0.0576472 + 0.998337i \(0.481640\pi\)
\(564\) 29.9627 1.26166
\(565\) 15.0848 0.634623
\(566\) 39.9764 1.68033
\(567\) 0.485863 0.0204043
\(568\) 78.6374 3.29955
\(569\) 4.39197 0.184121 0.0920605 0.995753i \(-0.470655\pi\)
0.0920605 + 0.995753i \(0.470655\pi\)
\(570\) −16.6983 −0.699416
\(571\) 9.67004 0.404679 0.202339 0.979315i \(-0.435146\pi\)
0.202339 + 0.979315i \(0.435146\pi\)
\(572\) 76.3502 3.19236
\(573\) −6.19325 −0.258727
\(574\) −8.58522 −0.358340
\(575\) 0.292611 0.0122027
\(576\) −3.29261 −0.137192
\(577\) 31.4148 1.30781 0.653907 0.756575i \(-0.273129\pi\)
0.653907 + 0.756575i \(0.273129\pi\)
\(578\) −38.3538 −1.59531
\(579\) 2.25526 0.0937256
\(580\) 42.6182 1.76962
\(581\) 5.31261 0.220404
\(582\) −26.2553 −1.08832
\(583\) −8.58522 −0.355564
\(584\) 73.1852 3.02843
\(585\) −3.51414 −0.145292
\(586\) −74.0011 −3.05696
\(587\) −27.2161 −1.12333 −0.561664 0.827366i \(-0.689838\pi\)
−0.561664 + 0.827366i \(0.689838\pi\)
\(588\) 29.2262 1.20527
\(589\) −6.64177 −0.273669
\(590\) 5.51414 0.227013
\(591\) −9.32088 −0.383410
\(592\) 33.2407 1.36619
\(593\) 32.5561 1.33692 0.668460 0.743748i \(-0.266954\pi\)
0.668460 + 0.743748i \(0.266954\pi\)
\(594\) −12.6418 −0.518698
\(595\) 0.641769 0.0263100
\(596\) 70.4815 2.88703
\(597\) −16.5479 −0.677259
\(598\) 2.58522 0.105718
\(599\) 27.8067 1.13615 0.568076 0.822976i \(-0.307688\pi\)
0.568076 + 0.822976i \(0.307688\pi\)
\(600\) −5.83502 −0.238214
\(601\) 17.6519 0.720036 0.360018 0.932945i \(-0.382771\pi\)
0.360018 + 0.932945i \(0.382771\pi\)
\(602\) −1.25606 −0.0511933
\(603\) 9.12763 0.371706
\(604\) 83.7276 3.40683
\(605\) −14.2835 −0.580708
\(606\) 29.1979 1.18608
\(607\) 44.9673 1.82517 0.912584 0.408890i \(-0.134084\pi\)
0.912584 + 0.408890i \(0.134084\pi\)
\(608\) −23.1523 −0.938950
\(609\) 4.79221 0.194190
\(610\) 5.02827 0.203589
\(611\) −24.3684 −0.985838
\(612\) −5.70739 −0.230708
\(613\) 33.7694 1.36393 0.681967 0.731383i \(-0.261125\pi\)
0.681967 + 0.731383i \(0.261125\pi\)
\(614\) 25.0612 1.01139
\(615\) −7.02827 −0.283407
\(616\) 14.2553 0.574361
\(617\) −26.1131 −1.05127 −0.525637 0.850709i \(-0.676173\pi\)
−0.525637 + 0.850709i \(0.676173\pi\)
\(618\) 9.47679 0.381212
\(619\) −20.8597 −0.838422 −0.419211 0.907889i \(-0.637693\pi\)
−0.419211 + 0.907889i \(0.637693\pi\)
\(620\) −4.32088 −0.173531
\(621\) −0.292611 −0.0117421
\(622\) 40.2125 1.61237
\(623\) 2.44571 0.0979852
\(624\) −21.1842 −0.848046
\(625\) 1.00000 0.0400000
\(626\) −57.4586 −2.29651
\(627\) 33.3966 1.33373
\(628\) −16.4249 −0.655425
\(629\) −7.28354 −0.290414
\(630\) −1.22153 −0.0486668
\(631\) −20.5105 −0.816511 −0.408256 0.912868i \(-0.633863\pi\)
−0.408256 + 0.912868i \(0.633863\pi\)
\(632\) −2.03735 −0.0810413
\(633\) −25.0101 −0.994063
\(634\) 36.7175 1.45824
\(635\) 6.25526 0.248233
\(636\) 7.37743 0.292534
\(637\) −23.7694 −0.941778
\(638\) −124.690 −4.93650
\(639\) 13.4768 0.533134
\(640\) 15.2498 0.602801
\(641\) 23.9945 0.947727 0.473864 0.880598i \(-0.342859\pi\)
0.473864 + 0.880598i \(0.342859\pi\)
\(642\) 16.9344 0.668347
\(643\) −13.6700 −0.539094 −0.269547 0.962987i \(-0.586874\pi\)
−0.269547 + 0.962987i \(0.586874\pi\)
\(644\) 0.614295 0.0242066
\(645\) −1.02827 −0.0404882
\(646\) 22.0565 0.867803
\(647\) −11.1523 −0.438442 −0.219221 0.975675i \(-0.570352\pi\)
−0.219221 + 0.975675i \(0.570352\pi\)
\(648\) 5.83502 0.229221
\(649\) −11.0283 −0.432898
\(650\) 8.83502 0.346538
\(651\) −0.485863 −0.0190425
\(652\) 54.1943 2.12241
\(653\) −39.1896 −1.53361 −0.766805 0.641881i \(-0.778154\pi\)
−0.766805 + 0.641881i \(0.778154\pi\)
\(654\) 9.82048 0.384011
\(655\) 22.1186 0.864244
\(656\) −42.3684 −1.65421
\(657\) 12.5424 0.489326
\(658\) −8.47053 −0.330216
\(659\) −31.6464 −1.23277 −0.616385 0.787445i \(-0.711403\pi\)
−0.616385 + 0.787445i \(0.711403\pi\)
\(660\) 21.7266 0.845706
\(661\) −3.59535 −0.139843 −0.0699215 0.997553i \(-0.522275\pi\)
−0.0699215 + 0.997553i \(0.522275\pi\)
\(662\) −20.5188 −0.797486
\(663\) 4.64177 0.180271
\(664\) 63.8023 2.47601
\(665\) 3.22699 0.125137
\(666\) 13.8633 0.537192
\(667\) −2.88611 −0.111750
\(668\) 96.1624 3.72064
\(669\) −19.2835 −0.745545
\(670\) −22.9481 −0.886563
\(671\) −10.0565 −0.388229
\(672\) −1.69365 −0.0653340
\(673\) −7.24073 −0.279110 −0.139555 0.990214i \(-0.544567\pi\)
−0.139555 + 0.990214i \(0.544567\pi\)
\(674\) −29.8742 −1.15071
\(675\) −1.00000 −0.0384900
\(676\) −2.81221 −0.108162
\(677\) 38.5188 1.48040 0.740199 0.672388i \(-0.234731\pi\)
0.740199 + 0.672388i \(0.234731\pi\)
\(678\) 37.9253 1.45651
\(679\) 5.07389 0.194718
\(680\) 7.70739 0.295565
\(681\) −23.4340 −0.897992
\(682\) 12.6418 0.484078
\(683\) 40.0192 1.53129 0.765646 0.643262i \(-0.222419\pi\)
0.765646 + 0.643262i \(0.222419\pi\)
\(684\) −28.6983 −1.09731
\(685\) 14.6044 0.558006
\(686\) −16.8130 −0.641924
\(687\) 25.0283 0.954888
\(688\) −6.19872 −0.236324
\(689\) −6.00000 −0.228582
\(690\) 0.735663 0.0280062
\(691\) −11.8013 −0.448942 −0.224471 0.974481i \(-0.572065\pi\)
−0.224471 + 0.974481i \(0.572065\pi\)
\(692\) −47.4076 −1.80217
\(693\) 2.44305 0.0928039
\(694\) −46.1806 −1.75299
\(695\) −12.8970 −0.489212
\(696\) 57.5525 2.18152
\(697\) 9.28354 0.351639
\(698\) 28.2745 1.07020
\(699\) −18.7175 −0.707962
\(700\) 2.09936 0.0793483
\(701\) 5.17044 0.195285 0.0976425 0.995222i \(-0.468870\pi\)
0.0976425 + 0.995222i \(0.468870\pi\)
\(702\) −8.83502 −0.333456
\(703\) −36.6236 −1.38129
\(704\) −16.5561 −0.623983
\(705\) −6.93438 −0.261164
\(706\) 63.7567 2.39952
\(707\) −5.64257 −0.212211
\(708\) 9.47679 0.356160
\(709\) 47.7722 1.79412 0.897062 0.441906i \(-0.145697\pi\)
0.897062 + 0.441906i \(0.145697\pi\)
\(710\) −33.8825 −1.27159
\(711\) −0.349158 −0.0130945
\(712\) 29.3720 1.10076
\(713\) 0.292611 0.0109584
\(714\) 1.61350 0.0603835
\(715\) −17.6700 −0.660822
\(716\) −68.8114 −2.57160
\(717\) 3.86876 0.144481
\(718\) 38.4386 1.43452
\(719\) 23.0848 0.860919 0.430459 0.902610i \(-0.358352\pi\)
0.430459 + 0.902610i \(0.358352\pi\)
\(720\) −6.02827 −0.224661
\(721\) −1.83141 −0.0682054
\(722\) 63.1378 2.34974
\(723\) 1.61350 0.0600065
\(724\) −34.8114 −1.29376
\(725\) −9.86330 −0.366314
\(726\) −35.9108 −1.33277
\(727\) −22.2125 −0.823814 −0.411907 0.911226i \(-0.635137\pi\)
−0.411907 + 0.911226i \(0.635137\pi\)
\(728\) 9.96265 0.369241
\(729\) 1.00000 0.0370370
\(730\) −31.5333 −1.16710
\(731\) 1.35823 0.0502360
\(732\) 8.64177 0.319409
\(733\) −43.9072 −1.62175 −0.810874 0.585221i \(-0.801008\pi\)
−0.810874 + 0.585221i \(0.801008\pi\)
\(734\) 15.2270 0.562038
\(735\) −6.76394 −0.249492
\(736\) 1.02000 0.0375977
\(737\) 45.8962 1.69061
\(738\) −17.6700 −0.650443
\(739\) 6.86690 0.252603 0.126302 0.991992i \(-0.459689\pi\)
0.126302 + 0.991992i \(0.459689\pi\)
\(740\) −23.8259 −0.875859
\(741\) 23.3401 0.857419
\(742\) −2.08562 −0.0765656
\(743\) 29.2726 1.07391 0.536954 0.843612i \(-0.319575\pi\)
0.536954 + 0.843612i \(0.319575\pi\)
\(744\) −5.83502 −0.213922
\(745\) −16.3118 −0.597619
\(746\) 20.2827 0.742604
\(747\) 10.9344 0.400068
\(748\) −28.6983 −1.04931
\(749\) −3.27261 −0.119579
\(750\) 2.51414 0.0918033
\(751\) 9.67004 0.352865 0.176432 0.984313i \(-0.443544\pi\)
0.176432 + 0.984313i \(0.443544\pi\)
\(752\) −41.8023 −1.52437
\(753\) 25.4713 0.928227
\(754\) −87.1424 −3.17354
\(755\) −19.3774 −0.705217
\(756\) −2.09936 −0.0763529
\(757\) −49.4104 −1.79585 −0.897925 0.440148i \(-0.854926\pi\)
−0.897925 + 0.440148i \(0.854926\pi\)
\(758\) −92.5489 −3.36153
\(759\) −1.47133 −0.0534058
\(760\) 38.7549 1.40579
\(761\) 47.2599 1.71317 0.856586 0.516005i \(-0.172581\pi\)
0.856586 + 0.516005i \(0.172581\pi\)
\(762\) 15.7266 0.569714
\(763\) −1.89783 −0.0687062
\(764\) 26.7603 0.968155
\(765\) 1.32088 0.0477567
\(766\) −9.13310 −0.329992
\(767\) −7.70739 −0.278298
\(768\) 31.7549 1.14585
\(769\) 9.49053 0.342237 0.171119 0.985250i \(-0.445262\pi\)
0.171119 + 0.985250i \(0.445262\pi\)
\(770\) −6.14217 −0.221348
\(771\) −18.0192 −0.648946
\(772\) −9.74474 −0.350721
\(773\) 41.7567 1.50188 0.750942 0.660368i \(-0.229600\pi\)
0.750942 + 0.660368i \(0.229600\pi\)
\(774\) −2.58522 −0.0929239
\(775\) 1.00000 0.0359211
\(776\) 60.9354 2.18745
\(777\) −2.67912 −0.0961127
\(778\) 38.4112 1.37711
\(779\) 46.6802 1.67249
\(780\) 15.1842 0.543681
\(781\) 67.7650 2.42482
\(782\) −0.971726 −0.0347489
\(783\) 9.86330 0.352485
\(784\) −40.7749 −1.45625
\(785\) 3.80128 0.135674
\(786\) 55.6091 1.98351
\(787\) −40.0950 −1.42923 −0.714615 0.699518i \(-0.753398\pi\)
−0.714615 + 0.699518i \(0.753398\pi\)
\(788\) 40.2745 1.43472
\(789\) −1.15951 −0.0412798
\(790\) 0.877832 0.0312319
\(791\) −7.32916 −0.260595
\(792\) 29.3401 1.04255
\(793\) −7.02827 −0.249581
\(794\) −46.7258 −1.65824
\(795\) −1.70739 −0.0605549
\(796\) 71.5015 2.53430
\(797\) −31.1150 −1.10215 −0.551074 0.834456i \(-0.685782\pi\)
−0.551074 + 0.834456i \(0.685782\pi\)
\(798\) 8.11310 0.287200
\(799\) 9.15951 0.324040
\(800\) 3.48586 0.123244
\(801\) 5.03374 0.177858
\(802\) 15.5707 0.549820
\(803\) 63.0667 2.22557
\(804\) −39.4394 −1.39092
\(805\) −0.142169 −0.00501079
\(806\) 8.83502 0.311200
\(807\) 7.80675 0.274811
\(808\) −67.7650 −2.38396
\(809\) 46.6291 1.63939 0.819696 0.572799i \(-0.194143\pi\)
0.819696 + 0.572799i \(0.194143\pi\)
\(810\) −2.51414 −0.0883378
\(811\) −47.0283 −1.65139 −0.825693 0.564120i \(-0.809216\pi\)
−0.825693 + 0.564120i \(0.809216\pi\)
\(812\) −20.7066 −0.726659
\(813\) −17.7831 −0.623682
\(814\) 69.7084 2.44328
\(815\) −12.5424 −0.439341
\(816\) 7.96265 0.278749
\(817\) 6.82956 0.238936
\(818\) −80.5946 −2.81792
\(819\) 1.70739 0.0596610
\(820\) 30.3684 1.06051
\(821\) 35.3912 1.23516 0.617580 0.786508i \(-0.288113\pi\)
0.617580 + 0.786508i \(0.288113\pi\)
\(822\) 36.7175 1.28067
\(823\) −17.2161 −0.600114 −0.300057 0.953921i \(-0.597006\pi\)
−0.300057 + 0.953921i \(0.597006\pi\)
\(824\) −21.9945 −0.766216
\(825\) −5.02827 −0.175062
\(826\) −2.67912 −0.0932184
\(827\) 16.3310 0.567885 0.283942 0.958841i \(-0.408358\pi\)
0.283942 + 0.958841i \(0.408358\pi\)
\(828\) 1.26434 0.0439387
\(829\) −29.0667 −1.00953 −0.504764 0.863258i \(-0.668420\pi\)
−0.504764 + 0.863258i \(0.668420\pi\)
\(830\) −27.4905 −0.954210
\(831\) −25.9390 −0.899815
\(832\) −11.5707 −0.401141
\(833\) 8.93438 0.309558
\(834\) −32.4249 −1.12278
\(835\) −22.2553 −0.770175
\(836\) −144.303 −4.99082
\(837\) −1.00000 −0.0345651
\(838\) 24.6099 0.850134
\(839\) 27.6646 0.955087 0.477544 0.878608i \(-0.341527\pi\)
0.477544 + 0.878608i \(0.341527\pi\)
\(840\) 2.83502 0.0978175
\(841\) 68.2846 2.35464
\(842\) −35.8880 −1.23678
\(843\) 13.0283 0.448718
\(844\) 108.066 3.71978
\(845\) 0.650842 0.0223896
\(846\) −17.4340 −0.599393
\(847\) 6.93984 0.238456
\(848\) −10.2926 −0.353450
\(849\) −15.9006 −0.545709
\(850\) −3.32088 −0.113905
\(851\) 1.61350 0.0553099
\(852\) −58.2317 −1.99498
\(853\) 32.5105 1.11314 0.556570 0.830801i \(-0.312117\pi\)
0.556570 + 0.830801i \(0.312117\pi\)
\(854\) −2.44305 −0.0835995
\(855\) 6.64177 0.227144
\(856\) −39.3027 −1.34334
\(857\) −45.9144 −1.56841 −0.784203 0.620505i \(-0.786928\pi\)
−0.784203 + 0.620505i \(0.786928\pi\)
\(858\) −44.4249 −1.51664
\(859\) −19.6026 −0.668831 −0.334415 0.942426i \(-0.608539\pi\)
−0.334415 + 0.942426i \(0.608539\pi\)
\(860\) 4.44305 0.151507
\(861\) 3.41478 0.116375
\(862\) −57.4104 −1.95540
\(863\) 46.1696 1.57163 0.785816 0.618460i \(-0.212243\pi\)
0.785816 + 0.618460i \(0.212243\pi\)
\(864\) −3.48586 −0.118591
\(865\) 10.9717 0.373050
\(866\) 34.7603 1.18120
\(867\) 15.2553 0.518096
\(868\) 2.09936 0.0712569
\(869\) −1.75566 −0.0595568
\(870\) −24.7977 −0.840720
\(871\) 32.0757 1.08685
\(872\) −22.7922 −0.771842
\(873\) 10.4431 0.353444
\(874\) −4.88611 −0.165275
\(875\) −0.485863 −0.0164252
\(876\) −54.1943 −1.83106
\(877\) 11.3017 0.381631 0.190815 0.981626i \(-0.438887\pi\)
0.190815 + 0.981626i \(0.438887\pi\)
\(878\) 100.190 3.38125
\(879\) 29.4340 0.992784
\(880\) −30.3118 −1.02181
\(881\) −9.60803 −0.323703 −0.161851 0.986815i \(-0.551747\pi\)
−0.161851 + 0.986815i \(0.551747\pi\)
\(882\) −17.0055 −0.572604
\(883\) −33.5279 −1.12830 −0.564151 0.825671i \(-0.690797\pi\)
−0.564151 + 0.825671i \(0.690797\pi\)
\(884\) −20.0565 −0.674575
\(885\) −2.19325 −0.0737254
\(886\) −25.5196 −0.857348
\(887\) −9.76394 −0.327841 −0.163920 0.986474i \(-0.552414\pi\)
−0.163920 + 0.986474i \(0.552414\pi\)
\(888\) −32.1751 −1.07973
\(889\) −3.03920 −0.101932
\(890\) −12.6555 −0.424214
\(891\) 5.02827 0.168454
\(892\) 83.3219 2.78982
\(893\) 46.0565 1.54122
\(894\) −41.0101 −1.37158
\(895\) 15.9253 0.532324
\(896\) −7.40931 −0.247528
\(897\) −1.02827 −0.0343331
\(898\) −9.42852 −0.314634
\(899\) −9.86330 −0.328959
\(900\) 4.32088 0.144029
\(901\) 2.25526 0.0751337
\(902\) −88.8498 −2.95838
\(903\) 0.499600 0.0166257
\(904\) −88.0203 −2.92751
\(905\) 8.05655 0.267809
\(906\) −48.7175 −1.61853
\(907\) −9.18418 −0.304956 −0.152478 0.988307i \(-0.548725\pi\)
−0.152478 + 0.988307i \(0.548725\pi\)
\(908\) 101.256 3.36028
\(909\) −11.6135 −0.385195
\(910\) −4.29261 −0.142299
\(911\) −12.2553 −0.406035 −0.203018 0.979175i \(-0.565075\pi\)
−0.203018 + 0.979175i \(0.565075\pi\)
\(912\) 40.0384 1.32580
\(913\) 54.9811 1.81961
\(914\) −4.27887 −0.141533
\(915\) −2.00000 −0.0661180
\(916\) −108.144 −3.57319
\(917\) −10.7466 −0.354884
\(918\) 3.32088 0.109606
\(919\) −47.5663 −1.56907 −0.784533 0.620087i \(-0.787097\pi\)
−0.784533 + 0.620087i \(0.787097\pi\)
\(920\) −1.70739 −0.0562910
\(921\) −9.96812 −0.328461
\(922\) 18.6280 0.613482
\(923\) 47.3593 1.55885
\(924\) −10.5561 −0.347272
\(925\) 5.51414 0.181304
\(926\) −76.3958 −2.51052
\(927\) −3.76940 −0.123803
\(928\) −34.3821 −1.12865
\(929\) 23.5333 0.772104 0.386052 0.922477i \(-0.373839\pi\)
0.386052 + 0.922477i \(0.373839\pi\)
\(930\) 2.51414 0.0824418
\(931\) 44.9245 1.47234
\(932\) 80.8762 2.64919
\(933\) −15.9945 −0.523638
\(934\) 43.0019 1.40706
\(935\) 6.64177 0.217209
\(936\) 20.5051 0.670229
\(937\) −56.7258 −1.85315 −0.926575 0.376109i \(-0.877262\pi\)
−0.926575 + 0.376109i \(0.877262\pi\)
\(938\) 11.1496 0.364049
\(939\) 22.8542 0.745819
\(940\) 29.9627 0.977274
\(941\) −33.5333 −1.09316 −0.546578 0.837408i \(-0.684070\pi\)
−0.546578 + 0.837408i \(0.684070\pi\)
\(942\) 9.55695 0.311382
\(943\) −2.05655 −0.0669704
\(944\) −13.2215 −0.430324
\(945\) 0.485863 0.0158051
\(946\) −12.9992 −0.422640
\(947\) −52.0685 −1.69200 −0.846000 0.533183i \(-0.820996\pi\)
−0.846000 + 0.533183i \(0.820996\pi\)
\(948\) 1.50867 0.0489994
\(949\) 44.0757 1.43076
\(950\) −16.6983 −0.541765
\(951\) −14.6044 −0.473581
\(952\) −3.74474 −0.121368
\(953\) −11.1896 −0.362468 −0.181234 0.983440i \(-0.558009\pi\)
−0.181234 + 0.983440i \(0.558009\pi\)
\(954\) −4.29261 −0.138978
\(955\) −6.19325 −0.200409
\(956\) −16.7165 −0.540649
\(957\) 49.5953 1.60319
\(958\) 53.5235 1.72926
\(959\) −7.09575 −0.229134
\(960\) −3.29261 −0.106269
\(961\) 1.00000 0.0322581
\(962\) 48.7175 1.57072
\(963\) −6.73566 −0.217054
\(964\) −6.97173 −0.224544
\(965\) 2.25526 0.0725995
\(966\) −0.357432 −0.0115002
\(967\) 36.8296 1.18436 0.592179 0.805806i \(-0.298268\pi\)
0.592179 + 0.805806i \(0.298268\pi\)
\(968\) 83.3448 2.67880
\(969\) −8.77301 −0.281830
\(970\) −26.2553 −0.843006
\(971\) 18.7494 0.601697 0.300848 0.953672i \(-0.402730\pi\)
0.300848 + 0.953672i \(0.402730\pi\)
\(972\) −4.32088 −0.138592
\(973\) 6.26619 0.200885
\(974\) 51.5388 1.65141
\(975\) −3.51414 −0.112542
\(976\) −12.0565 −0.385921
\(977\) −50.2262 −1.60688 −0.803439 0.595387i \(-0.796999\pi\)
−0.803439 + 0.595387i \(0.796999\pi\)
\(978\) −31.5333 −1.00832
\(979\) 25.3110 0.808943
\(980\) 29.2262 0.933596
\(981\) −3.90611 −0.124712
\(982\) −78.1059 −2.49246
\(983\) 15.5279 0.495262 0.247631 0.968854i \(-0.420348\pi\)
0.247631 + 0.968854i \(0.420348\pi\)
\(984\) 41.0101 1.30736
\(985\) −9.32088 −0.296988
\(986\) 32.7549 1.04313
\(987\) 3.36916 0.107242
\(988\) −100.850 −3.20846
\(989\) −0.300884 −0.00956755
\(990\) −12.6418 −0.401782
\(991\) −20.1022 −0.638566 −0.319283 0.947659i \(-0.603442\pi\)
−0.319283 + 0.947659i \(0.603442\pi\)
\(992\) 3.48586 0.110676
\(993\) 8.16137 0.258993
\(994\) 16.4623 0.522151
\(995\) −16.5479 −0.524603
\(996\) −47.2462 −1.49705
\(997\) −20.8186 −0.659333 −0.329666 0.944098i \(-0.606936\pi\)
−0.329666 + 0.944098i \(0.606936\pi\)
\(998\) 38.5671 1.22082
\(999\) −5.51414 −0.174460
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.a.e.1.3 3
3.2 odd 2 1395.2.a.j.1.1 3
4.3 odd 2 7440.2.a.bs.1.3 3
5.2 odd 4 2325.2.c.k.1024.6 6
5.3 odd 4 2325.2.c.k.1024.1 6
5.4 even 2 2325.2.a.r.1.1 3
15.14 odd 2 6975.2.a.bf.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.e.1.3 3 1.1 even 1 trivial
1395.2.a.j.1.1 3 3.2 odd 2
2325.2.a.r.1.1 3 5.4 even 2
2325.2.c.k.1024.1 6 5.3 odd 4
2325.2.c.k.1024.6 6 5.2 odd 4
6975.2.a.bf.1.3 3 15.14 odd 2
7440.2.a.bs.1.3 3 4.3 odd 2