Properties

Label 4641.2.a.t.1.11
Level $4641$
Weight $2$
Character 4641.1
Self dual yes
Analytic conductor $37.059$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4641,2,Mod(1,4641)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4641.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4641, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4641 = 3 \cdot 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4641.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,-12,15,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.0585715781\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 19 x^{10} + 16 x^{9} + 136 x^{8} - 91 x^{7} - 456 x^{6} + 220 x^{5} + 722 x^{4} + \cdots + 85 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(2.54577\) of defining polynomial
Character \(\chi\) \(=\) 4641.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.54577 q^{2} -1.00000 q^{3} +4.48097 q^{4} -3.15427 q^{5} -2.54577 q^{6} -1.00000 q^{7} +6.31598 q^{8} +1.00000 q^{9} -8.03006 q^{10} +4.13299 q^{11} -4.48097 q^{12} -1.00000 q^{13} -2.54577 q^{14} +3.15427 q^{15} +7.11712 q^{16} +1.00000 q^{17} +2.54577 q^{18} -6.50785 q^{19} -14.1342 q^{20} +1.00000 q^{21} +10.5217 q^{22} +5.73526 q^{23} -6.31598 q^{24} +4.94943 q^{25} -2.54577 q^{26} -1.00000 q^{27} -4.48097 q^{28} +6.53293 q^{29} +8.03006 q^{30} +7.10660 q^{31} +5.48663 q^{32} -4.13299 q^{33} +2.54577 q^{34} +3.15427 q^{35} +4.48097 q^{36} -1.02262 q^{37} -16.5675 q^{38} +1.00000 q^{39} -19.9223 q^{40} -0.0855998 q^{41} +2.54577 q^{42} -4.66443 q^{43} +18.5198 q^{44} -3.15427 q^{45} +14.6007 q^{46} +5.66410 q^{47} -7.11712 q^{48} +1.00000 q^{49} +12.6001 q^{50} -1.00000 q^{51} -4.48097 q^{52} -6.08088 q^{53} -2.54577 q^{54} -13.0366 q^{55} -6.31598 q^{56} +6.50785 q^{57} +16.6314 q^{58} +6.40060 q^{59} +14.1342 q^{60} +14.2478 q^{61} +18.0918 q^{62} -1.00000 q^{63} -0.266532 q^{64} +3.15427 q^{65} -10.5217 q^{66} +9.50679 q^{67} +4.48097 q^{68} -5.73526 q^{69} +8.03006 q^{70} -8.12213 q^{71} +6.31598 q^{72} +7.24232 q^{73} -2.60336 q^{74} -4.94943 q^{75} -29.1615 q^{76} -4.13299 q^{77} +2.54577 q^{78} +10.5200 q^{79} -22.4493 q^{80} +1.00000 q^{81} -0.217918 q^{82} +5.99614 q^{83} +4.48097 q^{84} -3.15427 q^{85} -11.8746 q^{86} -6.53293 q^{87} +26.1039 q^{88} +6.22645 q^{89} -8.03006 q^{90} +1.00000 q^{91} +25.6995 q^{92} -7.10660 q^{93} +14.4195 q^{94} +20.5275 q^{95} -5.48663 q^{96} +16.9109 q^{97} +2.54577 q^{98} +4.13299 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - 12 q^{3} + 15 q^{4} - 3 q^{5} - q^{6} - 12 q^{7} + 6 q^{8} + 12 q^{9} + q^{10} + 14 q^{11} - 15 q^{12} - 12 q^{13} - q^{14} + 3 q^{15} + 5 q^{16} + 12 q^{17} + q^{18} + 6 q^{19} - q^{20}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.54577 1.80013 0.900067 0.435751i \(-0.143517\pi\)
0.900067 + 0.435751i \(0.143517\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.48097 2.24048
\(5\) −3.15427 −1.41063 −0.705317 0.708892i \(-0.749195\pi\)
−0.705317 + 0.708892i \(0.749195\pi\)
\(6\) −2.54577 −1.03931
\(7\) −1.00000 −0.377964
\(8\) 6.31598 2.23304
\(9\) 1.00000 0.333333
\(10\) −8.03006 −2.53933
\(11\) 4.13299 1.24614 0.623072 0.782165i \(-0.285884\pi\)
0.623072 + 0.782165i \(0.285884\pi\)
\(12\) −4.48097 −1.29354
\(13\) −1.00000 −0.277350
\(14\) −2.54577 −0.680387
\(15\) 3.15427 0.814430
\(16\) 7.11712 1.77928
\(17\) 1.00000 0.242536
\(18\) 2.54577 0.600045
\(19\) −6.50785 −1.49300 −0.746502 0.665383i \(-0.768268\pi\)
−0.746502 + 0.665383i \(0.768268\pi\)
\(20\) −14.1342 −3.16050
\(21\) 1.00000 0.218218
\(22\) 10.5217 2.24323
\(23\) 5.73526 1.19588 0.597942 0.801539i \(-0.295985\pi\)
0.597942 + 0.801539i \(0.295985\pi\)
\(24\) −6.31598 −1.28924
\(25\) 4.94943 0.989886
\(26\) −2.54577 −0.499267
\(27\) −1.00000 −0.192450
\(28\) −4.48097 −0.846823
\(29\) 6.53293 1.21314 0.606568 0.795032i \(-0.292546\pi\)
0.606568 + 0.795032i \(0.292546\pi\)
\(30\) 8.03006 1.46608
\(31\) 7.10660 1.27638 0.638192 0.769878i \(-0.279683\pi\)
0.638192 + 0.769878i \(0.279683\pi\)
\(32\) 5.48663 0.969908
\(33\) −4.13299 −0.719461
\(34\) 2.54577 0.436597
\(35\) 3.15427 0.533169
\(36\) 4.48097 0.746828
\(37\) −1.02262 −0.168118 −0.0840590 0.996461i \(-0.526788\pi\)
−0.0840590 + 0.996461i \(0.526788\pi\)
\(38\) −16.5675 −2.68761
\(39\) 1.00000 0.160128
\(40\) −19.9223 −3.14999
\(41\) −0.0855998 −0.0133684 −0.00668422 0.999978i \(-0.502128\pi\)
−0.00668422 + 0.999978i \(0.502128\pi\)
\(42\) 2.54577 0.392821
\(43\) −4.66443 −0.711320 −0.355660 0.934615i \(-0.615744\pi\)
−0.355660 + 0.934615i \(0.615744\pi\)
\(44\) 18.5198 2.79196
\(45\) −3.15427 −0.470211
\(46\) 14.6007 2.15275
\(47\) 5.66410 0.826194 0.413097 0.910687i \(-0.364447\pi\)
0.413097 + 0.910687i \(0.364447\pi\)
\(48\) −7.11712 −1.02727
\(49\) 1.00000 0.142857
\(50\) 12.6001 1.78193
\(51\) −1.00000 −0.140028
\(52\) −4.48097 −0.621398
\(53\) −6.08088 −0.835273 −0.417636 0.908614i \(-0.637141\pi\)
−0.417636 + 0.908614i \(0.637141\pi\)
\(54\) −2.54577 −0.346436
\(55\) −13.0366 −1.75785
\(56\) −6.31598 −0.844008
\(57\) 6.50785 0.861986
\(58\) 16.6314 2.18381
\(59\) 6.40060 0.833288 0.416644 0.909070i \(-0.363206\pi\)
0.416644 + 0.909070i \(0.363206\pi\)
\(60\) 14.1342 1.82472
\(61\) 14.2478 1.82424 0.912122 0.409919i \(-0.134443\pi\)
0.912122 + 0.409919i \(0.134443\pi\)
\(62\) 18.0918 2.29766
\(63\) −1.00000 −0.125988
\(64\) −0.266532 −0.0333165
\(65\) 3.15427 0.391239
\(66\) −10.5217 −1.29513
\(67\) 9.50679 1.16144 0.580720 0.814104i \(-0.302771\pi\)
0.580720 + 0.814104i \(0.302771\pi\)
\(68\) 4.48097 0.543397
\(69\) −5.73526 −0.690444
\(70\) 8.03006 0.959776
\(71\) −8.12213 −0.963919 −0.481960 0.876193i \(-0.660075\pi\)
−0.481960 + 0.876193i \(0.660075\pi\)
\(72\) 6.31598 0.744345
\(73\) 7.24232 0.847650 0.423825 0.905744i \(-0.360687\pi\)
0.423825 + 0.905744i \(0.360687\pi\)
\(74\) −2.60336 −0.302635
\(75\) −4.94943 −0.571511
\(76\) −29.1615 −3.34505
\(77\) −4.13299 −0.470998
\(78\) 2.54577 0.288252
\(79\) 10.5200 1.18360 0.591798 0.806086i \(-0.298418\pi\)
0.591798 + 0.806086i \(0.298418\pi\)
\(80\) −22.4493 −2.50991
\(81\) 1.00000 0.111111
\(82\) −0.217918 −0.0240650
\(83\) 5.99614 0.658162 0.329081 0.944302i \(-0.393261\pi\)
0.329081 + 0.944302i \(0.393261\pi\)
\(84\) 4.48097 0.488913
\(85\) −3.15427 −0.342129
\(86\) −11.8746 −1.28047
\(87\) −6.53293 −0.700404
\(88\) 26.1039 2.78268
\(89\) 6.22645 0.660003 0.330001 0.943980i \(-0.392951\pi\)
0.330001 + 0.943980i \(0.392951\pi\)
\(90\) −8.03006 −0.846443
\(91\) 1.00000 0.104828
\(92\) 25.6995 2.67936
\(93\) −7.10660 −0.736920
\(94\) 14.4195 1.48726
\(95\) 20.5275 2.10608
\(96\) −5.48663 −0.559976
\(97\) 16.9109 1.71705 0.858523 0.512775i \(-0.171383\pi\)
0.858523 + 0.512775i \(0.171383\pi\)
\(98\) 2.54577 0.257162
\(99\) 4.13299 0.415381
\(100\) 22.1782 2.21782
\(101\) 0.965937 0.0961144 0.0480572 0.998845i \(-0.484697\pi\)
0.0480572 + 0.998845i \(0.484697\pi\)
\(102\) −2.54577 −0.252069
\(103\) −7.19639 −0.709081 −0.354541 0.935041i \(-0.615363\pi\)
−0.354541 + 0.935041i \(0.615363\pi\)
\(104\) −6.31598 −0.619333
\(105\) −3.15427 −0.307825
\(106\) −15.4805 −1.50360
\(107\) 11.0427 1.06753 0.533767 0.845631i \(-0.320776\pi\)
0.533767 + 0.845631i \(0.320776\pi\)
\(108\) −4.48097 −0.431181
\(109\) −9.79322 −0.938020 −0.469010 0.883193i \(-0.655389\pi\)
−0.469010 + 0.883193i \(0.655389\pi\)
\(110\) −33.1882 −3.16437
\(111\) 1.02262 0.0970630
\(112\) −7.11712 −0.672505
\(113\) 1.18694 0.111658 0.0558288 0.998440i \(-0.482220\pi\)
0.0558288 + 0.998440i \(0.482220\pi\)
\(114\) 16.5675 1.55169
\(115\) −18.0906 −1.68695
\(116\) 29.2739 2.71801
\(117\) −1.00000 −0.0924500
\(118\) 16.2945 1.50003
\(119\) −1.00000 −0.0916698
\(120\) 19.9223 1.81865
\(121\) 6.08161 0.552873
\(122\) 36.2717 3.28388
\(123\) 0.0855998 0.00771827
\(124\) 31.8444 2.85971
\(125\) 0.159508 0.0142668
\(126\) −2.54577 −0.226796
\(127\) −4.92916 −0.437392 −0.218696 0.975793i \(-0.570180\pi\)
−0.218696 + 0.975793i \(0.570180\pi\)
\(128\) −11.6518 −1.02988
\(129\) 4.66443 0.410681
\(130\) 8.03006 0.704283
\(131\) 12.7160 1.11100 0.555500 0.831516i \(-0.312527\pi\)
0.555500 + 0.831516i \(0.312527\pi\)
\(132\) −18.5198 −1.61194
\(133\) 6.50785 0.564302
\(134\) 24.2021 2.09075
\(135\) 3.15427 0.271477
\(136\) 6.31598 0.541591
\(137\) 12.6797 1.08330 0.541650 0.840604i \(-0.317800\pi\)
0.541650 + 0.840604i \(0.317800\pi\)
\(138\) −14.6007 −1.24289
\(139\) −10.8498 −0.920268 −0.460134 0.887849i \(-0.652199\pi\)
−0.460134 + 0.887849i \(0.652199\pi\)
\(140\) 14.1342 1.19456
\(141\) −5.66410 −0.477003
\(142\) −20.6771 −1.73518
\(143\) −4.13299 −0.345618
\(144\) 7.11712 0.593093
\(145\) −20.6067 −1.71129
\(146\) 18.4373 1.52588
\(147\) −1.00000 −0.0824786
\(148\) −4.58233 −0.376666
\(149\) −1.21810 −0.0997906 −0.0498953 0.998754i \(-0.515889\pi\)
−0.0498953 + 0.998754i \(0.515889\pi\)
\(150\) −12.6001 −1.02880
\(151\) −14.2229 −1.15744 −0.578721 0.815525i \(-0.696448\pi\)
−0.578721 + 0.815525i \(0.696448\pi\)
\(152\) −41.1034 −3.33393
\(153\) 1.00000 0.0808452
\(154\) −10.5217 −0.847859
\(155\) −22.4162 −1.80051
\(156\) 4.48097 0.358764
\(157\) 7.00956 0.559424 0.279712 0.960084i \(-0.409761\pi\)
0.279712 + 0.960084i \(0.409761\pi\)
\(158\) 26.7816 2.13063
\(159\) 6.08088 0.482245
\(160\) −17.3063 −1.36818
\(161\) −5.73526 −0.452002
\(162\) 2.54577 0.200015
\(163\) 12.2210 0.957225 0.478613 0.878026i \(-0.341140\pi\)
0.478613 + 0.878026i \(0.341140\pi\)
\(164\) −0.383570 −0.0299518
\(165\) 13.0366 1.01490
\(166\) 15.2648 1.18478
\(167\) −15.6958 −1.21458 −0.607289 0.794481i \(-0.707743\pi\)
−0.607289 + 0.794481i \(0.707743\pi\)
\(168\) 6.31598 0.487288
\(169\) 1.00000 0.0769231
\(170\) −8.03006 −0.615878
\(171\) −6.50785 −0.497668
\(172\) −20.9012 −1.59370
\(173\) 1.32542 0.100769 0.0503847 0.998730i \(-0.483955\pi\)
0.0503847 + 0.998730i \(0.483955\pi\)
\(174\) −16.6314 −1.26082
\(175\) −4.94943 −0.374142
\(176\) 29.4150 2.21724
\(177\) −6.40060 −0.481099
\(178\) 15.8511 1.18809
\(179\) −18.7262 −1.39966 −0.699832 0.714308i \(-0.746742\pi\)
−0.699832 + 0.714308i \(0.746742\pi\)
\(180\) −14.1342 −1.05350
\(181\) −18.0445 −1.34124 −0.670618 0.741803i \(-0.733971\pi\)
−0.670618 + 0.741803i \(0.733971\pi\)
\(182\) 2.54577 0.188705
\(183\) −14.2478 −1.05323
\(184\) 36.2238 2.67045
\(185\) 3.22563 0.237153
\(186\) −18.0918 −1.32656
\(187\) 4.13299 0.302234
\(188\) 25.3806 1.85107
\(189\) 1.00000 0.0727393
\(190\) 52.2585 3.79123
\(191\) 12.6411 0.914681 0.457340 0.889292i \(-0.348802\pi\)
0.457340 + 0.889292i \(0.348802\pi\)
\(192\) 0.266532 0.0192353
\(193\) −22.3038 −1.60546 −0.802732 0.596340i \(-0.796621\pi\)
−0.802732 + 0.596340i \(0.796621\pi\)
\(194\) 43.0514 3.09091
\(195\) −3.15427 −0.225882
\(196\) 4.48097 0.320069
\(197\) 6.25251 0.445473 0.222736 0.974879i \(-0.428501\pi\)
0.222736 + 0.974879i \(0.428501\pi\)
\(198\) 10.5217 0.747742
\(199\) 4.00708 0.284054 0.142027 0.989863i \(-0.454638\pi\)
0.142027 + 0.989863i \(0.454638\pi\)
\(200\) 31.2605 2.21045
\(201\) −9.50679 −0.670557
\(202\) 2.45906 0.173019
\(203\) −6.53293 −0.458522
\(204\) −4.48097 −0.313730
\(205\) 0.270005 0.0188580
\(206\) −18.3204 −1.27644
\(207\) 5.73526 0.398628
\(208\) −7.11712 −0.493484
\(209\) −26.8969 −1.86050
\(210\) −8.03006 −0.554127
\(211\) −19.2145 −1.32278 −0.661390 0.750042i \(-0.730033\pi\)
−0.661390 + 0.750042i \(0.730033\pi\)
\(212\) −27.2482 −1.87141
\(213\) 8.12213 0.556519
\(214\) 28.1121 1.92171
\(215\) 14.7129 1.00341
\(216\) −6.31598 −0.429748
\(217\) −7.10660 −0.482427
\(218\) −24.9313 −1.68856
\(219\) −7.24232 −0.489391
\(220\) −58.4164 −3.93844
\(221\) −1.00000 −0.0672673
\(222\) 2.60336 0.174726
\(223\) 28.4425 1.90465 0.952327 0.305080i \(-0.0986832\pi\)
0.952327 + 0.305080i \(0.0986832\pi\)
\(224\) −5.48663 −0.366591
\(225\) 4.94943 0.329962
\(226\) 3.02167 0.200999
\(227\) −8.61175 −0.571582 −0.285791 0.958292i \(-0.592256\pi\)
−0.285791 + 0.958292i \(0.592256\pi\)
\(228\) 29.1615 1.93126
\(229\) 11.2774 0.745230 0.372615 0.927986i \(-0.378461\pi\)
0.372615 + 0.927986i \(0.378461\pi\)
\(230\) −46.0545 −3.03674
\(231\) 4.13299 0.271931
\(232\) 41.2619 2.70897
\(233\) −28.3564 −1.85769 −0.928845 0.370469i \(-0.879197\pi\)
−0.928845 + 0.370469i \(0.879197\pi\)
\(234\) −2.54577 −0.166422
\(235\) −17.8661 −1.16546
\(236\) 28.6809 1.86697
\(237\) −10.5200 −0.683349
\(238\) −2.54577 −0.165018
\(239\) 23.4574 1.51733 0.758667 0.651479i \(-0.225851\pi\)
0.758667 + 0.651479i \(0.225851\pi\)
\(240\) 22.4493 1.44910
\(241\) 22.9025 1.47528 0.737639 0.675196i \(-0.235941\pi\)
0.737639 + 0.675196i \(0.235941\pi\)
\(242\) 15.4824 0.995246
\(243\) −1.00000 −0.0641500
\(244\) 63.8439 4.08719
\(245\) −3.15427 −0.201519
\(246\) 0.217918 0.0138939
\(247\) 6.50785 0.414085
\(248\) 44.8851 2.85021
\(249\) −5.99614 −0.379990
\(250\) 0.406070 0.0256821
\(251\) −15.6624 −0.988603 −0.494301 0.869291i \(-0.664576\pi\)
−0.494301 + 0.869291i \(0.664576\pi\)
\(252\) −4.48097 −0.282274
\(253\) 23.7038 1.49024
\(254\) −12.5485 −0.787364
\(255\) 3.15427 0.197528
\(256\) −29.1297 −1.82061
\(257\) 2.02593 0.126374 0.0631870 0.998002i \(-0.479874\pi\)
0.0631870 + 0.998002i \(0.479874\pi\)
\(258\) 11.8746 0.739280
\(259\) 1.02262 0.0635426
\(260\) 14.1342 0.876565
\(261\) 6.53293 0.404379
\(262\) 32.3720 1.99995
\(263\) −12.8555 −0.792702 −0.396351 0.918099i \(-0.629724\pi\)
−0.396351 + 0.918099i \(0.629724\pi\)
\(264\) −26.1039 −1.60658
\(265\) 19.1807 1.17826
\(266\) 16.5675 1.01582
\(267\) −6.22645 −0.381053
\(268\) 42.5996 2.60219
\(269\) 0.171368 0.0104485 0.00522426 0.999986i \(-0.498337\pi\)
0.00522426 + 0.999986i \(0.498337\pi\)
\(270\) 8.03006 0.488694
\(271\) −11.8633 −0.720643 −0.360322 0.932828i \(-0.617333\pi\)
−0.360322 + 0.932828i \(0.617333\pi\)
\(272\) 7.11712 0.431539
\(273\) −1.00000 −0.0605228
\(274\) 32.2797 1.95009
\(275\) 20.4560 1.23354
\(276\) −25.6995 −1.54693
\(277\) 5.30509 0.318752 0.159376 0.987218i \(-0.449052\pi\)
0.159376 + 0.987218i \(0.449052\pi\)
\(278\) −27.6211 −1.65661
\(279\) 7.10660 0.425461
\(280\) 19.9223 1.19059
\(281\) −9.15077 −0.545889 −0.272945 0.962030i \(-0.587998\pi\)
−0.272945 + 0.962030i \(0.587998\pi\)
\(282\) −14.4195 −0.858670
\(283\) −15.5926 −0.926883 −0.463441 0.886128i \(-0.653385\pi\)
−0.463441 + 0.886128i \(0.653385\pi\)
\(284\) −36.3950 −2.15964
\(285\) −20.5275 −1.21595
\(286\) −10.5217 −0.622159
\(287\) 0.0855998 0.00505280
\(288\) 5.48663 0.323303
\(289\) 1.00000 0.0588235
\(290\) −52.4599 −3.08055
\(291\) −16.9109 −0.991337
\(292\) 32.4526 1.89914
\(293\) −24.2607 −1.41733 −0.708664 0.705546i \(-0.750702\pi\)
−0.708664 + 0.705546i \(0.750702\pi\)
\(294\) −2.54577 −0.148473
\(295\) −20.1892 −1.17546
\(296\) −6.45886 −0.375413
\(297\) −4.13299 −0.239820
\(298\) −3.10100 −0.179636
\(299\) −5.73526 −0.331678
\(300\) −22.1782 −1.28046
\(301\) 4.66443 0.268854
\(302\) −36.2083 −2.08355
\(303\) −0.965937 −0.0554917
\(304\) −46.3172 −2.65647
\(305\) −44.9414 −2.57334
\(306\) 2.54577 0.145532
\(307\) −29.9263 −1.70799 −0.853993 0.520284i \(-0.825826\pi\)
−0.853993 + 0.520284i \(0.825826\pi\)
\(308\) −18.5198 −1.05526
\(309\) 7.19639 0.409388
\(310\) −57.0665 −3.24116
\(311\) 32.1375 1.82235 0.911175 0.412020i \(-0.135177\pi\)
0.911175 + 0.412020i \(0.135177\pi\)
\(312\) 6.31598 0.357572
\(313\) 2.56467 0.144964 0.0724818 0.997370i \(-0.476908\pi\)
0.0724818 + 0.997370i \(0.476908\pi\)
\(314\) 17.8448 1.00704
\(315\) 3.15427 0.177723
\(316\) 47.1399 2.65183
\(317\) −22.1859 −1.24609 −0.623043 0.782187i \(-0.714104\pi\)
−0.623043 + 0.782187i \(0.714104\pi\)
\(318\) 15.4805 0.868106
\(319\) 27.0006 1.51174
\(320\) 0.840714 0.0469974
\(321\) −11.0427 −0.616342
\(322\) −14.6007 −0.813663
\(323\) −6.50785 −0.362107
\(324\) 4.48097 0.248943
\(325\) −4.94943 −0.274545
\(326\) 31.1120 1.72313
\(327\) 9.79322 0.541566
\(328\) −0.540646 −0.0298522
\(329\) −5.66410 −0.312272
\(330\) 33.1882 1.82695
\(331\) 19.6461 1.07984 0.539922 0.841715i \(-0.318454\pi\)
0.539922 + 0.841715i \(0.318454\pi\)
\(332\) 26.8685 1.47460
\(333\) −1.02262 −0.0560393
\(334\) −39.9580 −2.18640
\(335\) −29.9870 −1.63837
\(336\) 7.11712 0.388271
\(337\) −9.76246 −0.531795 −0.265898 0.964001i \(-0.585668\pi\)
−0.265898 + 0.964001i \(0.585668\pi\)
\(338\) 2.54577 0.138472
\(339\) −1.18694 −0.0644655
\(340\) −14.1342 −0.766534
\(341\) 29.3715 1.59056
\(342\) −16.5675 −0.895869
\(343\) −1.00000 −0.0539949
\(344\) −29.4605 −1.58840
\(345\) 18.0906 0.973963
\(346\) 3.37421 0.181399
\(347\) −15.6076 −0.837861 −0.418931 0.908018i \(-0.637595\pi\)
−0.418931 + 0.908018i \(0.637595\pi\)
\(348\) −29.2739 −1.56924
\(349\) 20.0358 1.07249 0.536245 0.844063i \(-0.319842\pi\)
0.536245 + 0.844063i \(0.319842\pi\)
\(350\) −12.6001 −0.673505
\(351\) 1.00000 0.0533761
\(352\) 22.6762 1.20864
\(353\) 8.74194 0.465286 0.232643 0.972562i \(-0.425263\pi\)
0.232643 + 0.972562i \(0.425263\pi\)
\(354\) −16.2945 −0.866043
\(355\) 25.6194 1.35974
\(356\) 27.9005 1.47872
\(357\) 1.00000 0.0529256
\(358\) −47.6727 −2.51958
\(359\) −12.5703 −0.663435 −0.331717 0.943379i \(-0.607628\pi\)
−0.331717 + 0.943379i \(0.607628\pi\)
\(360\) −19.9223 −1.05000
\(361\) 23.3521 1.22906
\(362\) −45.9372 −2.41440
\(363\) −6.08161 −0.319202
\(364\) 4.48097 0.234866
\(365\) −22.8442 −1.19572
\(366\) −36.2717 −1.89595
\(367\) −3.62825 −0.189393 −0.0946966 0.995506i \(-0.530188\pi\)
−0.0946966 + 0.995506i \(0.530188\pi\)
\(368\) 40.8185 2.12781
\(369\) −0.0855998 −0.00445615
\(370\) 8.21172 0.426907
\(371\) 6.08088 0.315703
\(372\) −31.8444 −1.65106
\(373\) 25.9286 1.34253 0.671265 0.741217i \(-0.265751\pi\)
0.671265 + 0.741217i \(0.265751\pi\)
\(374\) 10.5217 0.544062
\(375\) −0.159508 −0.00823694
\(376\) 35.7743 1.84492
\(377\) −6.53293 −0.336463
\(378\) 2.54577 0.130940
\(379\) 14.9731 0.769117 0.384559 0.923101i \(-0.374354\pi\)
0.384559 + 0.923101i \(0.374354\pi\)
\(380\) 91.9832 4.71864
\(381\) 4.92916 0.252528
\(382\) 32.1815 1.64655
\(383\) 13.1427 0.671558 0.335779 0.941941i \(-0.391000\pi\)
0.335779 + 0.941941i \(0.391000\pi\)
\(384\) 11.6518 0.594602
\(385\) 13.0366 0.664405
\(386\) −56.7805 −2.89005
\(387\) −4.66443 −0.237107
\(388\) 75.7773 3.84701
\(389\) −19.6275 −0.995152 −0.497576 0.867420i \(-0.665777\pi\)
−0.497576 + 0.867420i \(0.665777\pi\)
\(390\) −8.03006 −0.406618
\(391\) 5.73526 0.290044
\(392\) 6.31598 0.319005
\(393\) −12.7160 −0.641436
\(394\) 15.9175 0.801911
\(395\) −33.1830 −1.66962
\(396\) 18.5198 0.930654
\(397\) −35.2252 −1.76790 −0.883950 0.467581i \(-0.845126\pi\)
−0.883950 + 0.467581i \(0.845126\pi\)
\(398\) 10.2011 0.511336
\(399\) −6.50785 −0.325800
\(400\) 35.2257 1.76128
\(401\) 29.9875 1.49750 0.748752 0.662851i \(-0.230654\pi\)
0.748752 + 0.662851i \(0.230654\pi\)
\(402\) −24.2021 −1.20709
\(403\) −7.10660 −0.354005
\(404\) 4.32833 0.215343
\(405\) −3.15427 −0.156737
\(406\) −16.6314 −0.825401
\(407\) −4.22649 −0.209499
\(408\) −6.31598 −0.312687
\(409\) 24.5822 1.21551 0.607755 0.794125i \(-0.292070\pi\)
0.607755 + 0.794125i \(0.292070\pi\)
\(410\) 0.687372 0.0339469
\(411\) −12.6797 −0.625444
\(412\) −32.2468 −1.58868
\(413\) −6.40060 −0.314953
\(414\) 14.6007 0.717584
\(415\) −18.9134 −0.928425
\(416\) −5.48663 −0.269004
\(417\) 10.8498 0.531317
\(418\) −68.4734 −3.34914
\(419\) 13.0003 0.635106 0.317553 0.948241i \(-0.397139\pi\)
0.317553 + 0.948241i \(0.397139\pi\)
\(420\) −14.1342 −0.689678
\(421\) 31.6749 1.54374 0.771870 0.635781i \(-0.219322\pi\)
0.771870 + 0.635781i \(0.219322\pi\)
\(422\) −48.9157 −2.38118
\(423\) 5.66410 0.275398
\(424\) −38.4067 −1.86519
\(425\) 4.94943 0.240083
\(426\) 20.6771 1.00181
\(427\) −14.2478 −0.689499
\(428\) 49.4818 2.39179
\(429\) 4.13299 0.199543
\(430\) 37.4557 1.80627
\(431\) 4.15999 0.200380 0.100190 0.994968i \(-0.468055\pi\)
0.100190 + 0.994968i \(0.468055\pi\)
\(432\) −7.11712 −0.342423
\(433\) −19.4173 −0.933136 −0.466568 0.884485i \(-0.654510\pi\)
−0.466568 + 0.884485i \(0.654510\pi\)
\(434\) −18.0918 −0.868434
\(435\) 20.6067 0.988013
\(436\) −43.8831 −2.10162
\(437\) −37.3242 −1.78546
\(438\) −18.4373 −0.880969
\(439\) −11.9638 −0.571002 −0.285501 0.958378i \(-0.592160\pi\)
−0.285501 + 0.958378i \(0.592160\pi\)
\(440\) −82.3387 −3.92534
\(441\) 1.00000 0.0476190
\(442\) −2.54577 −0.121090
\(443\) −28.4275 −1.35063 −0.675316 0.737529i \(-0.735993\pi\)
−0.675316 + 0.737529i \(0.735993\pi\)
\(444\) 4.58233 0.217468
\(445\) −19.6399 −0.931022
\(446\) 72.4083 3.42863
\(447\) 1.21810 0.0576141
\(448\) 0.266532 0.0125925
\(449\) −9.61885 −0.453942 −0.226971 0.973902i \(-0.572882\pi\)
−0.226971 + 0.973902i \(0.572882\pi\)
\(450\) 12.6001 0.593976
\(451\) −0.353783 −0.0166590
\(452\) 5.31862 0.250167
\(453\) 14.2229 0.668250
\(454\) −21.9236 −1.02892
\(455\) −3.15427 −0.147875
\(456\) 41.1034 1.92485
\(457\) 3.89971 0.182421 0.0912104 0.995832i \(-0.470926\pi\)
0.0912104 + 0.995832i \(0.470926\pi\)
\(458\) 28.7096 1.34151
\(459\) −1.00000 −0.0466760
\(460\) −81.0632 −3.77959
\(461\) −23.9682 −1.11631 −0.558156 0.829736i \(-0.688491\pi\)
−0.558156 + 0.829736i \(0.688491\pi\)
\(462\) 10.5217 0.489512
\(463\) 29.2461 1.35918 0.679590 0.733592i \(-0.262158\pi\)
0.679590 + 0.733592i \(0.262158\pi\)
\(464\) 46.4957 2.15851
\(465\) 22.4162 1.03952
\(466\) −72.1890 −3.34409
\(467\) −19.0239 −0.880323 −0.440161 0.897919i \(-0.645079\pi\)
−0.440161 + 0.897919i \(0.645079\pi\)
\(468\) −4.48097 −0.207133
\(469\) −9.50679 −0.438983
\(470\) −45.4831 −2.09798
\(471\) −7.00956 −0.322983
\(472\) 40.4261 1.86076
\(473\) −19.2781 −0.886406
\(474\) −26.7816 −1.23012
\(475\) −32.2102 −1.47790
\(476\) −4.48097 −0.205385
\(477\) −6.08088 −0.278424
\(478\) 59.7173 2.73140
\(479\) −36.7134 −1.67748 −0.838740 0.544532i \(-0.816707\pi\)
−0.838740 + 0.544532i \(0.816707\pi\)
\(480\) 17.3063 0.789921
\(481\) 1.02262 0.0466275
\(482\) 58.3045 2.65570
\(483\) 5.73526 0.260963
\(484\) 27.2515 1.23870
\(485\) −53.3417 −2.42212
\(486\) −2.54577 −0.115479
\(487\) 6.41120 0.290519 0.145260 0.989394i \(-0.453598\pi\)
0.145260 + 0.989394i \(0.453598\pi\)
\(488\) 89.9888 4.07360
\(489\) −12.2210 −0.552654
\(490\) −8.03006 −0.362761
\(491\) −0.156927 −0.00708201 −0.00354100 0.999994i \(-0.501127\pi\)
−0.00354100 + 0.999994i \(0.501127\pi\)
\(492\) 0.383570 0.0172927
\(493\) 6.53293 0.294229
\(494\) 16.5675 0.745408
\(495\) −13.0366 −0.585950
\(496\) 50.5785 2.27104
\(497\) 8.12213 0.364327
\(498\) −15.2648 −0.684033
\(499\) 27.5514 1.23337 0.616686 0.787209i \(-0.288475\pi\)
0.616686 + 0.787209i \(0.288475\pi\)
\(500\) 0.714748 0.0319645
\(501\) 15.6958 0.701237
\(502\) −39.8730 −1.77962
\(503\) −13.9464 −0.621840 −0.310920 0.950436i \(-0.600637\pi\)
−0.310920 + 0.950436i \(0.600637\pi\)
\(504\) −6.31598 −0.281336
\(505\) −3.04683 −0.135582
\(506\) 60.3444 2.68264
\(507\) −1.00000 −0.0444116
\(508\) −22.0874 −0.979969
\(509\) −20.7317 −0.918916 −0.459458 0.888199i \(-0.651956\pi\)
−0.459458 + 0.888199i \(0.651956\pi\)
\(510\) 8.03006 0.355577
\(511\) −7.24232 −0.320381
\(512\) −50.8542 −2.24746
\(513\) 6.50785 0.287329
\(514\) 5.15756 0.227490
\(515\) 22.6994 1.00025
\(516\) 20.9012 0.920123
\(517\) 23.4097 1.02956
\(518\) 2.60336 0.114385
\(519\) −1.32542 −0.0581793
\(520\) 19.9223 0.873651
\(521\) −22.0325 −0.965263 −0.482631 0.875824i \(-0.660319\pi\)
−0.482631 + 0.875824i \(0.660319\pi\)
\(522\) 16.6314 0.727936
\(523\) 2.69828 0.117988 0.0589938 0.998258i \(-0.481211\pi\)
0.0589938 + 0.998258i \(0.481211\pi\)
\(524\) 56.9799 2.48918
\(525\) 4.94943 0.216011
\(526\) −32.7271 −1.42697
\(527\) 7.10660 0.309568
\(528\) −29.4150 −1.28012
\(529\) 9.89317 0.430138
\(530\) 48.8298 2.12103
\(531\) 6.40060 0.277763
\(532\) 29.1615 1.26431
\(533\) 0.0855998 0.00370774
\(534\) −15.8511 −0.685946
\(535\) −34.8316 −1.50590
\(536\) 60.0447 2.59354
\(537\) 18.7262 0.808096
\(538\) 0.436265 0.0188087
\(539\) 4.13299 0.178020
\(540\) 14.1342 0.608238
\(541\) −12.3023 −0.528916 −0.264458 0.964397i \(-0.585193\pi\)
−0.264458 + 0.964397i \(0.585193\pi\)
\(542\) −30.2012 −1.29725
\(543\) 18.0445 0.774363
\(544\) 5.48663 0.235237
\(545\) 30.8905 1.32320
\(546\) −2.54577 −0.108949
\(547\) 35.9351 1.53647 0.768236 0.640167i \(-0.221135\pi\)
0.768236 + 0.640167i \(0.221135\pi\)
\(548\) 56.8173 2.42712
\(549\) 14.2478 0.608081
\(550\) 52.0762 2.22054
\(551\) −42.5154 −1.81122
\(552\) −36.2238 −1.54179
\(553\) −10.5200 −0.447357
\(554\) 13.5056 0.573796
\(555\) −3.22563 −0.136920
\(556\) −48.6176 −2.06185
\(557\) 14.5081 0.614726 0.307363 0.951592i \(-0.400553\pi\)
0.307363 + 0.951592i \(0.400553\pi\)
\(558\) 18.0918 0.765887
\(559\) 4.66443 0.197285
\(560\) 22.4493 0.948657
\(561\) −4.13299 −0.174495
\(562\) −23.2958 −0.982674
\(563\) −17.7216 −0.746877 −0.373439 0.927655i \(-0.621821\pi\)
−0.373439 + 0.927655i \(0.621821\pi\)
\(564\) −25.3806 −1.06872
\(565\) −3.74392 −0.157508
\(566\) −39.6952 −1.66851
\(567\) −1.00000 −0.0419961
\(568\) −51.2992 −2.15247
\(569\) −15.7632 −0.660827 −0.330414 0.943836i \(-0.607188\pi\)
−0.330414 + 0.943836i \(0.607188\pi\)
\(570\) −52.2585 −2.18887
\(571\) −23.6618 −0.990216 −0.495108 0.868831i \(-0.664871\pi\)
−0.495108 + 0.868831i \(0.664871\pi\)
\(572\) −18.5198 −0.774351
\(573\) −12.6411 −0.528091
\(574\) 0.217918 0.00909571
\(575\) 28.3863 1.18379
\(576\) −0.266532 −0.0111055
\(577\) 21.3107 0.887175 0.443587 0.896231i \(-0.353706\pi\)
0.443587 + 0.896231i \(0.353706\pi\)
\(578\) 2.54577 0.105890
\(579\) 22.3038 0.926915
\(580\) −92.3377 −3.83411
\(581\) −5.99614 −0.248762
\(582\) −43.0514 −1.78454
\(583\) −25.1322 −1.04087
\(584\) 45.7423 1.89283
\(585\) 3.15427 0.130413
\(586\) −61.7624 −2.55138
\(587\) −17.1640 −0.708435 −0.354218 0.935163i \(-0.615253\pi\)
−0.354218 + 0.935163i \(0.615253\pi\)
\(588\) −4.48097 −0.184792
\(589\) −46.2487 −1.90564
\(590\) −51.3973 −2.11599
\(591\) −6.25251 −0.257194
\(592\) −7.27812 −0.299129
\(593\) −28.9180 −1.18752 −0.593760 0.804642i \(-0.702357\pi\)
−0.593760 + 0.804642i \(0.702357\pi\)
\(594\) −10.5217 −0.431709
\(595\) 3.15427 0.129313
\(596\) −5.45826 −0.223579
\(597\) −4.00708 −0.163999
\(598\) −14.6007 −0.597066
\(599\) −42.4291 −1.73361 −0.866803 0.498651i \(-0.833829\pi\)
−0.866803 + 0.498651i \(0.833829\pi\)
\(600\) −31.2605 −1.27620
\(601\) 2.25928 0.0921578 0.0460789 0.998938i \(-0.485327\pi\)
0.0460789 + 0.998938i \(0.485327\pi\)
\(602\) 11.8746 0.483972
\(603\) 9.50679 0.387147
\(604\) −63.7323 −2.59323
\(605\) −19.1830 −0.779902
\(606\) −2.45906 −0.0998924
\(607\) −7.84333 −0.318351 −0.159176 0.987250i \(-0.550884\pi\)
−0.159176 + 0.987250i \(0.550884\pi\)
\(608\) −35.7061 −1.44808
\(609\) 6.53293 0.264728
\(610\) −114.411 −4.63235
\(611\) −5.66410 −0.229145
\(612\) 4.48097 0.181132
\(613\) 1.31345 0.0530498 0.0265249 0.999648i \(-0.491556\pi\)
0.0265249 + 0.999648i \(0.491556\pi\)
\(614\) −76.1857 −3.07461
\(615\) −0.270005 −0.0108877
\(616\) −26.1039 −1.05176
\(617\) 21.7400 0.875220 0.437610 0.899165i \(-0.355825\pi\)
0.437610 + 0.899165i \(0.355825\pi\)
\(618\) 18.3204 0.736954
\(619\) −1.17955 −0.0474102 −0.0237051 0.999719i \(-0.507546\pi\)
−0.0237051 + 0.999719i \(0.507546\pi\)
\(620\) −100.446 −4.03401
\(621\) −5.73526 −0.230148
\(622\) 81.8148 3.28047
\(623\) −6.22645 −0.249458
\(624\) 7.11712 0.284913
\(625\) −25.2503 −1.01001
\(626\) 6.52907 0.260954
\(627\) 26.8969 1.07416
\(628\) 31.4096 1.25338
\(629\) −1.02262 −0.0407746
\(630\) 8.03006 0.319925
\(631\) 40.5780 1.61539 0.807693 0.589603i \(-0.200716\pi\)
0.807693 + 0.589603i \(0.200716\pi\)
\(632\) 66.4443 2.64301
\(633\) 19.2145 0.763707
\(634\) −56.4804 −2.24312
\(635\) 15.5479 0.617000
\(636\) 27.2482 1.08046
\(637\) −1.00000 −0.0396214
\(638\) 68.7373 2.72134
\(639\) −8.12213 −0.321306
\(640\) 36.7529 1.45279
\(641\) 44.6505 1.76359 0.881794 0.471635i \(-0.156336\pi\)
0.881794 + 0.471635i \(0.156336\pi\)
\(642\) −28.1121 −1.10950
\(643\) −3.61769 −0.142668 −0.0713339 0.997452i \(-0.522726\pi\)
−0.0713339 + 0.997452i \(0.522726\pi\)
\(644\) −25.6995 −1.01270
\(645\) −14.7129 −0.579320
\(646\) −16.5675 −0.651840
\(647\) 6.50439 0.255714 0.127857 0.991793i \(-0.459190\pi\)
0.127857 + 0.991793i \(0.459190\pi\)
\(648\) 6.31598 0.248115
\(649\) 26.4536 1.03840
\(650\) −12.6001 −0.494218
\(651\) 7.10660 0.278530
\(652\) 54.7620 2.14465
\(653\) −24.8163 −0.971137 −0.485568 0.874199i \(-0.661387\pi\)
−0.485568 + 0.874199i \(0.661387\pi\)
\(654\) 24.9313 0.974892
\(655\) −40.1097 −1.56721
\(656\) −0.609224 −0.0237862
\(657\) 7.24232 0.282550
\(658\) −14.4195 −0.562131
\(659\) 21.1253 0.822925 0.411463 0.911427i \(-0.365018\pi\)
0.411463 + 0.911427i \(0.365018\pi\)
\(660\) 58.4164 2.27386
\(661\) −47.4167 −1.84430 −0.922148 0.386836i \(-0.873568\pi\)
−0.922148 + 0.386836i \(0.873568\pi\)
\(662\) 50.0144 1.94387
\(663\) 1.00000 0.0388368
\(664\) 37.8715 1.46970
\(665\) −20.5275 −0.796024
\(666\) −2.60336 −0.100878
\(667\) 37.4681 1.45077
\(668\) −70.3324 −2.72124
\(669\) −28.4425 −1.09965
\(670\) −76.3401 −2.94928
\(671\) 58.8860 2.27327
\(672\) 5.48663 0.211651
\(673\) 0.432183 0.0166594 0.00832972 0.999965i \(-0.497349\pi\)
0.00832972 + 0.999965i \(0.497349\pi\)
\(674\) −24.8530 −0.957303
\(675\) −4.94943 −0.190504
\(676\) 4.48097 0.172345
\(677\) 17.2110 0.661472 0.330736 0.943723i \(-0.392703\pi\)
0.330736 + 0.943723i \(0.392703\pi\)
\(678\) −3.02167 −0.116047
\(679\) −16.9109 −0.648982
\(680\) −19.9223 −0.763986
\(681\) 8.61175 0.330003
\(682\) 74.7732 2.86322
\(683\) −33.5602 −1.28415 −0.642073 0.766644i \(-0.721925\pi\)
−0.642073 + 0.766644i \(0.721925\pi\)
\(684\) −29.1615 −1.11502
\(685\) −39.9952 −1.52814
\(686\) −2.54577 −0.0971981
\(687\) −11.2774 −0.430259
\(688\) −33.1973 −1.26564
\(689\) 6.08088 0.231663
\(690\) 46.0545 1.75326
\(691\) −2.77976 −0.105747 −0.0528735 0.998601i \(-0.516838\pi\)
−0.0528735 + 0.998601i \(0.516838\pi\)
\(692\) 5.93914 0.225772
\(693\) −4.13299 −0.156999
\(694\) −39.7335 −1.50826
\(695\) 34.2232 1.29816
\(696\) −41.2619 −1.56403
\(697\) −0.0855998 −0.00324232
\(698\) 51.0065 1.93062
\(699\) 28.3564 1.07254
\(700\) −22.1782 −0.838258
\(701\) 24.9009 0.940496 0.470248 0.882534i \(-0.344165\pi\)
0.470248 + 0.882534i \(0.344165\pi\)
\(702\) 2.54577 0.0960840
\(703\) 6.65507 0.251001
\(704\) −1.10157 −0.0415171
\(705\) 17.8661 0.672877
\(706\) 22.2550 0.837578
\(707\) −0.965937 −0.0363278
\(708\) −28.6809 −1.07789
\(709\) 13.6773 0.513661 0.256831 0.966456i \(-0.417322\pi\)
0.256831 + 0.966456i \(0.417322\pi\)
\(710\) 65.2212 2.44771
\(711\) 10.5200 0.394532
\(712\) 39.3261 1.47381
\(713\) 40.7582 1.52641
\(714\) 2.54577 0.0952732
\(715\) 13.0366 0.487540
\(716\) −83.9116 −3.13592
\(717\) −23.4574 −0.876033
\(718\) −32.0011 −1.19427
\(719\) 35.8378 1.33653 0.668263 0.743925i \(-0.267038\pi\)
0.668263 + 0.743925i \(0.267038\pi\)
\(720\) −22.4493 −0.836637
\(721\) 7.19639 0.268008
\(722\) 59.4492 2.21247
\(723\) −22.9025 −0.851752
\(724\) −80.8567 −3.00502
\(725\) 32.3343 1.20087
\(726\) −15.4824 −0.574606
\(727\) −23.7865 −0.882193 −0.441096 0.897460i \(-0.645410\pi\)
−0.441096 + 0.897460i \(0.645410\pi\)
\(728\) 6.31598 0.234086
\(729\) 1.00000 0.0370370
\(730\) −58.1563 −2.15246
\(731\) −4.66443 −0.172520
\(732\) −63.8439 −2.35974
\(733\) 50.4632 1.86390 0.931950 0.362587i \(-0.118106\pi\)
0.931950 + 0.362587i \(0.118106\pi\)
\(734\) −9.23671 −0.340933
\(735\) 3.15427 0.116347
\(736\) 31.4672 1.15990
\(737\) 39.2915 1.44732
\(738\) −0.217918 −0.00802166
\(739\) −7.13749 −0.262557 −0.131278 0.991346i \(-0.541908\pi\)
−0.131278 + 0.991346i \(0.541908\pi\)
\(740\) 14.4539 0.531337
\(741\) −6.50785 −0.239072
\(742\) 15.4805 0.568309
\(743\) 16.8059 0.616548 0.308274 0.951298i \(-0.400249\pi\)
0.308274 + 0.951298i \(0.400249\pi\)
\(744\) −44.8851 −1.64557
\(745\) 3.84222 0.140768
\(746\) 66.0083 2.41673
\(747\) 5.99614 0.219387
\(748\) 18.5198 0.677150
\(749\) −11.0427 −0.403490
\(750\) −0.406070 −0.0148276
\(751\) 35.7909 1.30603 0.653014 0.757345i \(-0.273504\pi\)
0.653014 + 0.757345i \(0.273504\pi\)
\(752\) 40.3121 1.47003
\(753\) 15.6624 0.570770
\(754\) −16.6314 −0.605679
\(755\) 44.8629 1.63273
\(756\) 4.48097 0.162971
\(757\) 10.2051 0.370912 0.185456 0.982653i \(-0.440624\pi\)
0.185456 + 0.982653i \(0.440624\pi\)
\(758\) 38.1182 1.38451
\(759\) −23.7038 −0.860392
\(760\) 129.651 4.70295
\(761\) −43.0722 −1.56137 −0.780683 0.624927i \(-0.785129\pi\)
−0.780683 + 0.624927i \(0.785129\pi\)
\(762\) 12.5485 0.454585
\(763\) 9.79322 0.354538
\(764\) 56.6445 2.04933
\(765\) −3.15427 −0.114043
\(766\) 33.4582 1.20889
\(767\) −6.40060 −0.231112
\(768\) 29.1297 1.05113
\(769\) −24.7662 −0.893093 −0.446546 0.894761i \(-0.647346\pi\)
−0.446546 + 0.894761i \(0.647346\pi\)
\(770\) 33.1882 1.19602
\(771\) −2.02593 −0.0729620
\(772\) −99.9426 −3.59701
\(773\) −9.91199 −0.356510 −0.178255 0.983984i \(-0.557045\pi\)
−0.178255 + 0.983984i \(0.557045\pi\)
\(774\) −11.8746 −0.426824
\(775\) 35.1736 1.26347
\(776\) 106.809 3.83422
\(777\) −1.02262 −0.0366864
\(778\) −49.9671 −1.79141
\(779\) 0.557071 0.0199591
\(780\) −14.1342 −0.506085
\(781\) −33.5687 −1.20118
\(782\) 14.6007 0.522119
\(783\) −6.53293 −0.233468
\(784\) 7.11712 0.254183
\(785\) −22.1101 −0.789142
\(786\) −32.3720 −1.15467
\(787\) 25.5234 0.909812 0.454906 0.890540i \(-0.349673\pi\)
0.454906 + 0.890540i \(0.349673\pi\)
\(788\) 28.0173 0.998074
\(789\) 12.8555 0.457667
\(790\) −84.4765 −3.00554
\(791\) −1.18694 −0.0422026
\(792\) 26.1039 0.927561
\(793\) −14.2478 −0.505954
\(794\) −89.6753 −3.18246
\(795\) −19.1807 −0.680271
\(796\) 17.9556 0.636419
\(797\) 42.9948 1.52295 0.761477 0.648192i \(-0.224474\pi\)
0.761477 + 0.648192i \(0.224474\pi\)
\(798\) −16.5675 −0.586484
\(799\) 5.66410 0.200381
\(800\) 27.1557 0.960098
\(801\) 6.22645 0.220001
\(802\) 76.3413 2.69571
\(803\) 29.9324 1.05629
\(804\) −42.5996 −1.50237
\(805\) 18.0906 0.637608
\(806\) −18.0918 −0.637256
\(807\) −0.171368 −0.00603245
\(808\) 6.10084 0.214627
\(809\) 42.8395 1.50616 0.753078 0.657931i \(-0.228568\pi\)
0.753078 + 0.657931i \(0.228568\pi\)
\(810\) −8.03006 −0.282148
\(811\) 36.3519 1.27649 0.638244 0.769834i \(-0.279661\pi\)
0.638244 + 0.769834i \(0.279661\pi\)
\(812\) −29.2739 −1.02731
\(813\) 11.8633 0.416064
\(814\) −10.7597 −0.377127
\(815\) −38.5485 −1.35029
\(816\) −7.11712 −0.249149
\(817\) 30.3554 1.06200
\(818\) 62.5806 2.18808
\(819\) 1.00000 0.0349428
\(820\) 1.20988 0.0422509
\(821\) 35.0137 1.22199 0.610993 0.791636i \(-0.290770\pi\)
0.610993 + 0.791636i \(0.290770\pi\)
\(822\) −32.2797 −1.12588
\(823\) −15.5256 −0.541187 −0.270594 0.962694i \(-0.587220\pi\)
−0.270594 + 0.962694i \(0.587220\pi\)
\(824\) −45.4522 −1.58340
\(825\) −20.4560 −0.712185
\(826\) −16.2945 −0.566958
\(827\) 25.2378 0.877603 0.438801 0.898584i \(-0.355403\pi\)
0.438801 + 0.898584i \(0.355403\pi\)
\(828\) 25.6995 0.893119
\(829\) 4.84894 0.168411 0.0842053 0.996448i \(-0.473165\pi\)
0.0842053 + 0.996448i \(0.473165\pi\)
\(830\) −48.1494 −1.67129
\(831\) −5.30509 −0.184031
\(832\) 0.266532 0.00924033
\(833\) 1.00000 0.0346479
\(834\) 27.6211 0.956442
\(835\) 49.5089 1.71332
\(836\) −120.524 −4.16841
\(837\) −7.10660 −0.245640
\(838\) 33.0958 1.14328
\(839\) 36.3460 1.25480 0.627402 0.778696i \(-0.284118\pi\)
0.627402 + 0.778696i \(0.284118\pi\)
\(840\) −19.9223 −0.687385
\(841\) 13.6792 0.471698
\(842\) 80.6371 2.77894
\(843\) 9.15077 0.315169
\(844\) −86.0994 −2.96366
\(845\) −3.15427 −0.108510
\(846\) 14.4195 0.495753
\(847\) −6.08161 −0.208967
\(848\) −43.2783 −1.48618
\(849\) 15.5926 0.535136
\(850\) 12.6001 0.432181
\(851\) −5.86500 −0.201050
\(852\) 36.3950 1.24687
\(853\) −16.7917 −0.574938 −0.287469 0.957790i \(-0.592814\pi\)
−0.287469 + 0.957790i \(0.592814\pi\)
\(854\) −36.2717 −1.24119
\(855\) 20.5275 0.702027
\(856\) 69.7452 2.38384
\(857\) −56.7908 −1.93994 −0.969968 0.243232i \(-0.921792\pi\)
−0.969968 + 0.243232i \(0.921792\pi\)
\(858\) 10.5217 0.359204
\(859\) −10.2346 −0.349199 −0.174600 0.984640i \(-0.555863\pi\)
−0.174600 + 0.984640i \(0.555863\pi\)
\(860\) 65.9280 2.24813
\(861\) −0.0855998 −0.00291723
\(862\) 10.5904 0.360710
\(863\) 4.84076 0.164781 0.0823907 0.996600i \(-0.473744\pi\)
0.0823907 + 0.996600i \(0.473744\pi\)
\(864\) −5.48663 −0.186659
\(865\) −4.18072 −0.142149
\(866\) −49.4320 −1.67977
\(867\) −1.00000 −0.0339618
\(868\) −31.8444 −1.08087
\(869\) 43.4792 1.47493
\(870\) 52.4599 1.77856
\(871\) −9.50679 −0.322125
\(872\) −61.8538 −2.09463
\(873\) 16.9109 0.572349
\(874\) −95.0190 −3.21406
\(875\) −0.159508 −0.00539234
\(876\) −32.4526 −1.09647
\(877\) 10.8794 0.367371 0.183685 0.982985i \(-0.441197\pi\)
0.183685 + 0.982985i \(0.441197\pi\)
\(878\) −30.4572 −1.02788
\(879\) 24.2607 0.818295
\(880\) −92.7829 −3.12771
\(881\) 15.7543 0.530777 0.265389 0.964142i \(-0.414500\pi\)
0.265389 + 0.964142i \(0.414500\pi\)
\(882\) 2.54577 0.0857207
\(883\) −42.8373 −1.44159 −0.720795 0.693149i \(-0.756223\pi\)
−0.720795 + 0.693149i \(0.756223\pi\)
\(884\) −4.48097 −0.150711
\(885\) 20.1892 0.678654
\(886\) −72.3700 −2.43132
\(887\) 46.3244 1.55542 0.777711 0.628622i \(-0.216381\pi\)
0.777711 + 0.628622i \(0.216381\pi\)
\(888\) 6.45886 0.216745
\(889\) 4.92916 0.165319
\(890\) −49.9988 −1.67596
\(891\) 4.13299 0.138460
\(892\) 127.450 4.26734
\(893\) −36.8611 −1.23351
\(894\) 3.10100 0.103713
\(895\) 59.0676 1.97441
\(896\) 11.6518 0.389259
\(897\) 5.73526 0.191495
\(898\) −24.4874 −0.817156
\(899\) 46.4270 1.54843
\(900\) 22.1782 0.739274
\(901\) −6.08088 −0.202583
\(902\) −0.900652 −0.0299884
\(903\) −4.66443 −0.155223
\(904\) 7.49666 0.249335
\(905\) 56.9172 1.89199
\(906\) 36.2083 1.20294
\(907\) −6.49832 −0.215773 −0.107887 0.994163i \(-0.534408\pi\)
−0.107887 + 0.994163i \(0.534408\pi\)
\(908\) −38.5889 −1.28062
\(909\) 0.965937 0.0320381
\(910\) −8.03006 −0.266194
\(911\) −16.0457 −0.531617 −0.265808 0.964026i \(-0.585639\pi\)
−0.265808 + 0.964026i \(0.585639\pi\)
\(912\) 46.3172 1.53371
\(913\) 24.7820 0.820164
\(914\) 9.92778 0.328382
\(915\) 44.9414 1.48572
\(916\) 50.5335 1.66967
\(917\) −12.7160 −0.419919
\(918\) −2.54577 −0.0840231
\(919\) 35.5943 1.17415 0.587074 0.809533i \(-0.300280\pi\)
0.587074 + 0.809533i \(0.300280\pi\)
\(920\) −114.260 −3.76703
\(921\) 29.9263 0.986107
\(922\) −61.0177 −2.00951
\(923\) 8.12213 0.267343
\(924\) 18.5198 0.609256
\(925\) −5.06140 −0.166418
\(926\) 74.4538 2.44671
\(927\) −7.19639 −0.236360
\(928\) 35.8438 1.17663
\(929\) −27.9906 −0.918341 −0.459170 0.888348i \(-0.651853\pi\)
−0.459170 + 0.888348i \(0.651853\pi\)
\(930\) 57.0665 1.87128
\(931\) −6.50785 −0.213286
\(932\) −127.064 −4.16212
\(933\) −32.1375 −1.05213
\(934\) −48.4307 −1.58470
\(935\) −13.0366 −0.426342
\(936\) −6.31598 −0.206444
\(937\) −5.88871 −0.192376 −0.0961879 0.995363i \(-0.530665\pi\)
−0.0961879 + 0.995363i \(0.530665\pi\)
\(938\) −24.2021 −0.790228
\(939\) −2.56467 −0.0836948
\(940\) −80.0574 −2.61119
\(941\) 29.3389 0.956422 0.478211 0.878245i \(-0.341285\pi\)
0.478211 + 0.878245i \(0.341285\pi\)
\(942\) −17.8448 −0.581413
\(943\) −0.490937 −0.0159871
\(944\) 45.5539 1.48265
\(945\) −3.15427 −0.102608
\(946\) −49.0776 −1.59565
\(947\) 7.35287 0.238936 0.119468 0.992838i \(-0.461881\pi\)
0.119468 + 0.992838i \(0.461881\pi\)
\(948\) −47.1399 −1.53103
\(949\) −7.24232 −0.235096
\(950\) −81.9998 −2.66042
\(951\) 22.1859 0.719429
\(952\) −6.31598 −0.204702
\(953\) 50.2970 1.62928 0.814639 0.579968i \(-0.196935\pi\)
0.814639 + 0.579968i \(0.196935\pi\)
\(954\) −15.4805 −0.501201
\(955\) −39.8736 −1.29028
\(956\) 105.112 3.39956
\(957\) −27.0006 −0.872804
\(958\) −93.4641 −3.01969
\(959\) −12.6797 −0.409449
\(960\) −0.840714 −0.0271339
\(961\) 19.5038 0.629154
\(962\) 2.60336 0.0839358
\(963\) 11.0427 0.355845
\(964\) 102.625 3.30533
\(965\) 70.3523 2.26472
\(966\) 14.6007 0.469769
\(967\) −51.6293 −1.66029 −0.830143 0.557551i \(-0.811741\pi\)
−0.830143 + 0.557551i \(0.811741\pi\)
\(968\) 38.4113 1.23459
\(969\) 6.50785 0.209062
\(970\) −135.796 −4.36014
\(971\) −31.7100 −1.01762 −0.508811 0.860878i \(-0.669915\pi\)
−0.508811 + 0.860878i \(0.669915\pi\)
\(972\) −4.48097 −0.143727
\(973\) 10.8498 0.347829
\(974\) 16.3215 0.522974
\(975\) 4.94943 0.158509
\(976\) 101.403 3.24584
\(977\) −32.1955 −1.03003 −0.515013 0.857182i \(-0.672213\pi\)
−0.515013 + 0.857182i \(0.672213\pi\)
\(978\) −31.1120 −0.994852
\(979\) 25.7339 0.822458
\(980\) −14.1342 −0.451500
\(981\) −9.79322 −0.312673
\(982\) −0.399500 −0.0127486
\(983\) −10.6940 −0.341086 −0.170543 0.985350i \(-0.554552\pi\)
−0.170543 + 0.985350i \(0.554552\pi\)
\(984\) 0.540646 0.0172352
\(985\) −19.7221 −0.628399
\(986\) 16.6314 0.529651
\(987\) 5.66410 0.180290
\(988\) 29.1615 0.927750
\(989\) −26.7517 −0.850656
\(990\) −33.1882 −1.05479
\(991\) 52.7633 1.67608 0.838041 0.545607i \(-0.183701\pi\)
0.838041 + 0.545607i \(0.183701\pi\)
\(992\) 38.9913 1.23797
\(993\) −19.6461 −0.623449
\(994\) 20.6771 0.655838
\(995\) −12.6394 −0.400697
\(996\) −26.8685 −0.851361
\(997\) −9.99229 −0.316459 −0.158229 0.987402i \(-0.550579\pi\)
−0.158229 + 0.987402i \(0.550579\pi\)
\(998\) 70.1397 2.22023
\(999\) 1.02262 0.0323543
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4641.2.a.t.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4641.2.a.t.1.11 12 1.1 even 1 trivial