Properties

Label 4641.2.a.i.1.2
Level $4641$
Weight $2$
Character 4641.1
Self dual yes
Analytic conductor $37.059$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4641,2,Mod(1,4641)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4641.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4641, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4641 = 3 \cdot 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4641.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-2,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.0585715781\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 4641.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} -1.00000 q^{3} -1.61803 q^{4} +2.23607 q^{5} -0.618034 q^{6} -1.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} +1.38197 q^{10} -4.00000 q^{11} +1.61803 q^{12} -1.00000 q^{13} -0.618034 q^{14} -2.23607 q^{15} +1.85410 q^{16} -1.00000 q^{17} +0.618034 q^{18} +6.23607 q^{19} -3.61803 q^{20} +1.00000 q^{21} -2.47214 q^{22} +3.00000 q^{23} +2.23607 q^{24} -0.618034 q^{26} -1.00000 q^{27} +1.61803 q^{28} +8.23607 q^{29} -1.38197 q^{30} +2.47214 q^{31} +5.61803 q^{32} +4.00000 q^{33} -0.618034 q^{34} -2.23607 q^{35} -1.61803 q^{36} -4.47214 q^{37} +3.85410 q^{38} +1.00000 q^{39} -5.00000 q^{40} -4.70820 q^{41} +0.618034 q^{42} -3.76393 q^{43} +6.47214 q^{44} +2.23607 q^{45} +1.85410 q^{46} -4.00000 q^{47} -1.85410 q^{48} +1.00000 q^{49} +1.00000 q^{51} +1.61803 q^{52} +1.52786 q^{53} -0.618034 q^{54} -8.94427 q^{55} +2.23607 q^{56} -6.23607 q^{57} +5.09017 q^{58} +6.00000 q^{59} +3.61803 q^{60} -8.23607 q^{61} +1.52786 q^{62} -1.00000 q^{63} -0.236068 q^{64} -2.23607 q^{65} +2.47214 q^{66} -1.52786 q^{67} +1.61803 q^{68} -3.00000 q^{69} -1.38197 q^{70} -6.47214 q^{71} -2.23607 q^{72} +5.52786 q^{73} -2.76393 q^{74} -10.0902 q^{76} +4.00000 q^{77} +0.618034 q^{78} -6.00000 q^{79} +4.14590 q^{80} +1.00000 q^{81} -2.90983 q^{82} -8.47214 q^{83} -1.61803 q^{84} -2.23607 q^{85} -2.32624 q^{86} -8.23607 q^{87} +8.94427 q^{88} -14.4721 q^{89} +1.38197 q^{90} +1.00000 q^{91} -4.85410 q^{92} -2.47214 q^{93} -2.47214 q^{94} +13.9443 q^{95} -5.61803 q^{96} +10.4721 q^{97} +0.618034 q^{98} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} - q^{4} + q^{6} - 2 q^{7} + 2 q^{9} + 5 q^{10} - 8 q^{11} + q^{12} - 2 q^{13} + q^{14} - 3 q^{16} - 2 q^{17} - q^{18} + 8 q^{19} - 5 q^{20} + 2 q^{21} + 4 q^{22} + 6 q^{23} + q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.61803 −0.809017
\(5\) 2.23607 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) −0.618034 −0.252311
\(7\) −1.00000 −0.377964
\(8\) −2.23607 −0.790569
\(9\) 1.00000 0.333333
\(10\) 1.38197 0.437016
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 1.61803 0.467086
\(13\) −1.00000 −0.277350
\(14\) −0.618034 −0.165177
\(15\) −2.23607 −0.577350
\(16\) 1.85410 0.463525
\(17\) −1.00000 −0.242536
\(18\) 0.618034 0.145672
\(19\) 6.23607 1.43065 0.715326 0.698791i \(-0.246278\pi\)
0.715326 + 0.698791i \(0.246278\pi\)
\(20\) −3.61803 −0.809017
\(21\) 1.00000 0.218218
\(22\) −2.47214 −0.527061
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) −0.618034 −0.121206
\(27\) −1.00000 −0.192450
\(28\) 1.61803 0.305780
\(29\) 8.23607 1.52940 0.764700 0.644387i \(-0.222887\pi\)
0.764700 + 0.644387i \(0.222887\pi\)
\(30\) −1.38197 −0.252311
\(31\) 2.47214 0.444009 0.222004 0.975046i \(-0.428740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(32\) 5.61803 0.993137
\(33\) 4.00000 0.696311
\(34\) −0.618034 −0.105992
\(35\) −2.23607 −0.377964
\(36\) −1.61803 −0.269672
\(37\) −4.47214 −0.735215 −0.367607 0.929981i \(-0.619823\pi\)
−0.367607 + 0.929981i \(0.619823\pi\)
\(38\) 3.85410 0.625218
\(39\) 1.00000 0.160128
\(40\) −5.00000 −0.790569
\(41\) −4.70820 −0.735298 −0.367649 0.929965i \(-0.619837\pi\)
−0.367649 + 0.929965i \(0.619837\pi\)
\(42\) 0.618034 0.0953647
\(43\) −3.76393 −0.573994 −0.286997 0.957931i \(-0.592657\pi\)
−0.286997 + 0.957931i \(0.592657\pi\)
\(44\) 6.47214 0.975711
\(45\) 2.23607 0.333333
\(46\) 1.85410 0.273372
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) −1.85410 −0.267617
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 1.61803 0.224381
\(53\) 1.52786 0.209868 0.104934 0.994479i \(-0.466537\pi\)
0.104934 + 0.994479i \(0.466537\pi\)
\(54\) −0.618034 −0.0841038
\(55\) −8.94427 −1.20605
\(56\) 2.23607 0.298807
\(57\) −6.23607 −0.825987
\(58\) 5.09017 0.668372
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 3.61803 0.467086
\(61\) −8.23607 −1.05452 −0.527260 0.849704i \(-0.676781\pi\)
−0.527260 + 0.849704i \(0.676781\pi\)
\(62\) 1.52786 0.194039
\(63\) −1.00000 −0.125988
\(64\) −0.236068 −0.0295085
\(65\) −2.23607 −0.277350
\(66\) 2.47214 0.304299
\(67\) −1.52786 −0.186658 −0.0933292 0.995635i \(-0.529751\pi\)
−0.0933292 + 0.995635i \(0.529751\pi\)
\(68\) 1.61803 0.196215
\(69\) −3.00000 −0.361158
\(70\) −1.38197 −0.165177
\(71\) −6.47214 −0.768101 −0.384051 0.923312i \(-0.625471\pi\)
−0.384051 + 0.923312i \(0.625471\pi\)
\(72\) −2.23607 −0.263523
\(73\) 5.52786 0.646988 0.323494 0.946230i \(-0.395143\pi\)
0.323494 + 0.946230i \(0.395143\pi\)
\(74\) −2.76393 −0.321301
\(75\) 0 0
\(76\) −10.0902 −1.15742
\(77\) 4.00000 0.455842
\(78\) 0.618034 0.0699786
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 4.14590 0.463525
\(81\) 1.00000 0.111111
\(82\) −2.90983 −0.321337
\(83\) −8.47214 −0.929938 −0.464969 0.885327i \(-0.653934\pi\)
−0.464969 + 0.885327i \(0.653934\pi\)
\(84\) −1.61803 −0.176542
\(85\) −2.23607 −0.242536
\(86\) −2.32624 −0.250845
\(87\) −8.23607 −0.882999
\(88\) 8.94427 0.953463
\(89\) −14.4721 −1.53404 −0.767022 0.641621i \(-0.778262\pi\)
−0.767022 + 0.641621i \(0.778262\pi\)
\(90\) 1.38197 0.145672
\(91\) 1.00000 0.104828
\(92\) −4.85410 −0.506075
\(93\) −2.47214 −0.256349
\(94\) −2.47214 −0.254981
\(95\) 13.9443 1.43065
\(96\) −5.61803 −0.573388
\(97\) 10.4721 1.06328 0.531642 0.846969i \(-0.321575\pi\)
0.531642 + 0.846969i \(0.321575\pi\)
\(98\) 0.618034 0.0624309
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 2.52786 0.251532 0.125766 0.992060i \(-0.459861\pi\)
0.125766 + 0.992060i \(0.459861\pi\)
\(102\) 0.618034 0.0611945
\(103\) −19.4164 −1.91316 −0.956578 0.291477i \(-0.905853\pi\)
−0.956578 + 0.291477i \(0.905853\pi\)
\(104\) 2.23607 0.219265
\(105\) 2.23607 0.218218
\(106\) 0.944272 0.0917158
\(107\) 1.47214 0.142317 0.0711584 0.997465i \(-0.477330\pi\)
0.0711584 + 0.997465i \(0.477330\pi\)
\(108\) 1.61803 0.155695
\(109\) −6.70820 −0.642529 −0.321265 0.946989i \(-0.604108\pi\)
−0.321265 + 0.946989i \(0.604108\pi\)
\(110\) −5.52786 −0.527061
\(111\) 4.47214 0.424476
\(112\) −1.85410 −0.175196
\(113\) −0.472136 −0.0444148 −0.0222074 0.999753i \(-0.507069\pi\)
−0.0222074 + 0.999753i \(0.507069\pi\)
\(114\) −3.85410 −0.360970
\(115\) 6.70820 0.625543
\(116\) −13.3262 −1.23731
\(117\) −1.00000 −0.0924500
\(118\) 3.70820 0.341368
\(119\) 1.00000 0.0916698
\(120\) 5.00000 0.456435
\(121\) 5.00000 0.454545
\(122\) −5.09017 −0.460842
\(123\) 4.70820 0.424524
\(124\) −4.00000 −0.359211
\(125\) −11.1803 −1.00000
\(126\) −0.618034 −0.0550588
\(127\) 5.76393 0.511466 0.255733 0.966747i \(-0.417683\pi\)
0.255733 + 0.966747i \(0.417683\pi\)
\(128\) −11.3820 −1.00603
\(129\) 3.76393 0.331396
\(130\) −1.38197 −0.121206
\(131\) −13.4164 −1.17220 −0.586098 0.810240i \(-0.699337\pi\)
−0.586098 + 0.810240i \(0.699337\pi\)
\(132\) −6.47214 −0.563327
\(133\) −6.23607 −0.540736
\(134\) −0.944272 −0.0815727
\(135\) −2.23607 −0.192450
\(136\) 2.23607 0.191741
\(137\) 2.94427 0.251546 0.125773 0.992059i \(-0.459859\pi\)
0.125773 + 0.992059i \(0.459859\pi\)
\(138\) −1.85410 −0.157832
\(139\) −8.41641 −0.713870 −0.356935 0.934129i \(-0.616178\pi\)
−0.356935 + 0.934129i \(0.616178\pi\)
\(140\) 3.61803 0.305780
\(141\) 4.00000 0.336861
\(142\) −4.00000 −0.335673
\(143\) 4.00000 0.334497
\(144\) 1.85410 0.154508
\(145\) 18.4164 1.52940
\(146\) 3.41641 0.282744
\(147\) −1.00000 −0.0824786
\(148\) 7.23607 0.594801
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −3.52786 −0.287094 −0.143547 0.989644i \(-0.545851\pi\)
−0.143547 + 0.989644i \(0.545851\pi\)
\(152\) −13.9443 −1.13103
\(153\) −1.00000 −0.0808452
\(154\) 2.47214 0.199210
\(155\) 5.52786 0.444009
\(156\) −1.61803 −0.129546
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) −3.70820 −0.295009
\(159\) −1.52786 −0.121168
\(160\) 12.5623 0.993137
\(161\) −3.00000 −0.236433
\(162\) 0.618034 0.0485573
\(163\) 0.0557281 0.00436496 0.00218248 0.999998i \(-0.499305\pi\)
0.00218248 + 0.999998i \(0.499305\pi\)
\(164\) 7.61803 0.594869
\(165\) 8.94427 0.696311
\(166\) −5.23607 −0.406398
\(167\) −13.4721 −1.04251 −0.521253 0.853402i \(-0.674535\pi\)
−0.521253 + 0.853402i \(0.674535\pi\)
\(168\) −2.23607 −0.172516
\(169\) 1.00000 0.0769231
\(170\) −1.38197 −0.105992
\(171\) 6.23607 0.476884
\(172\) 6.09017 0.464371
\(173\) 7.05573 0.536437 0.268219 0.963358i \(-0.413565\pi\)
0.268219 + 0.963358i \(0.413565\pi\)
\(174\) −5.09017 −0.385885
\(175\) 0 0
\(176\) −7.41641 −0.559033
\(177\) −6.00000 −0.450988
\(178\) −8.94427 −0.670402
\(179\) 4.47214 0.334263 0.167132 0.985935i \(-0.446550\pi\)
0.167132 + 0.985935i \(0.446550\pi\)
\(180\) −3.61803 −0.269672
\(181\) −4.47214 −0.332411 −0.166206 0.986091i \(-0.553152\pi\)
−0.166206 + 0.986091i \(0.553152\pi\)
\(182\) 0.618034 0.0458117
\(183\) 8.23607 0.608828
\(184\) −6.70820 −0.494535
\(185\) −10.0000 −0.735215
\(186\) −1.52786 −0.112028
\(187\) 4.00000 0.292509
\(188\) 6.47214 0.472029
\(189\) 1.00000 0.0727393
\(190\) 8.61803 0.625218
\(191\) −11.8885 −0.860225 −0.430112 0.902775i \(-0.641526\pi\)
−0.430112 + 0.902775i \(0.641526\pi\)
\(192\) 0.236068 0.0170367
\(193\) 22.5967 1.62655 0.813275 0.581880i \(-0.197683\pi\)
0.813275 + 0.581880i \(0.197683\pi\)
\(194\) 6.47214 0.464672
\(195\) 2.23607 0.160128
\(196\) −1.61803 −0.115574
\(197\) 5.41641 0.385903 0.192952 0.981208i \(-0.438194\pi\)
0.192952 + 0.981208i \(0.438194\pi\)
\(198\) −2.47214 −0.175687
\(199\) 14.8885 1.05542 0.527710 0.849424i \(-0.323051\pi\)
0.527710 + 0.849424i \(0.323051\pi\)
\(200\) 0 0
\(201\) 1.52786 0.107767
\(202\) 1.56231 0.109923
\(203\) −8.23607 −0.578059
\(204\) −1.61803 −0.113285
\(205\) −10.5279 −0.735298
\(206\) −12.0000 −0.836080
\(207\) 3.00000 0.208514
\(208\) −1.85410 −0.128559
\(209\) −24.9443 −1.72543
\(210\) 1.38197 0.0953647
\(211\) −14.4721 −0.996303 −0.498151 0.867090i \(-0.665988\pi\)
−0.498151 + 0.867090i \(0.665988\pi\)
\(212\) −2.47214 −0.169787
\(213\) 6.47214 0.443463
\(214\) 0.909830 0.0621947
\(215\) −8.41641 −0.573994
\(216\) 2.23607 0.152145
\(217\) −2.47214 −0.167820
\(218\) −4.14590 −0.280796
\(219\) −5.52786 −0.373538
\(220\) 14.4721 0.975711
\(221\) 1.00000 0.0672673
\(222\) 2.76393 0.185503
\(223\) −1.18034 −0.0790414 −0.0395207 0.999219i \(-0.512583\pi\)
−0.0395207 + 0.999219i \(0.512583\pi\)
\(224\) −5.61803 −0.375371
\(225\) 0 0
\(226\) −0.291796 −0.0194100
\(227\) −23.9443 −1.58924 −0.794619 0.607109i \(-0.792329\pi\)
−0.794619 + 0.607109i \(0.792329\pi\)
\(228\) 10.0902 0.668238
\(229\) −6.05573 −0.400174 −0.200087 0.979778i \(-0.564122\pi\)
−0.200087 + 0.979778i \(0.564122\pi\)
\(230\) 4.14590 0.273372
\(231\) −4.00000 −0.263181
\(232\) −18.4164 −1.20910
\(233\) 18.7082 1.22562 0.612808 0.790232i \(-0.290040\pi\)
0.612808 + 0.790232i \(0.290040\pi\)
\(234\) −0.618034 −0.0404021
\(235\) −8.94427 −0.583460
\(236\) −9.70820 −0.631950
\(237\) 6.00000 0.389742
\(238\) 0.618034 0.0400612
\(239\) −13.1803 −0.852565 −0.426283 0.904590i \(-0.640177\pi\)
−0.426283 + 0.904590i \(0.640177\pi\)
\(240\) −4.14590 −0.267617
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 3.09017 0.198644
\(243\) −1.00000 −0.0641500
\(244\) 13.3262 0.853125
\(245\) 2.23607 0.142857
\(246\) 2.90983 0.185524
\(247\) −6.23607 −0.396792
\(248\) −5.52786 −0.351020
\(249\) 8.47214 0.536900
\(250\) −6.90983 −0.437016
\(251\) −20.2361 −1.27729 −0.638645 0.769502i \(-0.720505\pi\)
−0.638645 + 0.769502i \(0.720505\pi\)
\(252\) 1.61803 0.101927
\(253\) −12.0000 −0.754434
\(254\) 3.56231 0.223519
\(255\) 2.23607 0.140028
\(256\) −6.56231 −0.410144
\(257\) 11.9443 0.745063 0.372532 0.928020i \(-0.378490\pi\)
0.372532 + 0.928020i \(0.378490\pi\)
\(258\) 2.32624 0.144825
\(259\) 4.47214 0.277885
\(260\) 3.61803 0.224381
\(261\) 8.23607 0.509800
\(262\) −8.29180 −0.512269
\(263\) −10.4721 −0.645740 −0.322870 0.946443i \(-0.604648\pi\)
−0.322870 + 0.946443i \(0.604648\pi\)
\(264\) −8.94427 −0.550482
\(265\) 3.41641 0.209868
\(266\) −3.85410 −0.236310
\(267\) 14.4721 0.885680
\(268\) 2.47214 0.151010
\(269\) 2.47214 0.150729 0.0753644 0.997156i \(-0.475988\pi\)
0.0753644 + 0.997156i \(0.475988\pi\)
\(270\) −1.38197 −0.0841038
\(271\) 0.708204 0.0430203 0.0215102 0.999769i \(-0.493153\pi\)
0.0215102 + 0.999769i \(0.493153\pi\)
\(272\) −1.85410 −0.112421
\(273\) −1.00000 −0.0605228
\(274\) 1.81966 0.109930
\(275\) 0 0
\(276\) 4.85410 0.292183
\(277\) −3.05573 −0.183601 −0.0918005 0.995777i \(-0.529262\pi\)
−0.0918005 + 0.995777i \(0.529262\pi\)
\(278\) −5.20163 −0.311973
\(279\) 2.47214 0.148003
\(280\) 5.00000 0.298807
\(281\) −23.4721 −1.40023 −0.700115 0.714030i \(-0.746868\pi\)
−0.700115 + 0.714030i \(0.746868\pi\)
\(282\) 2.47214 0.147214
\(283\) 14.4164 0.856966 0.428483 0.903550i \(-0.359048\pi\)
0.428483 + 0.903550i \(0.359048\pi\)
\(284\) 10.4721 0.621407
\(285\) −13.9443 −0.825987
\(286\) 2.47214 0.146180
\(287\) 4.70820 0.277916
\(288\) 5.61803 0.331046
\(289\) 1.00000 0.0588235
\(290\) 11.3820 0.668372
\(291\) −10.4721 −0.613887
\(292\) −8.94427 −0.523424
\(293\) −6.94427 −0.405689 −0.202844 0.979211i \(-0.565019\pi\)
−0.202844 + 0.979211i \(0.565019\pi\)
\(294\) −0.618034 −0.0360445
\(295\) 13.4164 0.781133
\(296\) 10.0000 0.581238
\(297\) 4.00000 0.232104
\(298\) 1.23607 0.0716035
\(299\) −3.00000 −0.173494
\(300\) 0 0
\(301\) 3.76393 0.216949
\(302\) −2.18034 −0.125464
\(303\) −2.52786 −0.145222
\(304\) 11.5623 0.663144
\(305\) −18.4164 −1.05452
\(306\) −0.618034 −0.0353307
\(307\) −31.6525 −1.80650 −0.903251 0.429112i \(-0.858826\pi\)
−0.903251 + 0.429112i \(0.858826\pi\)
\(308\) −6.47214 −0.368784
\(309\) 19.4164 1.10456
\(310\) 3.41641 0.194039
\(311\) 15.4164 0.874184 0.437092 0.899417i \(-0.356008\pi\)
0.437092 + 0.899417i \(0.356008\pi\)
\(312\) −2.23607 −0.126592
\(313\) 12.4721 0.704967 0.352483 0.935818i \(-0.385337\pi\)
0.352483 + 0.935818i \(0.385337\pi\)
\(314\) −1.23607 −0.0697554
\(315\) −2.23607 −0.125988
\(316\) 9.70820 0.546129
\(317\) −13.8885 −0.780058 −0.390029 0.920803i \(-0.627535\pi\)
−0.390029 + 0.920803i \(0.627535\pi\)
\(318\) −0.944272 −0.0529521
\(319\) −32.9443 −1.84453
\(320\) −0.527864 −0.0295085
\(321\) −1.47214 −0.0821666
\(322\) −1.85410 −0.103325
\(323\) −6.23607 −0.346984
\(324\) −1.61803 −0.0898908
\(325\) 0 0
\(326\) 0.0344419 0.00190756
\(327\) 6.70820 0.370965
\(328\) 10.5279 0.581304
\(329\) 4.00000 0.220527
\(330\) 5.52786 0.304299
\(331\) −19.4164 −1.06722 −0.533611 0.845730i \(-0.679165\pi\)
−0.533611 + 0.845730i \(0.679165\pi\)
\(332\) 13.7082 0.752335
\(333\) −4.47214 −0.245072
\(334\) −8.32624 −0.455591
\(335\) −3.41641 −0.186658
\(336\) 1.85410 0.101150
\(337\) −12.9443 −0.705119 −0.352560 0.935789i \(-0.614689\pi\)
−0.352560 + 0.935789i \(0.614689\pi\)
\(338\) 0.618034 0.0336166
\(339\) 0.472136 0.0256429
\(340\) 3.61803 0.196215
\(341\) −9.88854 −0.535495
\(342\) 3.85410 0.208406
\(343\) −1.00000 −0.0539949
\(344\) 8.41641 0.453782
\(345\) −6.70820 −0.361158
\(346\) 4.36068 0.234432
\(347\) 20.0000 1.07366 0.536828 0.843692i \(-0.319622\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(348\) 13.3262 0.714361
\(349\) −26.8885 −1.43931 −0.719655 0.694331i \(-0.755700\pi\)
−0.719655 + 0.694331i \(0.755700\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) −22.4721 −1.19777
\(353\) 17.4164 0.926982 0.463491 0.886102i \(-0.346597\pi\)
0.463491 + 0.886102i \(0.346597\pi\)
\(354\) −3.70820 −0.197089
\(355\) −14.4721 −0.768101
\(356\) 23.4164 1.24107
\(357\) −1.00000 −0.0529256
\(358\) 2.76393 0.146078
\(359\) 0.944272 0.0498368 0.0249184 0.999689i \(-0.492067\pi\)
0.0249184 + 0.999689i \(0.492067\pi\)
\(360\) −5.00000 −0.263523
\(361\) 19.8885 1.04677
\(362\) −2.76393 −0.145269
\(363\) −5.00000 −0.262432
\(364\) −1.61803 −0.0848080
\(365\) 12.3607 0.646988
\(366\) 5.09017 0.266067
\(367\) −18.0557 −0.942501 −0.471251 0.881999i \(-0.656197\pi\)
−0.471251 + 0.881999i \(0.656197\pi\)
\(368\) 5.56231 0.289955
\(369\) −4.70820 −0.245099
\(370\) −6.18034 −0.321301
\(371\) −1.52786 −0.0793227
\(372\) 4.00000 0.207390
\(373\) 14.4164 0.746453 0.373227 0.927740i \(-0.378251\pi\)
0.373227 + 0.927740i \(0.378251\pi\)
\(374\) 2.47214 0.127831
\(375\) 11.1803 0.577350
\(376\) 8.94427 0.461266
\(377\) −8.23607 −0.424179
\(378\) 0.618034 0.0317882
\(379\) −12.0557 −0.619261 −0.309631 0.950857i \(-0.600205\pi\)
−0.309631 + 0.950857i \(0.600205\pi\)
\(380\) −22.5623 −1.15742
\(381\) −5.76393 −0.295295
\(382\) −7.34752 −0.375932
\(383\) 17.8885 0.914062 0.457031 0.889451i \(-0.348913\pi\)
0.457031 + 0.889451i \(0.348913\pi\)
\(384\) 11.3820 0.580834
\(385\) 8.94427 0.455842
\(386\) 13.9656 0.710828
\(387\) −3.76393 −0.191331
\(388\) −16.9443 −0.860215
\(389\) −27.8885 −1.41401 −0.707003 0.707211i \(-0.749953\pi\)
−0.707003 + 0.707211i \(0.749953\pi\)
\(390\) 1.38197 0.0699786
\(391\) −3.00000 −0.151717
\(392\) −2.23607 −0.112938
\(393\) 13.4164 0.676768
\(394\) 3.34752 0.168646
\(395\) −13.4164 −0.675053
\(396\) 6.47214 0.325237
\(397\) 21.4164 1.07486 0.537429 0.843309i \(-0.319395\pi\)
0.537429 + 0.843309i \(0.319395\pi\)
\(398\) 9.20163 0.461236
\(399\) 6.23607 0.312194
\(400\) 0 0
\(401\) −22.9443 −1.14578 −0.572891 0.819631i \(-0.694178\pi\)
−0.572891 + 0.819631i \(0.694178\pi\)
\(402\) 0.944272 0.0470960
\(403\) −2.47214 −0.123146
\(404\) −4.09017 −0.203494
\(405\) 2.23607 0.111111
\(406\) −5.09017 −0.252621
\(407\) 17.8885 0.886702
\(408\) −2.23607 −0.110702
\(409\) 8.52786 0.421676 0.210838 0.977521i \(-0.432381\pi\)
0.210838 + 0.977521i \(0.432381\pi\)
\(410\) −6.50658 −0.321337
\(411\) −2.94427 −0.145230
\(412\) 31.4164 1.54778
\(413\) −6.00000 −0.295241
\(414\) 1.85410 0.0911241
\(415\) −18.9443 −0.929938
\(416\) −5.61803 −0.275447
\(417\) 8.41641 0.412153
\(418\) −15.4164 −0.754041
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) −3.61803 −0.176542
\(421\) −15.0557 −0.733771 −0.366886 0.930266i \(-0.619576\pi\)
−0.366886 + 0.930266i \(0.619576\pi\)
\(422\) −8.94427 −0.435400
\(423\) −4.00000 −0.194487
\(424\) −3.41641 −0.165915
\(425\) 0 0
\(426\) 4.00000 0.193801
\(427\) 8.23607 0.398571
\(428\) −2.38197 −0.115137
\(429\) −4.00000 −0.193122
\(430\) −5.20163 −0.250845
\(431\) −22.0000 −1.05970 −0.529851 0.848091i \(-0.677752\pi\)
−0.529851 + 0.848091i \(0.677752\pi\)
\(432\) −1.85410 −0.0892055
\(433\) −2.94427 −0.141493 −0.0707463 0.997494i \(-0.522538\pi\)
−0.0707463 + 0.997494i \(0.522538\pi\)
\(434\) −1.52786 −0.0733398
\(435\) −18.4164 −0.882999
\(436\) 10.8541 0.519817
\(437\) 18.7082 0.894935
\(438\) −3.41641 −0.163242
\(439\) −37.8885 −1.80832 −0.904161 0.427192i \(-0.859503\pi\)
−0.904161 + 0.427192i \(0.859503\pi\)
\(440\) 20.0000 0.953463
\(441\) 1.00000 0.0476190
\(442\) 0.618034 0.0293969
\(443\) −14.3607 −0.682296 −0.341148 0.940010i \(-0.610816\pi\)
−0.341148 + 0.940010i \(0.610816\pi\)
\(444\) −7.23607 −0.343409
\(445\) −32.3607 −1.53404
\(446\) −0.729490 −0.0345424
\(447\) −2.00000 −0.0945968
\(448\) 0.236068 0.0111532
\(449\) −14.9443 −0.705264 −0.352632 0.935762i \(-0.614713\pi\)
−0.352632 + 0.935762i \(0.614713\pi\)
\(450\) 0 0
\(451\) 18.8328 0.886803
\(452\) 0.763932 0.0359323
\(453\) 3.52786 0.165754
\(454\) −14.7984 −0.694522
\(455\) 2.23607 0.104828
\(456\) 13.9443 0.653000
\(457\) 24.8328 1.16163 0.580815 0.814036i \(-0.302734\pi\)
0.580815 + 0.814036i \(0.302734\pi\)
\(458\) −3.74265 −0.174882
\(459\) 1.00000 0.0466760
\(460\) −10.8541 −0.506075
\(461\) 36.8328 1.71548 0.857738 0.514088i \(-0.171869\pi\)
0.857738 + 0.514088i \(0.171869\pi\)
\(462\) −2.47214 −0.115014
\(463\) −31.4164 −1.46004 −0.730022 0.683423i \(-0.760490\pi\)
−0.730022 + 0.683423i \(0.760490\pi\)
\(464\) 15.2705 0.708916
\(465\) −5.52786 −0.256349
\(466\) 11.5623 0.535613
\(467\) 12.7082 0.588066 0.294033 0.955795i \(-0.405003\pi\)
0.294033 + 0.955795i \(0.405003\pi\)
\(468\) 1.61803 0.0747936
\(469\) 1.52786 0.0705502
\(470\) −5.52786 −0.254981
\(471\) 2.00000 0.0921551
\(472\) −13.4164 −0.617540
\(473\) 15.0557 0.692263
\(474\) 3.70820 0.170323
\(475\) 0 0
\(476\) −1.61803 −0.0741625
\(477\) 1.52786 0.0699561
\(478\) −8.14590 −0.372585
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) −12.5623 −0.573388
\(481\) 4.47214 0.203912
\(482\) −6.18034 −0.281507
\(483\) 3.00000 0.136505
\(484\) −8.09017 −0.367735
\(485\) 23.4164 1.06328
\(486\) −0.618034 −0.0280346
\(487\) −11.3607 −0.514802 −0.257401 0.966305i \(-0.582866\pi\)
−0.257401 + 0.966305i \(0.582866\pi\)
\(488\) 18.4164 0.833672
\(489\) −0.0557281 −0.00252011
\(490\) 1.38197 0.0624309
\(491\) 28.3607 1.27990 0.639950 0.768417i \(-0.278955\pi\)
0.639950 + 0.768417i \(0.278955\pi\)
\(492\) −7.61803 −0.343447
\(493\) −8.23607 −0.370934
\(494\) −3.85410 −0.173404
\(495\) −8.94427 −0.402015
\(496\) 4.58359 0.205809
\(497\) 6.47214 0.290315
\(498\) 5.23607 0.234634
\(499\) −26.8328 −1.20120 −0.600601 0.799549i \(-0.705072\pi\)
−0.600601 + 0.799549i \(0.705072\pi\)
\(500\) 18.0902 0.809017
\(501\) 13.4721 0.601891
\(502\) −12.5066 −0.558196
\(503\) 16.9443 0.755508 0.377754 0.925906i \(-0.376697\pi\)
0.377754 + 0.925906i \(0.376697\pi\)
\(504\) 2.23607 0.0996024
\(505\) 5.65248 0.251532
\(506\) −7.41641 −0.329700
\(507\) −1.00000 −0.0444116
\(508\) −9.32624 −0.413785
\(509\) 32.9443 1.46023 0.730115 0.683325i \(-0.239467\pi\)
0.730115 + 0.683325i \(0.239467\pi\)
\(510\) 1.38197 0.0611945
\(511\) −5.52786 −0.244538
\(512\) 18.7082 0.826794
\(513\) −6.23607 −0.275329
\(514\) 7.38197 0.325605
\(515\) −43.4164 −1.91316
\(516\) −6.09017 −0.268105
\(517\) 16.0000 0.703679
\(518\) 2.76393 0.121440
\(519\) −7.05573 −0.309712
\(520\) 5.00000 0.219265
\(521\) −37.3050 −1.63436 −0.817180 0.576383i \(-0.804464\pi\)
−0.817180 + 0.576383i \(0.804464\pi\)
\(522\) 5.09017 0.222791
\(523\) −42.9443 −1.87782 −0.938911 0.344160i \(-0.888164\pi\)
−0.938911 + 0.344160i \(0.888164\pi\)
\(524\) 21.7082 0.948327
\(525\) 0 0
\(526\) −6.47214 −0.282199
\(527\) −2.47214 −0.107688
\(528\) 7.41641 0.322758
\(529\) −14.0000 −0.608696
\(530\) 2.11146 0.0917158
\(531\) 6.00000 0.260378
\(532\) 10.0902 0.437464
\(533\) 4.70820 0.203935
\(534\) 8.94427 0.387056
\(535\) 3.29180 0.142317
\(536\) 3.41641 0.147566
\(537\) −4.47214 −0.192987
\(538\) 1.52786 0.0658709
\(539\) −4.00000 −0.172292
\(540\) 3.61803 0.155695
\(541\) 19.6525 0.844926 0.422463 0.906380i \(-0.361166\pi\)
0.422463 + 0.906380i \(0.361166\pi\)
\(542\) 0.437694 0.0188006
\(543\) 4.47214 0.191918
\(544\) −5.61803 −0.240871
\(545\) −15.0000 −0.642529
\(546\) −0.618034 −0.0264494
\(547\) 7.05573 0.301681 0.150841 0.988558i \(-0.451802\pi\)
0.150841 + 0.988558i \(0.451802\pi\)
\(548\) −4.76393 −0.203505
\(549\) −8.23607 −0.351507
\(550\) 0 0
\(551\) 51.3607 2.18804
\(552\) 6.70820 0.285520
\(553\) 6.00000 0.255146
\(554\) −1.88854 −0.0802365
\(555\) 10.0000 0.424476
\(556\) 13.6180 0.577533
\(557\) −11.9443 −0.506095 −0.253048 0.967454i \(-0.581433\pi\)
−0.253048 + 0.967454i \(0.581433\pi\)
\(558\) 1.52786 0.0646796
\(559\) 3.76393 0.159197
\(560\) −4.14590 −0.175196
\(561\) −4.00000 −0.168880
\(562\) −14.5066 −0.611923
\(563\) 20.2361 0.852849 0.426424 0.904523i \(-0.359773\pi\)
0.426424 + 0.904523i \(0.359773\pi\)
\(564\) −6.47214 −0.272526
\(565\) −1.05573 −0.0444148
\(566\) 8.90983 0.374508
\(567\) −1.00000 −0.0419961
\(568\) 14.4721 0.607237
\(569\) 27.7771 1.16448 0.582238 0.813018i \(-0.302177\pi\)
0.582238 + 0.813018i \(0.302177\pi\)
\(570\) −8.61803 −0.360970
\(571\) −7.52786 −0.315031 −0.157516 0.987516i \(-0.550348\pi\)
−0.157516 + 0.987516i \(0.550348\pi\)
\(572\) −6.47214 −0.270614
\(573\) 11.8885 0.496651
\(574\) 2.90983 0.121454
\(575\) 0 0
\(576\) −0.236068 −0.00983617
\(577\) 38.4164 1.59930 0.799648 0.600469i \(-0.205019\pi\)
0.799648 + 0.600469i \(0.205019\pi\)
\(578\) 0.618034 0.0257068
\(579\) −22.5967 −0.939089
\(580\) −29.7984 −1.23731
\(581\) 8.47214 0.351483
\(582\) −6.47214 −0.268279
\(583\) −6.11146 −0.253111
\(584\) −12.3607 −0.511489
\(585\) −2.23607 −0.0924500
\(586\) −4.29180 −0.177292
\(587\) 19.3050 0.796801 0.398400 0.917212i \(-0.369565\pi\)
0.398400 + 0.917212i \(0.369565\pi\)
\(588\) 1.61803 0.0667266
\(589\) 15.4164 0.635222
\(590\) 8.29180 0.341368
\(591\) −5.41641 −0.222801
\(592\) −8.29180 −0.340791
\(593\) 5.41641 0.222425 0.111213 0.993797i \(-0.464527\pi\)
0.111213 + 0.993797i \(0.464527\pi\)
\(594\) 2.47214 0.101433
\(595\) 2.23607 0.0916698
\(596\) −3.23607 −0.132555
\(597\) −14.8885 −0.609348
\(598\) −1.85410 −0.0758199
\(599\) 27.7771 1.13494 0.567471 0.823394i \(-0.307922\pi\)
0.567471 + 0.823394i \(0.307922\pi\)
\(600\) 0 0
\(601\) 46.7082 1.90527 0.952634 0.304120i \(-0.0983624\pi\)
0.952634 + 0.304120i \(0.0983624\pi\)
\(602\) 2.32624 0.0948104
\(603\) −1.52786 −0.0622194
\(604\) 5.70820 0.232264
\(605\) 11.1803 0.454545
\(606\) −1.56231 −0.0634643
\(607\) −0.0557281 −0.00226193 −0.00113097 0.999999i \(-0.500360\pi\)
−0.00113097 + 0.999999i \(0.500360\pi\)
\(608\) 35.0344 1.42083
\(609\) 8.23607 0.333742
\(610\) −11.3820 −0.460842
\(611\) 4.00000 0.161823
\(612\) 1.61803 0.0654051
\(613\) 28.3607 1.14548 0.572739 0.819738i \(-0.305881\pi\)
0.572739 + 0.819738i \(0.305881\pi\)
\(614\) −19.5623 −0.789470
\(615\) 10.5279 0.424524
\(616\) −8.94427 −0.360375
\(617\) −23.0557 −0.928189 −0.464094 0.885786i \(-0.653620\pi\)
−0.464094 + 0.885786i \(0.653620\pi\)
\(618\) 12.0000 0.482711
\(619\) 25.3050 1.01709 0.508546 0.861035i \(-0.330183\pi\)
0.508546 + 0.861035i \(0.330183\pi\)
\(620\) −8.94427 −0.359211
\(621\) −3.00000 −0.120386
\(622\) 9.52786 0.382033
\(623\) 14.4721 0.579814
\(624\) 1.85410 0.0742235
\(625\) −25.0000 −1.00000
\(626\) 7.70820 0.308082
\(627\) 24.9443 0.996178
\(628\) 3.23607 0.129133
\(629\) 4.47214 0.178316
\(630\) −1.38197 −0.0550588
\(631\) 42.3607 1.68635 0.843176 0.537638i \(-0.180683\pi\)
0.843176 + 0.537638i \(0.180683\pi\)
\(632\) 13.4164 0.533676
\(633\) 14.4721 0.575216
\(634\) −8.58359 −0.340898
\(635\) 12.8885 0.511466
\(636\) 2.47214 0.0980266
\(637\) −1.00000 −0.0396214
\(638\) −20.3607 −0.806087
\(639\) −6.47214 −0.256034
\(640\) −25.4508 −1.00603
\(641\) −11.5279 −0.455323 −0.227662 0.973740i \(-0.573108\pi\)
−0.227662 + 0.973740i \(0.573108\pi\)
\(642\) −0.909830 −0.0359081
\(643\) −36.3607 −1.43393 −0.716963 0.697112i \(-0.754468\pi\)
−0.716963 + 0.697112i \(0.754468\pi\)
\(644\) 4.85410 0.191278
\(645\) 8.41641 0.331396
\(646\) −3.85410 −0.151638
\(647\) 14.2361 0.559678 0.279839 0.960047i \(-0.409719\pi\)
0.279839 + 0.960047i \(0.409719\pi\)
\(648\) −2.23607 −0.0878410
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) 2.47214 0.0968906
\(652\) −0.0901699 −0.00353133
\(653\) 2.81966 0.110342 0.0551709 0.998477i \(-0.482430\pi\)
0.0551709 + 0.998477i \(0.482430\pi\)
\(654\) 4.14590 0.162117
\(655\) −30.0000 −1.17220
\(656\) −8.72949 −0.340829
\(657\) 5.52786 0.215663
\(658\) 2.47214 0.0963739
\(659\) −28.8328 −1.12317 −0.561584 0.827420i \(-0.689808\pi\)
−0.561584 + 0.827420i \(0.689808\pi\)
\(660\) −14.4721 −0.563327
\(661\) 43.9443 1.70923 0.854617 0.519259i \(-0.173792\pi\)
0.854617 + 0.519259i \(0.173792\pi\)
\(662\) −12.0000 −0.466393
\(663\) −1.00000 −0.0388368
\(664\) 18.9443 0.735180
\(665\) −13.9443 −0.540736
\(666\) −2.76393 −0.107100
\(667\) 24.7082 0.956705
\(668\) 21.7984 0.843404
\(669\) 1.18034 0.0456346
\(670\) −2.11146 −0.0815727
\(671\) 32.9443 1.27180
\(672\) 5.61803 0.216720
\(673\) −31.3050 −1.20672 −0.603359 0.797470i \(-0.706171\pi\)
−0.603359 + 0.797470i \(0.706171\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) −1.61803 −0.0622321
\(677\) 33.0557 1.27043 0.635217 0.772333i \(-0.280910\pi\)
0.635217 + 0.772333i \(0.280910\pi\)
\(678\) 0.291796 0.0112064
\(679\) −10.4721 −0.401884
\(680\) 5.00000 0.191741
\(681\) 23.9443 0.917546
\(682\) −6.11146 −0.234020
\(683\) 1.52786 0.0584621 0.0292310 0.999573i \(-0.490694\pi\)
0.0292310 + 0.999573i \(0.490694\pi\)
\(684\) −10.0902 −0.385807
\(685\) 6.58359 0.251546
\(686\) −0.618034 −0.0235966
\(687\) 6.05573 0.231040
\(688\) −6.97871 −0.266061
\(689\) −1.52786 −0.0582070
\(690\) −4.14590 −0.157832
\(691\) −47.4164 −1.80381 −0.901903 0.431939i \(-0.857829\pi\)
−0.901903 + 0.431939i \(0.857829\pi\)
\(692\) −11.4164 −0.433987
\(693\) 4.00000 0.151947
\(694\) 12.3607 0.469205
\(695\) −18.8197 −0.713870
\(696\) 18.4164 0.698072
\(697\) 4.70820 0.178336
\(698\) −16.6180 −0.629002
\(699\) −18.7082 −0.707609
\(700\) 0 0
\(701\) −26.9443 −1.01767 −0.508836 0.860864i \(-0.669924\pi\)
−0.508836 + 0.860864i \(0.669924\pi\)
\(702\) 0.618034 0.0233262
\(703\) −27.8885 −1.05184
\(704\) 0.944272 0.0355886
\(705\) 8.94427 0.336861
\(706\) 10.7639 0.405106
\(707\) −2.52786 −0.0950701
\(708\) 9.70820 0.364857
\(709\) 5.41641 0.203417 0.101709 0.994814i \(-0.467569\pi\)
0.101709 + 0.994814i \(0.467569\pi\)
\(710\) −8.94427 −0.335673
\(711\) −6.00000 −0.225018
\(712\) 32.3607 1.21277
\(713\) 7.41641 0.277747
\(714\) −0.618034 −0.0231293
\(715\) 8.94427 0.334497
\(716\) −7.23607 −0.270425
\(717\) 13.1803 0.492229
\(718\) 0.583592 0.0217795
\(719\) −2.00000 −0.0745874 −0.0372937 0.999304i \(-0.511874\pi\)
−0.0372937 + 0.999304i \(0.511874\pi\)
\(720\) 4.14590 0.154508
\(721\) 19.4164 0.723105
\(722\) 12.2918 0.457453
\(723\) 10.0000 0.371904
\(724\) 7.23607 0.268926
\(725\) 0 0
\(726\) −3.09017 −0.114687
\(727\) −33.8885 −1.25686 −0.628428 0.777868i \(-0.716301\pi\)
−0.628428 + 0.777868i \(0.716301\pi\)
\(728\) −2.23607 −0.0828742
\(729\) 1.00000 0.0370370
\(730\) 7.63932 0.282744
\(731\) 3.76393 0.139214
\(732\) −13.3262 −0.492552
\(733\) −41.8328 −1.54513 −0.772565 0.634935i \(-0.781027\pi\)
−0.772565 + 0.634935i \(0.781027\pi\)
\(734\) −11.1591 −0.411888
\(735\) −2.23607 −0.0824786
\(736\) 16.8541 0.621250
\(737\) 6.11146 0.225118
\(738\) −2.90983 −0.107112
\(739\) 9.41641 0.346388 0.173194 0.984888i \(-0.444591\pi\)
0.173194 + 0.984888i \(0.444591\pi\)
\(740\) 16.1803 0.594801
\(741\) 6.23607 0.229088
\(742\) −0.944272 −0.0346653
\(743\) 30.2492 1.10974 0.554868 0.831938i \(-0.312769\pi\)
0.554868 + 0.831938i \(0.312769\pi\)
\(744\) 5.52786 0.202661
\(745\) 4.47214 0.163846
\(746\) 8.90983 0.326212
\(747\) −8.47214 −0.309979
\(748\) −6.47214 −0.236645
\(749\) −1.47214 −0.0537907
\(750\) 6.90983 0.252311
\(751\) 40.8328 1.49001 0.745005 0.667059i \(-0.232447\pi\)
0.745005 + 0.667059i \(0.232447\pi\)
\(752\) −7.41641 −0.270449
\(753\) 20.2361 0.737443
\(754\) −5.09017 −0.185373
\(755\) −7.88854 −0.287094
\(756\) −1.61803 −0.0588473
\(757\) −39.8885 −1.44977 −0.724887 0.688868i \(-0.758108\pi\)
−0.724887 + 0.688868i \(0.758108\pi\)
\(758\) −7.45085 −0.270627
\(759\) 12.0000 0.435572
\(760\) −31.1803 −1.13103
\(761\) 47.3050 1.71480 0.857402 0.514648i \(-0.172077\pi\)
0.857402 + 0.514648i \(0.172077\pi\)
\(762\) −3.56231 −0.129049
\(763\) 6.70820 0.242853
\(764\) 19.2361 0.695937
\(765\) −2.23607 −0.0808452
\(766\) 11.0557 0.399460
\(767\) −6.00000 −0.216647
\(768\) 6.56231 0.236797
\(769\) −15.8885 −0.572956 −0.286478 0.958087i \(-0.592484\pi\)
−0.286478 + 0.958087i \(0.592484\pi\)
\(770\) 5.52786 0.199210
\(771\) −11.9443 −0.430162
\(772\) −36.5623 −1.31591
\(773\) 43.7771 1.57455 0.787276 0.616601i \(-0.211491\pi\)
0.787276 + 0.616601i \(0.211491\pi\)
\(774\) −2.32624 −0.0836149
\(775\) 0 0
\(776\) −23.4164 −0.840600
\(777\) −4.47214 −0.160437
\(778\) −17.2361 −0.617943
\(779\) −29.3607 −1.05196
\(780\) −3.61803 −0.129546
\(781\) 25.8885 0.926365
\(782\) −1.85410 −0.0663026
\(783\) −8.23607 −0.294333
\(784\) 1.85410 0.0662179
\(785\) −4.47214 −0.159617
\(786\) 8.29180 0.295759
\(787\) 13.0557 0.465386 0.232693 0.972550i \(-0.425246\pi\)
0.232693 + 0.972550i \(0.425246\pi\)
\(788\) −8.76393 −0.312202
\(789\) 10.4721 0.372818
\(790\) −8.29180 −0.295009
\(791\) 0.472136 0.0167872
\(792\) 8.94427 0.317821
\(793\) 8.23607 0.292471
\(794\) 13.2361 0.469730
\(795\) −3.41641 −0.121168
\(796\) −24.0902 −0.853853
\(797\) 38.9443 1.37948 0.689738 0.724059i \(-0.257726\pi\)
0.689738 + 0.724059i \(0.257726\pi\)
\(798\) 3.85410 0.136434
\(799\) 4.00000 0.141510
\(800\) 0 0
\(801\) −14.4721 −0.511348
\(802\) −14.1803 −0.500725
\(803\) −22.1115 −0.780296
\(804\) −2.47214 −0.0871855
\(805\) −6.70820 −0.236433
\(806\) −1.52786 −0.0538167
\(807\) −2.47214 −0.0870233
\(808\) −5.65248 −0.198853
\(809\) −19.6525 −0.690944 −0.345472 0.938429i \(-0.612281\pi\)
−0.345472 + 0.938429i \(0.612281\pi\)
\(810\) 1.38197 0.0485573
\(811\) 45.7771 1.60745 0.803725 0.595000i \(-0.202848\pi\)
0.803725 + 0.595000i \(0.202848\pi\)
\(812\) 13.3262 0.467659
\(813\) −0.708204 −0.0248378
\(814\) 11.0557 0.387503
\(815\) 0.124612 0.00436496
\(816\) 1.85410 0.0649066
\(817\) −23.4721 −0.821186
\(818\) 5.27051 0.184279
\(819\) 1.00000 0.0349428
\(820\) 17.0344 0.594869
\(821\) 27.7771 0.969427 0.484714 0.874673i \(-0.338924\pi\)
0.484714 + 0.874673i \(0.338924\pi\)
\(822\) −1.81966 −0.0634679
\(823\) −4.47214 −0.155889 −0.0779444 0.996958i \(-0.524836\pi\)
−0.0779444 + 0.996958i \(0.524836\pi\)
\(824\) 43.4164 1.51248
\(825\) 0 0
\(826\) −3.70820 −0.129025
\(827\) 19.0557 0.662633 0.331316 0.943520i \(-0.392507\pi\)
0.331316 + 0.943520i \(0.392507\pi\)
\(828\) −4.85410 −0.168692
\(829\) 10.5836 0.367583 0.183792 0.982965i \(-0.441163\pi\)
0.183792 + 0.982965i \(0.441163\pi\)
\(830\) −11.7082 −0.406398
\(831\) 3.05573 0.106002
\(832\) 0.236068 0.00818418
\(833\) −1.00000 −0.0346479
\(834\) 5.20163 0.180118
\(835\) −30.1246 −1.04251
\(836\) 40.3607 1.39590
\(837\) −2.47214 −0.0854495
\(838\) 7.41641 0.256196
\(839\) 8.52786 0.294415 0.147207 0.989106i \(-0.452972\pi\)
0.147207 + 0.989106i \(0.452972\pi\)
\(840\) −5.00000 −0.172516
\(841\) 38.8328 1.33906
\(842\) −9.30495 −0.320670
\(843\) 23.4721 0.808423
\(844\) 23.4164 0.806026
\(845\) 2.23607 0.0769231
\(846\) −2.47214 −0.0849938
\(847\) −5.00000 −0.171802
\(848\) 2.83282 0.0972793
\(849\) −14.4164 −0.494770
\(850\) 0 0
\(851\) −13.4164 −0.459909
\(852\) −10.4721 −0.358769
\(853\) −16.3607 −0.560179 −0.280090 0.959974i \(-0.590364\pi\)
−0.280090 + 0.959974i \(0.590364\pi\)
\(854\) 5.09017 0.174182
\(855\) 13.9443 0.476884
\(856\) −3.29180 −0.112511
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) −2.47214 −0.0843973
\(859\) −40.8328 −1.39320 −0.696599 0.717461i \(-0.745304\pi\)
−0.696599 + 0.717461i \(0.745304\pi\)
\(860\) 13.6180 0.464371
\(861\) −4.70820 −0.160455
\(862\) −13.5967 −0.463107
\(863\) −10.1115 −0.344198 −0.172099 0.985080i \(-0.555055\pi\)
−0.172099 + 0.985080i \(0.555055\pi\)
\(864\) −5.61803 −0.191129
\(865\) 15.7771 0.536437
\(866\) −1.81966 −0.0618346
\(867\) −1.00000 −0.0339618
\(868\) 4.00000 0.135769
\(869\) 24.0000 0.814144
\(870\) −11.3820 −0.385885
\(871\) 1.52786 0.0517697
\(872\) 15.0000 0.507964
\(873\) 10.4721 0.354428
\(874\) 11.5623 0.391101
\(875\) 11.1803 0.377964
\(876\) 8.94427 0.302199
\(877\) 21.2918 0.718973 0.359486 0.933150i \(-0.382952\pi\)
0.359486 + 0.933150i \(0.382952\pi\)
\(878\) −23.4164 −0.790265
\(879\) 6.94427 0.234224
\(880\) −16.5836 −0.559033
\(881\) 39.8885 1.34388 0.671940 0.740606i \(-0.265461\pi\)
0.671940 + 0.740606i \(0.265461\pi\)
\(882\) 0.618034 0.0208103
\(883\) −24.2361 −0.815609 −0.407804 0.913069i \(-0.633705\pi\)
−0.407804 + 0.913069i \(0.633705\pi\)
\(884\) −1.61803 −0.0544204
\(885\) −13.4164 −0.450988
\(886\) −8.87539 −0.298174
\(887\) 34.4721 1.15746 0.578731 0.815519i \(-0.303548\pi\)
0.578731 + 0.815519i \(0.303548\pi\)
\(888\) −10.0000 −0.335578
\(889\) −5.76393 −0.193316
\(890\) −20.0000 −0.670402
\(891\) −4.00000 −0.134005
\(892\) 1.90983 0.0639458
\(893\) −24.9443 −0.834728
\(894\) −1.23607 −0.0413403
\(895\) 10.0000 0.334263
\(896\) 11.3820 0.380245
\(897\) 3.00000 0.100167
\(898\) −9.23607 −0.308212
\(899\) 20.3607 0.679067
\(900\) 0 0
\(901\) −1.52786 −0.0509005
\(902\) 11.6393 0.387547
\(903\) −3.76393 −0.125256
\(904\) 1.05573 0.0351130
\(905\) −10.0000 −0.332411
\(906\) 2.18034 0.0724369
\(907\) −10.9443 −0.363399 −0.181699 0.983354i \(-0.558160\pi\)
−0.181699 + 0.983354i \(0.558160\pi\)
\(908\) 38.7426 1.28572
\(909\) 2.52786 0.0838440
\(910\) 1.38197 0.0458117
\(911\) 25.8885 0.857726 0.428863 0.903370i \(-0.358914\pi\)
0.428863 + 0.903370i \(0.358914\pi\)
\(912\) −11.5623 −0.382866
\(913\) 33.8885 1.12155
\(914\) 15.3475 0.507651
\(915\) 18.4164 0.608828
\(916\) 9.79837 0.323747
\(917\) 13.4164 0.443049
\(918\) 0.618034 0.0203982
\(919\) 13.2918 0.438456 0.219228 0.975674i \(-0.429646\pi\)
0.219228 + 0.975674i \(0.429646\pi\)
\(920\) −15.0000 −0.494535
\(921\) 31.6525 1.04298
\(922\) 22.7639 0.749690
\(923\) 6.47214 0.213033
\(924\) 6.47214 0.212918
\(925\) 0 0
\(926\) −19.4164 −0.638063
\(927\) −19.4164 −0.637719
\(928\) 46.2705 1.51890
\(929\) 3.52786 0.115745 0.0578727 0.998324i \(-0.481568\pi\)
0.0578727 + 0.998324i \(0.481568\pi\)
\(930\) −3.41641 −0.112028
\(931\) 6.23607 0.204379
\(932\) −30.2705 −0.991544
\(933\) −15.4164 −0.504711
\(934\) 7.85410 0.256994
\(935\) 8.94427 0.292509
\(936\) 2.23607 0.0730882
\(937\) −22.5836 −0.737774 −0.368887 0.929474i \(-0.620261\pi\)
−0.368887 + 0.929474i \(0.620261\pi\)
\(938\) 0.944272 0.0308316
\(939\) −12.4721 −0.407013
\(940\) 14.4721 0.472029
\(941\) 9.29180 0.302904 0.151452 0.988465i \(-0.451605\pi\)
0.151452 + 0.988465i \(0.451605\pi\)
\(942\) 1.23607 0.0402733
\(943\) −14.1246 −0.459961
\(944\) 11.1246 0.362075
\(945\) 2.23607 0.0727393
\(946\) 9.30495 0.302530
\(947\) 1.52786 0.0496489 0.0248245 0.999692i \(-0.492097\pi\)
0.0248245 + 0.999692i \(0.492097\pi\)
\(948\) −9.70820 −0.315308
\(949\) −5.52786 −0.179442
\(950\) 0 0
\(951\) 13.8885 0.450367
\(952\) −2.23607 −0.0724714
\(953\) −10.4721 −0.339226 −0.169613 0.985511i \(-0.554252\pi\)
−0.169613 + 0.985511i \(0.554252\pi\)
\(954\) 0.944272 0.0305719
\(955\) −26.5836 −0.860225
\(956\) 21.3262 0.689740
\(957\) 32.9443 1.06494
\(958\) −4.94427 −0.159742
\(959\) −2.94427 −0.0950755
\(960\) 0.527864 0.0170367
\(961\) −24.8885 −0.802856
\(962\) 2.76393 0.0891127
\(963\) 1.47214 0.0474389
\(964\) 16.1803 0.521134
\(965\) 50.5279 1.62655
\(966\) 1.85410 0.0596548
\(967\) −22.4721 −0.722655 −0.361328 0.932439i \(-0.617676\pi\)
−0.361328 + 0.932439i \(0.617676\pi\)
\(968\) −11.1803 −0.359350
\(969\) 6.23607 0.200331
\(970\) 14.4721 0.464672
\(971\) 10.1246 0.324914 0.162457 0.986716i \(-0.448058\pi\)
0.162457 + 0.986716i \(0.448058\pi\)
\(972\) 1.61803 0.0518985
\(973\) 8.41641 0.269818
\(974\) −7.02129 −0.224977
\(975\) 0 0
\(976\) −15.2705 −0.488797
\(977\) 32.4164 1.03709 0.518546 0.855049i \(-0.326473\pi\)
0.518546 + 0.855049i \(0.326473\pi\)
\(978\) −0.0344419 −0.00110133
\(979\) 57.8885 1.85013
\(980\) −3.61803 −0.115574
\(981\) −6.70820 −0.214176
\(982\) 17.5279 0.559337
\(983\) −18.3050 −0.583837 −0.291919 0.956443i \(-0.594294\pi\)
−0.291919 + 0.956443i \(0.594294\pi\)
\(984\) −10.5279 −0.335616
\(985\) 12.1115 0.385903
\(986\) −5.09017 −0.162104
\(987\) −4.00000 −0.127321
\(988\) 10.0902 0.321011
\(989\) −11.2918 −0.359058
\(990\) −5.52786 −0.175687
\(991\) −15.8885 −0.504716 −0.252358 0.967634i \(-0.581206\pi\)
−0.252358 + 0.967634i \(0.581206\pi\)
\(992\) 13.8885 0.440962
\(993\) 19.4164 0.616161
\(994\) 4.00000 0.126872
\(995\) 33.2918 1.05542
\(996\) −13.7082 −0.434361
\(997\) 48.2492 1.52807 0.764034 0.645176i \(-0.223216\pi\)
0.764034 + 0.645176i \(0.223216\pi\)
\(998\) −16.5836 −0.524944
\(999\) 4.47214 0.141492
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4641.2.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4641.2.a.i.1.2 2 1.1 even 1 trivial