Properties

Label 464.6.e.c.289.3
Level $464$
Weight $6$
Character 464.289
Analytic conductor $74.418$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [464,6,Mod(289,464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("464.289"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 464.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,46,0,-20,0,-1574] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.4180923932\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 278x^{10} + 28285x^{8} + 1260472x^{6} + 22944832x^{4} + 140087936x^{2} + 966400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{24}\cdot 5 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.3
Root \(4.44887i\) of defining polynomial
Character \(\chi\) \(=\) 464.289
Dual form 464.6.e.c.289.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.5070i q^{3} +90.0922 q^{5} +211.678 q^{7} -219.553 q^{9} +593.900i q^{11} +445.466 q^{13} -1937.62i q^{15} -368.642i q^{17} -761.926i q^{19} -4552.56i q^{21} -728.987 q^{23} +4991.60 q^{25} -504.276i q^{27} +(2787.76 + 3569.25i) q^{29} +9222.49i q^{31} +12773.0 q^{33} +19070.5 q^{35} -3392.70i q^{37} -9580.65i q^{39} +1763.84i q^{41} -5296.04i q^{43} -19780.0 q^{45} +12459.7i q^{47} +28000.4 q^{49} -7928.41 q^{51} -14753.2 q^{53} +53505.8i q^{55} -16386.8 q^{57} +34598.5 q^{59} -9455.51i q^{61} -46474.5 q^{63} +40133.0 q^{65} -41093.0 q^{67} +15678.4i q^{69} +23404.1 q^{71} +25457.6i q^{73} -107355. i q^{75} +125715. i q^{77} +45401.0i q^{79} -64196.9 q^{81} +53492.2 q^{83} -33211.8i q^{85} +(76763.9 - 59956.6i) q^{87} -112498. i q^{89} +94295.2 q^{91} +198349. q^{93} -68643.6i q^{95} -724.916i q^{97} -130393. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 46 q^{5} - 20 q^{7} - 1574 q^{9} + 1362 q^{13} - 5852 q^{23} + 12678 q^{25} + 11328 q^{29} - 22694 q^{33} - 4532 q^{35} - 52816 q^{45} + 102836 q^{49} - 58540 q^{51} + 25650 q^{53} - 32824 q^{57}+ \cdots + 377966 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 21.5070i 1.37968i −0.723963 0.689839i \(-0.757681\pi\)
0.723963 0.689839i \(-0.242319\pi\)
\(4\) 0 0
\(5\) 90.0922 1.61162 0.805809 0.592175i \(-0.201731\pi\)
0.805809 + 0.592175i \(0.201731\pi\)
\(6\) 0 0
\(7\) 211.678 1.63279 0.816394 0.577495i \(-0.195970\pi\)
0.816394 + 0.577495i \(0.195970\pi\)
\(8\) 0 0
\(9\) −219.553 −0.903510
\(10\) 0 0
\(11\) 593.900i 1.47990i 0.672663 + 0.739949i \(0.265150\pi\)
−0.672663 + 0.739949i \(0.734850\pi\)
\(12\) 0 0
\(13\) 445.466 0.731065 0.365532 0.930799i \(-0.380887\pi\)
0.365532 + 0.930799i \(0.380887\pi\)
\(14\) 0 0
\(15\) 1937.62i 2.22351i
\(16\) 0 0
\(17\) 368.642i 0.309373i −0.987964 0.154687i \(-0.950563\pi\)
0.987964 0.154687i \(-0.0494368\pi\)
\(18\) 0 0
\(19\) 761.926i 0.484205i −0.970251 0.242102i \(-0.922163\pi\)
0.970251 0.242102i \(-0.0778370\pi\)
\(20\) 0 0
\(21\) 4552.56i 2.25272i
\(22\) 0 0
\(23\) −728.987 −0.287343 −0.143671 0.989625i \(-0.545891\pi\)
−0.143671 + 0.989625i \(0.545891\pi\)
\(24\) 0 0
\(25\) 4991.60 1.59731
\(26\) 0 0
\(27\) 504.276i 0.133125i
\(28\) 0 0
\(29\) 2787.76 + 3569.25i 0.615547 + 0.788100i
\(30\) 0 0
\(31\) 9222.49i 1.72363i 0.507223 + 0.861815i \(0.330672\pi\)
−0.507223 + 0.861815i \(0.669328\pi\)
\(32\) 0 0
\(33\) 12773.0 2.04178
\(34\) 0 0
\(35\) 19070.5 2.63143
\(36\) 0 0
\(37\) 3392.70i 0.407418i −0.979031 0.203709i \(-0.934700\pi\)
0.979031 0.203709i \(-0.0652997\pi\)
\(38\) 0 0
\(39\) 9580.65i 1.00863i
\(40\) 0 0
\(41\) 1763.84i 0.163870i 0.996638 + 0.0819351i \(0.0261100\pi\)
−0.996638 + 0.0819351i \(0.973890\pi\)
\(42\) 0 0
\(43\) 5296.04i 0.436797i −0.975860 0.218399i \(-0.929917\pi\)
0.975860 0.218399i \(-0.0700833\pi\)
\(44\) 0 0
\(45\) −19780.0 −1.45611
\(46\) 0 0
\(47\) 12459.7i 0.822741i 0.911468 + 0.411371i \(0.134950\pi\)
−0.911468 + 0.411371i \(0.865050\pi\)
\(48\) 0 0
\(49\) 28000.4 1.66600
\(50\) 0 0
\(51\) −7928.41 −0.426836
\(52\) 0 0
\(53\) −14753.2 −0.721432 −0.360716 0.932676i \(-0.617468\pi\)
−0.360716 + 0.932676i \(0.617468\pi\)
\(54\) 0 0
\(55\) 53505.8i 2.38503i
\(56\) 0 0
\(57\) −16386.8 −0.668046
\(58\) 0 0
\(59\) 34598.5 1.29398 0.646989 0.762499i \(-0.276028\pi\)
0.646989 + 0.762499i \(0.276028\pi\)
\(60\) 0 0
\(61\) 9455.51i 0.325357i −0.986679 0.162679i \(-0.947987\pi\)
0.986679 0.162679i \(-0.0520133\pi\)
\(62\) 0 0
\(63\) −46474.5 −1.47524
\(64\) 0 0
\(65\) 40133.0 1.17820
\(66\) 0 0
\(67\) −41093.0 −1.11836 −0.559179 0.829047i \(-0.688884\pi\)
−0.559179 + 0.829047i \(0.688884\pi\)
\(68\) 0 0
\(69\) 15678.4i 0.396440i
\(70\) 0 0
\(71\) 23404.1 0.550992 0.275496 0.961302i \(-0.411158\pi\)
0.275496 + 0.961302i \(0.411158\pi\)
\(72\) 0 0
\(73\) 25457.6i 0.559127i 0.960127 + 0.279563i \(0.0901897\pi\)
−0.960127 + 0.279563i \(0.909810\pi\)
\(74\) 0 0
\(75\) 107355.i 2.20378i
\(76\) 0 0
\(77\) 125715.i 2.41636i
\(78\) 0 0
\(79\) 45401.0i 0.818460i 0.912431 + 0.409230i \(0.134203\pi\)
−0.912431 + 0.409230i \(0.865797\pi\)
\(80\) 0 0
\(81\) −64196.9 −1.08718
\(82\) 0 0
\(83\) 53492.2 0.852306 0.426153 0.904651i \(-0.359869\pi\)
0.426153 + 0.904651i \(0.359869\pi\)
\(84\) 0 0
\(85\) 33211.8i 0.498592i
\(86\) 0 0
\(87\) 76763.9 59956.6i 1.08732 0.849256i
\(88\) 0 0
\(89\) 112498.i 1.50547i −0.658326 0.752733i \(-0.728735\pi\)
0.658326 0.752733i \(-0.271265\pi\)
\(90\) 0 0
\(91\) 94295.2 1.19367
\(92\) 0 0
\(93\) 198349. 2.37805
\(94\) 0 0
\(95\) 68643.6i 0.780353i
\(96\) 0 0
\(97\) 724.916i 0.00782273i −0.999992 0.00391137i \(-0.998755\pi\)
0.999992 0.00391137i \(-0.00124503\pi\)
\(98\) 0 0
\(99\) 130393.i 1.33710i
\(100\) 0 0
\(101\) 55652.7i 0.542854i 0.962459 + 0.271427i \(0.0874955\pi\)
−0.962459 + 0.271427i \(0.912505\pi\)
\(102\) 0 0
\(103\) −86986.8 −0.807905 −0.403953 0.914780i \(-0.632364\pi\)
−0.403953 + 0.914780i \(0.632364\pi\)
\(104\) 0 0
\(105\) 410150.i 3.63053i
\(106\) 0 0
\(107\) 67319.9 0.568439 0.284220 0.958759i \(-0.408266\pi\)
0.284220 + 0.958759i \(0.408266\pi\)
\(108\) 0 0
\(109\) −107618. −0.867595 −0.433797 0.901010i \(-0.642827\pi\)
−0.433797 + 0.901010i \(0.642827\pi\)
\(110\) 0 0
\(111\) −72966.9 −0.562106
\(112\) 0 0
\(113\) 140630.i 1.03605i −0.855365 0.518027i \(-0.826667\pi\)
0.855365 0.518027i \(-0.173333\pi\)
\(114\) 0 0
\(115\) −65676.0 −0.463087
\(116\) 0 0
\(117\) −97803.3 −0.660525
\(118\) 0 0
\(119\) 78033.4i 0.505141i
\(120\) 0 0
\(121\) −191666. −1.19010
\(122\) 0 0
\(123\) 37935.0 0.226088
\(124\) 0 0
\(125\) 168167. 0.962642
\(126\) 0 0
\(127\) 210012.i 1.15541i −0.816247 0.577703i \(-0.803949\pi\)
0.816247 0.577703i \(-0.196051\pi\)
\(128\) 0 0
\(129\) −113902. −0.602640
\(130\) 0 0
\(131\) 92160.7i 0.469210i −0.972091 0.234605i \(-0.924620\pi\)
0.972091 0.234605i \(-0.0753797\pi\)
\(132\) 0 0
\(133\) 161283.i 0.790604i
\(134\) 0 0
\(135\) 45431.3i 0.214546i
\(136\) 0 0
\(137\) 102506.i 0.466602i −0.972405 0.233301i \(-0.925047\pi\)
0.972405 0.233301i \(-0.0749528\pi\)
\(138\) 0 0
\(139\) 199342. 0.875106 0.437553 0.899193i \(-0.355845\pi\)
0.437553 + 0.899193i \(0.355845\pi\)
\(140\) 0 0
\(141\) 267972. 1.13512
\(142\) 0 0
\(143\) 264562.i 1.08190i
\(144\) 0 0
\(145\) 251156. + 321561.i 0.992026 + 1.27012i
\(146\) 0 0
\(147\) 602207.i 2.29854i
\(148\) 0 0
\(149\) −9725.12 −0.0358863 −0.0179432 0.999839i \(-0.505712\pi\)
−0.0179432 + 0.999839i \(0.505712\pi\)
\(150\) 0 0
\(151\) −483239. −1.72472 −0.862362 0.506292i \(-0.831016\pi\)
−0.862362 + 0.506292i \(0.831016\pi\)
\(152\) 0 0
\(153\) 80936.5i 0.279522i
\(154\) 0 0
\(155\) 830874.i 2.77783i
\(156\) 0 0
\(157\) 84963.6i 0.275096i −0.990495 0.137548i \(-0.956078\pi\)
0.990495 0.137548i \(-0.0439221\pi\)
\(158\) 0 0
\(159\) 317297.i 0.995344i
\(160\) 0 0
\(161\) −154310. −0.469170
\(162\) 0 0
\(163\) 531836.i 1.56786i −0.620846 0.783932i \(-0.713211\pi\)
0.620846 0.783932i \(-0.286789\pi\)
\(164\) 0 0
\(165\) 1.15075e6 3.29057
\(166\) 0 0
\(167\) 505065. 1.40138 0.700690 0.713466i \(-0.252876\pi\)
0.700690 + 0.713466i \(0.252876\pi\)
\(168\) 0 0
\(169\) −172853. −0.465544
\(170\) 0 0
\(171\) 167283.i 0.437484i
\(172\) 0 0
\(173\) −187852. −0.477201 −0.238601 0.971118i \(-0.576689\pi\)
−0.238601 + 0.971118i \(0.576689\pi\)
\(174\) 0 0
\(175\) 1.05661e6 2.60808
\(176\) 0 0
\(177\) 744111.i 1.78527i
\(178\) 0 0
\(179\) −834374. −1.94638 −0.973191 0.229999i \(-0.926128\pi\)
−0.973191 + 0.229999i \(0.926128\pi\)
\(180\) 0 0
\(181\) 84063.7 0.190727 0.0953635 0.995443i \(-0.469599\pi\)
0.0953635 + 0.995443i \(0.469599\pi\)
\(182\) 0 0
\(183\) −203360. −0.448888
\(184\) 0 0
\(185\) 305655.i 0.656603i
\(186\) 0 0
\(187\) 218937. 0.457841
\(188\) 0 0
\(189\) 106744.i 0.217365i
\(190\) 0 0
\(191\) 454281.i 0.901034i −0.892768 0.450517i \(-0.851240\pi\)
0.892768 0.450517i \(-0.148760\pi\)
\(192\) 0 0
\(193\) 461063.i 0.890979i −0.895287 0.445489i \(-0.853030\pi\)
0.895287 0.445489i \(-0.146970\pi\)
\(194\) 0 0
\(195\) 863142.i 1.62553i
\(196\) 0 0
\(197\) −401536. −0.737154 −0.368577 0.929597i \(-0.620155\pi\)
−0.368577 + 0.929597i \(0.620155\pi\)
\(198\) 0 0
\(199\) −107914. −0.193173 −0.0965863 0.995325i \(-0.530792\pi\)
−0.0965863 + 0.995325i \(0.530792\pi\)
\(200\) 0 0
\(201\) 883789.i 1.54297i
\(202\) 0 0
\(203\) 590107. + 755530.i 1.00506 + 1.28680i
\(204\) 0 0
\(205\) 158908.i 0.264096i
\(206\) 0 0
\(207\) 160051. 0.259617
\(208\) 0 0
\(209\) 452508. 0.716573
\(210\) 0 0
\(211\) 296058.i 0.457794i 0.973451 + 0.228897i \(0.0735120\pi\)
−0.973451 + 0.228897i \(0.926488\pi\)
\(212\) 0 0
\(213\) 503352.i 0.760192i
\(214\) 0 0
\(215\) 477132.i 0.703951i
\(216\) 0 0
\(217\) 1.95220e6i 2.81432i
\(218\) 0 0
\(219\) 547518. 0.771415
\(220\) 0 0
\(221\) 164218.i 0.226172i
\(222\) 0 0
\(223\) −857377. −1.15454 −0.577271 0.816552i \(-0.695882\pi\)
−0.577271 + 0.816552i \(0.695882\pi\)
\(224\) 0 0
\(225\) −1.09592e6 −1.44319
\(226\) 0 0
\(227\) 265585. 0.342089 0.171045 0.985263i \(-0.445286\pi\)
0.171045 + 0.985263i \(0.445286\pi\)
\(228\) 0 0
\(229\) 1.13602e6i 1.43152i 0.698349 + 0.715758i \(0.253919\pi\)
−0.698349 + 0.715758i \(0.746081\pi\)
\(230\) 0 0
\(231\) 2.70377e6 3.33380
\(232\) 0 0
\(233\) −341111. −0.411629 −0.205814 0.978591i \(-0.565984\pi\)
−0.205814 + 0.978591i \(0.565984\pi\)
\(234\) 0 0
\(235\) 1.12252e6i 1.32594i
\(236\) 0 0
\(237\) 976441. 1.12921
\(238\) 0 0
\(239\) −1.46515e6 −1.65916 −0.829578 0.558391i \(-0.811419\pi\)
−0.829578 + 0.558391i \(0.811419\pi\)
\(240\) 0 0
\(241\) 31493.9 0.0349288 0.0174644 0.999847i \(-0.494441\pi\)
0.0174644 + 0.999847i \(0.494441\pi\)
\(242\) 0 0
\(243\) 1.25815e6i 1.36683i
\(244\) 0 0
\(245\) 2.52262e6 2.68495
\(246\) 0 0
\(247\) 339412.i 0.353985i
\(248\) 0 0
\(249\) 1.15046e6i 1.17591i
\(250\) 0 0
\(251\) 974972.i 0.976805i −0.872618 0.488402i \(-0.837580\pi\)
0.872618 0.488402i \(-0.162420\pi\)
\(252\) 0 0
\(253\) 432945.i 0.425238i
\(254\) 0 0
\(255\) −714288. −0.687896
\(256\) 0 0
\(257\) −127188. −0.120119 −0.0600596 0.998195i \(-0.519129\pi\)
−0.0600596 + 0.998195i \(0.519129\pi\)
\(258\) 0 0
\(259\) 718158.i 0.665228i
\(260\) 0 0
\(261\) −612062. 783639.i −0.556153 0.712057i
\(262\) 0 0
\(263\) 644306.i 0.574385i −0.957873 0.287192i \(-0.907278\pi\)
0.957873 0.287192i \(-0.0927219\pi\)
\(264\) 0 0
\(265\) −1.32914e6 −1.16267
\(266\) 0 0
\(267\) −2.41951e6 −2.07706
\(268\) 0 0
\(269\) 2.20790e6i 1.86037i 0.367095 + 0.930183i \(0.380352\pi\)
−0.367095 + 0.930183i \(0.619648\pi\)
\(270\) 0 0
\(271\) 1.15746e6i 0.957374i −0.877986 0.478687i \(-0.841113\pi\)
0.877986 0.478687i \(-0.158887\pi\)
\(272\) 0 0
\(273\) 2.02801e6i 1.64689i
\(274\) 0 0
\(275\) 2.96451e6i 2.36386i
\(276\) 0 0
\(277\) −699513. −0.547768 −0.273884 0.961763i \(-0.588308\pi\)
−0.273884 + 0.961763i \(0.588308\pi\)
\(278\) 0 0
\(279\) 2.02483e6i 1.55732i
\(280\) 0 0
\(281\) −2.48281e6 −1.87576 −0.937881 0.346956i \(-0.887215\pi\)
−0.937881 + 0.346956i \(0.887215\pi\)
\(282\) 0 0
\(283\) −169883. −0.126091 −0.0630456 0.998011i \(-0.520081\pi\)
−0.0630456 + 0.998011i \(0.520081\pi\)
\(284\) 0 0
\(285\) −1.47632e6 −1.07664
\(286\) 0 0
\(287\) 373366.i 0.267565i
\(288\) 0 0
\(289\) 1.28396e6 0.904288
\(290\) 0 0
\(291\) −15590.8 −0.0107929
\(292\) 0 0
\(293\) 1.09182e6i 0.742985i 0.928436 + 0.371493i \(0.121154\pi\)
−0.928436 + 0.371493i \(0.878846\pi\)
\(294\) 0 0
\(295\) 3.11705e6 2.08540
\(296\) 0 0
\(297\) 299490. 0.197011
\(298\) 0 0
\(299\) −324739. −0.210066
\(300\) 0 0
\(301\) 1.12105e6i 0.713198i
\(302\) 0 0
\(303\) 1.19692e6 0.748963
\(304\) 0 0
\(305\) 851867.i 0.524351i
\(306\) 0 0
\(307\) 2.17551e6i 1.31739i −0.752410 0.658696i \(-0.771109\pi\)
0.752410 0.658696i \(-0.228891\pi\)
\(308\) 0 0
\(309\) 1.87083e6i 1.11465i
\(310\) 0 0
\(311\) 891275.i 0.522529i −0.965267 0.261265i \(-0.915860\pi\)
0.965267 0.261265i \(-0.0841395\pi\)
\(312\) 0 0
\(313\) 1.33851e6 0.772252 0.386126 0.922446i \(-0.373813\pi\)
0.386126 + 0.922446i \(0.373813\pi\)
\(314\) 0 0
\(315\) −4.18699e6 −2.37753
\(316\) 0 0
\(317\) 1.37267e6i 0.767219i −0.923495 0.383610i \(-0.874681\pi\)
0.923495 0.383610i \(-0.125319\pi\)
\(318\) 0 0
\(319\) −2.11978e6 + 1.65565e6i −1.16631 + 0.910946i
\(320\) 0 0
\(321\) 1.44785e6i 0.784263i
\(322\) 0 0
\(323\) −280878. −0.149800
\(324\) 0 0
\(325\) 2.22359e6 1.16774
\(326\) 0 0
\(327\) 2.31454e6i 1.19700i
\(328\) 0 0
\(329\) 2.63744e6i 1.34336i
\(330\) 0 0
\(331\) 3.39178e6i 1.70160i 0.525488 + 0.850801i \(0.323883\pi\)
−0.525488 + 0.850801i \(0.676117\pi\)
\(332\) 0 0
\(333\) 744876.i 0.368107i
\(334\) 0 0
\(335\) −3.70216e6 −1.80237
\(336\) 0 0
\(337\) 3.55335e6i 1.70437i −0.523243 0.852184i \(-0.675278\pi\)
0.523243 0.852184i \(-0.324722\pi\)
\(338\) 0 0
\(339\) −3.02454e6 −1.42942
\(340\) 0 0
\(341\) −5.47724e6 −2.55080
\(342\) 0 0
\(343\) 2.36940e6 1.08743
\(344\) 0 0
\(345\) 1.41250e6i 0.638910i
\(346\) 0 0
\(347\) −657758. −0.293253 −0.146626 0.989192i \(-0.546842\pi\)
−0.146626 + 0.989192i \(0.546842\pi\)
\(348\) 0 0
\(349\) −2.16941e6 −0.953408 −0.476704 0.879064i \(-0.658169\pi\)
−0.476704 + 0.879064i \(0.658169\pi\)
\(350\) 0 0
\(351\) 224638.i 0.0973228i
\(352\) 0 0
\(353\) 420369. 0.179554 0.0897768 0.995962i \(-0.471385\pi\)
0.0897768 + 0.995962i \(0.471385\pi\)
\(354\) 0 0
\(355\) 2.10852e6 0.887989
\(356\) 0 0
\(357\) −1.67827e6 −0.696932
\(358\) 0 0
\(359\) 4.02963e6i 1.65017i 0.565006 + 0.825087i \(0.308874\pi\)
−0.565006 + 0.825087i \(0.691126\pi\)
\(360\) 0 0
\(361\) 1.89557e6 0.765546
\(362\) 0 0
\(363\) 4.12218e6i 1.64195i
\(364\) 0 0
\(365\) 2.29353e6i 0.901099i
\(366\) 0 0
\(367\) 4.42973e6i 1.71677i −0.513006 0.858385i \(-0.671468\pi\)
0.513006 0.858385i \(-0.328532\pi\)
\(368\) 0 0
\(369\) 387257.i 0.148058i
\(370\) 0 0
\(371\) −3.12292e6 −1.17795
\(372\) 0 0
\(373\) −185657. −0.0690939 −0.0345470 0.999403i \(-0.510999\pi\)
−0.0345470 + 0.999403i \(0.510999\pi\)
\(374\) 0 0
\(375\) 3.61677e6i 1.32813i
\(376\) 0 0
\(377\) 1.24185e6 + 1.58998e6i 0.450005 + 0.576153i
\(378\) 0 0
\(379\) 2.45032e6i 0.876245i 0.898915 + 0.438123i \(0.144356\pi\)
−0.898915 + 0.438123i \(0.855644\pi\)
\(380\) 0 0
\(381\) −4.51674e6 −1.59409
\(382\) 0 0
\(383\) 3.91750e6 1.36462 0.682310 0.731063i \(-0.260975\pi\)
0.682310 + 0.731063i \(0.260975\pi\)
\(384\) 0 0
\(385\) 1.13260e7i 3.89425i
\(386\) 0 0
\(387\) 1.16276e6i 0.394651i
\(388\) 0 0
\(389\) 571898.i 0.191622i −0.995400 0.0958109i \(-0.969456\pi\)
0.995400 0.0958109i \(-0.0305444\pi\)
\(390\) 0 0
\(391\) 268735.i 0.0888962i
\(392\) 0 0
\(393\) −1.98210e6 −0.647359
\(394\) 0 0
\(395\) 4.09028e6i 1.31905i
\(396\) 0 0
\(397\) 1.49161e6 0.474984 0.237492 0.971389i \(-0.423675\pi\)
0.237492 + 0.971389i \(0.423675\pi\)
\(398\) 0 0
\(399\) −3.46872e6 −1.09078
\(400\) 0 0
\(401\) 1.92589e6 0.598096 0.299048 0.954238i \(-0.403331\pi\)
0.299048 + 0.954238i \(0.403331\pi\)
\(402\) 0 0
\(403\) 4.10830e6i 1.26009i
\(404\) 0 0
\(405\) −5.78364e6 −1.75212
\(406\) 0 0
\(407\) 2.01492e6 0.602938
\(408\) 0 0
\(409\) 2.15032e6i 0.635615i 0.948155 + 0.317808i \(0.102947\pi\)
−0.948155 + 0.317808i \(0.897053\pi\)
\(410\) 0 0
\(411\) −2.20460e6 −0.643761
\(412\) 0 0
\(413\) 7.32373e6 2.11279
\(414\) 0 0
\(415\) 4.81923e6 1.37359
\(416\) 0 0
\(417\) 4.28725e6i 1.20736i
\(418\) 0 0
\(419\) 4.31814e6 1.20161 0.600803 0.799397i \(-0.294848\pi\)
0.600803 + 0.799397i \(0.294848\pi\)
\(420\) 0 0
\(421\) 3.57350e6i 0.982627i 0.870983 + 0.491314i \(0.163483\pi\)
−0.870983 + 0.491314i \(0.836517\pi\)
\(422\) 0 0
\(423\) 2.73557e6i 0.743355i
\(424\) 0 0
\(425\) 1.84012e6i 0.494166i
\(426\) 0 0
\(427\) 2.00152e6i 0.531239i
\(428\) 0 0
\(429\) 5.68995e6 1.49268
\(430\) 0 0
\(431\) −3.79128e6 −0.983088 −0.491544 0.870853i \(-0.663567\pi\)
−0.491544 + 0.870853i \(0.663567\pi\)
\(432\) 0 0
\(433\) 2.38236e6i 0.610644i −0.952249 0.305322i \(-0.901236\pi\)
0.952249 0.305322i \(-0.0987641\pi\)
\(434\) 0 0
\(435\) 6.91583e6 5.40162e6i 1.75235 1.36868i
\(436\) 0 0
\(437\) 555434.i 0.139133i
\(438\) 0 0
\(439\) −7.23282e6 −1.79121 −0.895605 0.444851i \(-0.853257\pi\)
−0.895605 + 0.444851i \(0.853257\pi\)
\(440\) 0 0
\(441\) −6.14758e6 −1.50525
\(442\) 0 0
\(443\) 2.05198e6i 0.496780i −0.968660 0.248390i \(-0.920099\pi\)
0.968660 0.248390i \(-0.0799015\pi\)
\(444\) 0 0
\(445\) 1.01352e7i 2.42624i
\(446\) 0 0
\(447\) 209159.i 0.0495116i
\(448\) 0 0
\(449\) 3.05219e6i 0.714489i 0.934011 + 0.357245i \(0.116284\pi\)
−0.934011 + 0.357245i \(0.883716\pi\)
\(450\) 0 0
\(451\) −1.04755e6 −0.242511
\(452\) 0 0
\(453\) 1.03930e7i 2.37956i
\(454\) 0 0
\(455\) 8.49526e6 1.92375
\(456\) 0 0
\(457\) 2.06974e6 0.463581 0.231790 0.972766i \(-0.425542\pi\)
0.231790 + 0.972766i \(0.425542\pi\)
\(458\) 0 0
\(459\) −185897. −0.0411853
\(460\) 0 0
\(461\) 3.36651e6i 0.737781i −0.929473 0.368890i \(-0.879738\pi\)
0.929473 0.368890i \(-0.120262\pi\)
\(462\) 0 0
\(463\) 81095.6 0.0175811 0.00879053 0.999961i \(-0.497202\pi\)
0.00879053 + 0.999961i \(0.497202\pi\)
\(464\) 0 0
\(465\) 1.78697e7 3.83251
\(466\) 0 0
\(467\) 1.95508e6i 0.414833i −0.978253 0.207416i \(-0.933495\pi\)
0.978253 0.207416i \(-0.0665055\pi\)
\(468\) 0 0
\(469\) −8.69847e6 −1.82604
\(470\) 0 0
\(471\) −1.82732e6 −0.379543
\(472\) 0 0
\(473\) 3.14532e6 0.646416
\(474\) 0 0
\(475\) 3.80323e6i 0.773427i
\(476\) 0 0
\(477\) 3.23910e6 0.651821
\(478\) 0 0
\(479\) 5.02666e6i 1.00102i 0.865732 + 0.500508i \(0.166853\pi\)
−0.865732 + 0.500508i \(0.833147\pi\)
\(480\) 0 0
\(481\) 1.51133e6i 0.297849i
\(482\) 0 0
\(483\) 3.31876e6i 0.647303i
\(484\) 0 0
\(485\) 65309.3i 0.0126073i
\(486\) 0 0
\(487\) 7.01534e6 1.34038 0.670188 0.742192i \(-0.266214\pi\)
0.670188 + 0.742192i \(0.266214\pi\)
\(488\) 0 0
\(489\) −1.14382e7 −2.16315
\(490\) 0 0
\(491\) 6.04666e6i 1.13191i −0.824436 0.565954i \(-0.808508\pi\)
0.824436 0.565954i \(-0.191492\pi\)
\(492\) 0 0
\(493\) 1.31578e6 1.02769e6i 0.243817 0.190434i
\(494\) 0 0
\(495\) 1.17474e7i 2.15490i
\(496\) 0 0
\(497\) 4.95412e6 0.899654
\(498\) 0 0
\(499\) 5.31655e6 0.955825 0.477912 0.878408i \(-0.341394\pi\)
0.477912 + 0.878408i \(0.341394\pi\)
\(500\) 0 0
\(501\) 1.08625e7i 1.93345i
\(502\) 0 0
\(503\) 667123.i 0.117567i 0.998271 + 0.0587835i \(0.0187222\pi\)
−0.998271 + 0.0587835i \(0.981278\pi\)
\(504\) 0 0
\(505\) 5.01387e6i 0.874873i
\(506\) 0 0
\(507\) 3.71756e6i 0.642301i
\(508\) 0 0
\(509\) 852016. 0.145765 0.0728825 0.997341i \(-0.476780\pi\)
0.0728825 + 0.997341i \(0.476780\pi\)
\(510\) 0 0
\(511\) 5.38881e6i 0.912936i
\(512\) 0 0
\(513\) −384221. −0.0644596
\(514\) 0 0
\(515\) −7.83684e6 −1.30204
\(516\) 0 0
\(517\) −7.39982e6 −1.21757
\(518\) 0 0
\(519\) 4.04015e6i 0.658384i
\(520\) 0 0
\(521\) 8.30897e6 1.34107 0.670537 0.741876i \(-0.266064\pi\)
0.670537 + 0.741876i \(0.266064\pi\)
\(522\) 0 0
\(523\) 5.37728e6 0.859625 0.429812 0.902918i \(-0.358580\pi\)
0.429812 + 0.902918i \(0.358580\pi\)
\(524\) 0 0
\(525\) 2.27246e7i 3.59830i
\(526\) 0 0
\(527\) 3.39980e6 0.533245
\(528\) 0 0
\(529\) −5.90492e6 −0.917434
\(530\) 0 0
\(531\) −7.59620e6 −1.16912
\(532\) 0 0
\(533\) 785731.i 0.119800i
\(534\) 0 0
\(535\) 6.06500e6 0.916107
\(536\) 0 0
\(537\) 1.79449e7i 2.68538i
\(538\) 0 0
\(539\) 1.66295e7i 2.46551i
\(540\) 0 0
\(541\) 7.17375e6i 1.05379i 0.849931 + 0.526894i \(0.176643\pi\)
−0.849931 + 0.526894i \(0.823357\pi\)
\(542\) 0 0
\(543\) 1.80796e6i 0.263142i
\(544\) 0 0
\(545\) −9.69550e6 −1.39823
\(546\) 0 0
\(547\) −8.04876e6 −1.15017 −0.575083 0.818095i \(-0.695030\pi\)
−0.575083 + 0.818095i \(0.695030\pi\)
\(548\) 0 0
\(549\) 2.07598e6i 0.293963i
\(550\) 0 0
\(551\) 2.71950e6 2.12407e6i 0.381602 0.298051i
\(552\) 0 0
\(553\) 9.61038e6i 1.33637i
\(554\) 0 0
\(555\) −6.57374e6 −0.905900
\(556\) 0 0
\(557\) 1.01144e6 0.138134 0.0690669 0.997612i \(-0.477998\pi\)
0.0690669 + 0.997612i \(0.477998\pi\)
\(558\) 0 0
\(559\) 2.35920e6i 0.319327i
\(560\) 0 0
\(561\) 4.70868e6i 0.631673i
\(562\) 0 0
\(563\) 1.26692e6i 0.168453i −0.996447 0.0842266i \(-0.973158\pi\)
0.996447 0.0842266i \(-0.0268419\pi\)
\(564\) 0 0
\(565\) 1.26697e7i 1.66972i
\(566\) 0 0
\(567\) −1.35890e7 −1.77513
\(568\) 0 0
\(569\) 8.25094e6i 1.06837i −0.845367 0.534187i \(-0.820618\pi\)
0.845367 0.534187i \(-0.179382\pi\)
\(570\) 0 0
\(571\) −1.12215e7 −1.44032 −0.720160 0.693808i \(-0.755932\pi\)
−0.720160 + 0.693808i \(0.755932\pi\)
\(572\) 0 0
\(573\) −9.77025e6 −1.24314
\(574\) 0 0
\(575\) −3.63881e6 −0.458976
\(576\) 0 0
\(577\) 7.06718e6i 0.883703i 0.897088 + 0.441852i \(0.145678\pi\)
−0.897088 + 0.441852i \(0.854322\pi\)
\(578\) 0 0
\(579\) −9.91611e6 −1.22926
\(580\) 0 0
\(581\) 1.13231e7 1.39164
\(582\) 0 0
\(583\) 8.76191e6i 1.06765i
\(584\) 0 0
\(585\) −8.81132e6 −1.06451
\(586\) 0 0
\(587\) 9.89439e6 1.18521 0.592603 0.805495i \(-0.298100\pi\)
0.592603 + 0.805495i \(0.298100\pi\)
\(588\) 0 0
\(589\) 7.02686e6 0.834589
\(590\) 0 0
\(591\) 8.63584e6i 1.01704i
\(592\) 0 0
\(593\) 3.83383e6 0.447709 0.223854 0.974623i \(-0.428136\pi\)
0.223854 + 0.974623i \(0.428136\pi\)
\(594\) 0 0
\(595\) 7.03020e6i 0.814095i
\(596\) 0 0
\(597\) 2.32091e6i 0.266516i
\(598\) 0 0
\(599\) 1.47715e7i 1.68212i −0.540938 0.841062i \(-0.681931\pi\)
0.540938 0.841062i \(-0.318069\pi\)
\(600\) 0 0
\(601\) 1.70212e7i 1.92223i −0.276155 0.961113i \(-0.589060\pi\)
0.276155 0.961113i \(-0.410940\pi\)
\(602\) 0 0
\(603\) 9.02209e6 1.01045
\(604\) 0 0
\(605\) −1.72676e7 −1.91798
\(606\) 0 0
\(607\) 1.99520e6i 0.219794i 0.993943 + 0.109897i \(0.0350520\pi\)
−0.993943 + 0.109897i \(0.964948\pi\)
\(608\) 0 0
\(609\) 1.62492e7 1.26915e7i 1.77537 1.38666i
\(610\) 0 0
\(611\) 5.55037e6i 0.601477i
\(612\) 0 0
\(613\) 8.31000e6 0.893202 0.446601 0.894733i \(-0.352634\pi\)
0.446601 + 0.894733i \(0.352634\pi\)
\(614\) 0 0
\(615\) 3.41765e6 0.364368
\(616\) 0 0
\(617\) 3.70169e6i 0.391460i −0.980658 0.195730i \(-0.937292\pi\)
0.980658 0.195730i \(-0.0627076\pi\)
\(618\) 0 0
\(619\) 1.29198e7i 1.35528i 0.735395 + 0.677639i \(0.236997\pi\)
−0.735395 + 0.677639i \(0.763003\pi\)
\(620\) 0 0
\(621\) 367611.i 0.0382524i
\(622\) 0 0
\(623\) 2.38134e7i 2.45811i
\(624\) 0 0
\(625\) −448271. −0.0459029
\(626\) 0 0
\(627\) 9.73211e6i 0.988640i
\(628\) 0 0
\(629\) −1.25069e6 −0.126044
\(630\) 0 0
\(631\) −1.52718e6 −0.152692 −0.0763459 0.997081i \(-0.524325\pi\)
−0.0763459 + 0.997081i \(0.524325\pi\)
\(632\) 0 0
\(633\) 6.36733e6 0.631609
\(634\) 0 0
\(635\) 1.89204e7i 1.86207i
\(636\) 0 0
\(637\) 1.24732e7 1.21795
\(638\) 0 0
\(639\) −5.13843e6 −0.497827
\(640\) 0 0
\(641\) 9.43372e6i 0.906855i −0.891293 0.453427i \(-0.850201\pi\)
0.891293 0.453427i \(-0.149799\pi\)
\(642\) 0 0
\(643\) −1.37293e7 −1.30954 −0.654772 0.755826i \(-0.727235\pi\)
−0.654772 + 0.755826i \(0.727235\pi\)
\(644\) 0 0
\(645\) −1.02617e7 −0.971225
\(646\) 0 0
\(647\) 1.73477e7 1.62922 0.814611 0.580007i \(-0.196950\pi\)
0.814611 + 0.580007i \(0.196950\pi\)
\(648\) 0 0
\(649\) 2.05480e7i 1.91496i
\(650\) 0 0
\(651\) 4.19860e7 3.88286
\(652\) 0 0
\(653\) 6.34963e6i 0.582728i −0.956612 0.291364i \(-0.905891\pi\)
0.956612 0.291364i \(-0.0941090\pi\)
\(654\) 0 0
\(655\) 8.30296e6i 0.756188i
\(656\) 0 0
\(657\) 5.58929e6i 0.505177i
\(658\) 0 0
\(659\) 4.42658e6i 0.397058i 0.980095 + 0.198529i \(0.0636165\pi\)
−0.980095 + 0.198529i \(0.936384\pi\)
\(660\) 0 0
\(661\) 1.51522e7 1.34887 0.674437 0.738332i \(-0.264386\pi\)
0.674437 + 0.738332i \(0.264386\pi\)
\(662\) 0 0
\(663\) −3.53183e6 −0.312044
\(664\) 0 0
\(665\) 1.45303e7i 1.27415i
\(666\) 0 0
\(667\) −2.03224e6 2.60193e6i −0.176873 0.226455i
\(668\) 0 0
\(669\) 1.84397e7i 1.59290i
\(670\) 0 0
\(671\) 5.61563e6 0.481495
\(672\) 0 0
\(673\) −1.21002e7 −1.02980 −0.514901 0.857249i \(-0.672171\pi\)
−0.514901 + 0.857249i \(0.672171\pi\)
\(674\) 0 0
\(675\) 2.51715e6i 0.212642i
\(676\) 0 0
\(677\) 1.94913e7i 1.63444i 0.576326 + 0.817220i \(0.304486\pi\)
−0.576326 + 0.817220i \(0.695514\pi\)
\(678\) 0 0
\(679\) 153449.i 0.0127729i
\(680\) 0 0
\(681\) 5.71196e6i 0.471973i
\(682\) 0 0
\(683\) 1.58984e6 0.130407 0.0652034 0.997872i \(-0.479230\pi\)
0.0652034 + 0.997872i \(0.479230\pi\)
\(684\) 0 0
\(685\) 9.23497e6i 0.751985i
\(686\) 0 0
\(687\) 2.44324e7 1.97503
\(688\) 0 0
\(689\) −6.57203e6 −0.527414
\(690\) 0 0
\(691\) 478964. 0.0381599 0.0190800 0.999818i \(-0.493926\pi\)
0.0190800 + 0.999818i \(0.493926\pi\)
\(692\) 0 0
\(693\) 2.76012e7i 2.18321i
\(694\) 0 0
\(695\) 1.79591e7 1.41034
\(696\) 0 0
\(697\) 650227. 0.0506971
\(698\) 0 0
\(699\) 7.33629e6i 0.567915i
\(700\) 0 0
\(701\) 4.60638e6 0.354050 0.177025 0.984206i \(-0.443353\pi\)
0.177025 + 0.984206i \(0.443353\pi\)
\(702\) 0 0
\(703\) −2.58498e6 −0.197274
\(704\) 0 0
\(705\) 2.41421e7 1.82938
\(706\) 0 0
\(707\) 1.17804e7i 0.886365i
\(708\) 0 0
\(709\) 9.47025e6 0.707531 0.353766 0.935334i \(-0.384901\pi\)
0.353766 + 0.935334i \(0.384901\pi\)
\(710\) 0 0
\(711\) 9.96792e6i 0.739487i
\(712\) 0 0
\(713\) 6.72307e6i 0.495272i
\(714\) 0 0
\(715\) 2.38350e7i 1.74361i
\(716\) 0 0
\(717\) 3.15110e7i 2.28910i
\(718\) 0 0
\(719\) 1.63490e7 1.17942 0.589711 0.807614i \(-0.299241\pi\)
0.589711 + 0.807614i \(0.299241\pi\)
\(720\) 0 0
\(721\) −1.84132e7 −1.31914
\(722\) 0 0
\(723\) 677341.i 0.0481905i
\(724\) 0 0
\(725\) 1.39154e7 + 1.78163e7i 0.983221 + 1.25884i
\(726\) 0 0
\(727\) 1.79177e7i 1.25732i 0.777679 + 0.628661i \(0.216397\pi\)
−0.777679 + 0.628661i \(0.783603\pi\)
\(728\) 0 0
\(729\) 1.14592e7 0.798609
\(730\) 0 0
\(731\) −1.95234e6 −0.135133
\(732\) 0 0
\(733\) 1.78468e7i 1.22687i −0.789744 0.613436i \(-0.789787\pi\)
0.789744 0.613436i \(-0.210213\pi\)
\(734\) 0 0
\(735\) 5.42541e7i 3.70437i
\(736\) 0 0
\(737\) 2.44051e7i 1.65506i
\(738\) 0 0
\(739\) 2.55426e7i 1.72050i 0.509876 + 0.860248i \(0.329691\pi\)
−0.509876 + 0.860248i \(0.670309\pi\)
\(740\) 0 0
\(741\) −7.29975e6 −0.488385
\(742\) 0 0
\(743\) 1.50256e7i 0.998528i −0.866450 0.499264i \(-0.833604\pi\)
0.866450 0.499264i \(-0.166396\pi\)
\(744\) 0 0
\(745\) −876157. −0.0578351
\(746\) 0 0
\(747\) −1.17444e7 −0.770067
\(748\) 0 0
\(749\) 1.42501e7 0.928141
\(750\) 0 0
\(751\) 2.09579e6i 0.135597i 0.997699 + 0.0677983i \(0.0215974\pi\)
−0.997699 + 0.0677983i \(0.978403\pi\)
\(752\) 0 0
\(753\) −2.09688e7 −1.34768
\(754\) 0 0
\(755\) −4.35361e7 −2.77960
\(756\) 0 0
\(757\) 2.93991e7i 1.86464i 0.361639 + 0.932318i \(0.382217\pi\)
−0.361639 + 0.932318i \(0.617783\pi\)
\(758\) 0 0
\(759\) −9.31138e6 −0.586691
\(760\) 0 0
\(761\) −9.58603e6 −0.600036 −0.300018 0.953934i \(-0.596993\pi\)
−0.300018 + 0.953934i \(0.596993\pi\)
\(762\) 0 0
\(763\) −2.27802e7 −1.41660
\(764\) 0 0
\(765\) 7.29175e6i 0.450483i
\(766\) 0 0
\(767\) 1.54124e7 0.945982
\(768\) 0 0
\(769\) 1.57832e7i 0.962453i 0.876596 + 0.481226i \(0.159808\pi\)
−0.876596 + 0.481226i \(0.840192\pi\)
\(770\) 0 0
\(771\) 2.73543e6i 0.165726i
\(772\) 0 0
\(773\) 1.49255e7i 0.898423i 0.893425 + 0.449212i \(0.148295\pi\)
−0.893425 + 0.449212i \(0.851705\pi\)
\(774\) 0 0
\(775\) 4.60350e7i 2.75318i
\(776\) 0 0
\(777\) −1.54455e7 −0.917800
\(778\) 0 0
\(779\) 1.34392e6 0.0793467
\(780\) 0 0
\(781\) 1.38997e7i 0.815412i
\(782\) 0 0
\(783\) 1.79988e6 1.40580e6i 0.104916 0.0819445i
\(784\) 0 0
\(785\) 7.65456e6i 0.443349i
\(786\) 0 0
\(787\) −3.13562e7 −1.80462 −0.902312 0.431083i \(-0.858132\pi\)
−0.902312 + 0.431083i \(0.858132\pi\)
\(788\) 0 0
\(789\) −1.38571e7 −0.792466
\(790\) 0 0
\(791\) 2.97682e7i 1.69166i
\(792\) 0 0
\(793\) 4.21210e6i 0.237857i
\(794\) 0 0
\(795\) 2.85860e7i 1.60411i
\(796\) 0 0
\(797\) 2.64771e6i 0.147647i −0.997271 0.0738235i \(-0.976480\pi\)
0.997271 0.0738235i \(-0.0235202\pi\)
\(798\) 0 0
\(799\) 4.59318e6 0.254534
\(800\) 0 0
\(801\) 2.46993e7i 1.36020i
\(802\) 0 0
\(803\) −1.51193e7 −0.827451
\(804\) 0 0
\(805\) −1.39021e7 −0.756123
\(806\) 0 0
\(807\) 4.74854e7 2.56671
\(808\) 0 0
\(809\) 9.80290e6i 0.526603i −0.964714 0.263301i \(-0.915189\pi\)
0.964714 0.263301i \(-0.0848114\pi\)
\(810\) 0 0
\(811\) 6.02035e6 0.321417 0.160709 0.987002i \(-0.448622\pi\)
0.160709 + 0.987002i \(0.448622\pi\)
\(812\) 0 0
\(813\) −2.48935e7 −1.32087
\(814\) 0 0
\(815\) 4.79143e7i 2.52680i
\(816\) 0 0
\(817\) −4.03519e6 −0.211499
\(818\) 0 0
\(819\) −2.07028e7 −1.07850
\(820\) 0 0
\(821\) 3.70550e7 1.91862 0.959309 0.282359i \(-0.0911171\pi\)
0.959309 + 0.282359i \(0.0911171\pi\)
\(822\) 0 0
\(823\) 2.15600e7i 1.10956i 0.831998 + 0.554779i \(0.187197\pi\)
−0.831998 + 0.554779i \(0.812803\pi\)
\(824\) 0 0
\(825\) 6.37580e7 3.26137
\(826\) 0 0
\(827\) 1.21823e7i 0.619391i 0.950836 + 0.309696i \(0.100227\pi\)
−0.950836 + 0.309696i \(0.899773\pi\)
\(828\) 0 0
\(829\) 1.49741e6i 0.0756756i −0.999284 0.0378378i \(-0.987953\pi\)
0.999284 0.0378378i \(-0.0120470\pi\)
\(830\) 0 0
\(831\) 1.50445e7i 0.755743i
\(832\) 0 0
\(833\) 1.03221e7i 0.515416i
\(834\) 0 0
\(835\) 4.55024e7 2.25849
\(836\) 0 0
\(837\) 4.65068e6 0.229458
\(838\) 0 0
\(839\) 2.46412e7i 1.20853i 0.796785 + 0.604263i \(0.206532\pi\)
−0.796785 + 0.604263i \(0.793468\pi\)
\(840\) 0 0
\(841\) −4.96789e6 + 1.99004e7i −0.242204 + 0.970225i
\(842\) 0 0
\(843\) 5.33979e7i 2.58795i
\(844\) 0 0
\(845\) −1.55727e7 −0.750279
\(846\) 0 0
\(847\) −4.05715e7 −1.94318
\(848\) 0 0
\(849\) 3.65369e6i 0.173965i
\(850\) 0 0
\(851\) 2.47323e6i 0.117069i
\(852\) 0 0
\(853\) 2.54111e7i 1.19578i 0.801578 + 0.597890i \(0.203994\pi\)
−0.801578 + 0.597890i \(0.796006\pi\)
\(854\) 0 0
\(855\) 1.50709e7i 0.705057i
\(856\) 0 0
\(857\) −1.32471e7 −0.616127 −0.308063 0.951366i \(-0.599681\pi\)
−0.308063 + 0.951366i \(0.599681\pi\)
\(858\) 0 0
\(859\) 8.05724e6i 0.372566i 0.982496 + 0.186283i \(0.0596441\pi\)
−0.982496 + 0.186283i \(0.940356\pi\)
\(860\) 0 0
\(861\) 8.03000e6 0.369154
\(862\) 0 0
\(863\) −2.46723e7 −1.12767 −0.563836 0.825887i \(-0.690675\pi\)
−0.563836 + 0.825887i \(0.690675\pi\)
\(864\) 0 0
\(865\) −1.69240e7 −0.769066
\(866\) 0 0
\(867\) 2.76142e7i 1.24763i
\(868\) 0 0
\(869\) −2.69637e7 −1.21124
\(870\) 0 0
\(871\) −1.83055e7 −0.817592
\(872\) 0 0
\(873\) 159158.i 0.00706792i
\(874\) 0 0
\(875\) 3.55971e7 1.57179
\(876\) 0 0
\(877\) −4.30471e6 −0.188993 −0.0944963 0.995525i \(-0.530124\pi\)
−0.0944963 + 0.995525i \(0.530124\pi\)
\(878\) 0 0
\(879\) 2.34817e7 1.02508
\(880\) 0 0
\(881\) 7.17894e6i 0.311617i 0.987787 + 0.155808i \(0.0497982\pi\)
−0.987787 + 0.155808i \(0.950202\pi\)
\(882\) 0 0
\(883\) 2.27258e6 0.0980884 0.0490442 0.998797i \(-0.484382\pi\)
0.0490442 + 0.998797i \(0.484382\pi\)
\(884\) 0 0
\(885\) 6.70386e7i 2.87718i
\(886\) 0 0
\(887\) 3.19149e7i 1.36202i 0.732273 + 0.681012i \(0.238460\pi\)
−0.732273 + 0.681012i \(0.761540\pi\)
\(888\) 0 0
\(889\) 4.44548e7i 1.88653i
\(890\) 0 0
\(891\) 3.81265e7i 1.60891i
\(892\) 0 0
\(893\) 9.49338e6 0.398375
\(894\) 0 0
\(895\) −7.51706e7 −3.13682
\(896\) 0 0
\(897\) 6.98417e6i 0.289824i
\(898\) 0 0
\(899\) −3.29173e7 + 2.57101e7i −1.35839 + 1.06097i
\(900\) 0 0
\(901\) 5.43864e6i 0.223192i
\(902\) 0 0
\(903\) −2.41105e7 −0.983983
\(904\) 0 0
\(905\) 7.57348e6 0.307379
\(906\) 0 0
\(907\) 2.84496e7i 1.14831i −0.818748 0.574153i \(-0.805331\pi\)
0.818748 0.574153i \(-0.194669\pi\)
\(908\) 0 0
\(909\) 1.22187e7i 0.490474i
\(910\) 0 0
\(911\) 1.64758e7i 0.657734i −0.944376 0.328867i \(-0.893333\pi\)
0.944376 0.328867i \(-0.106667\pi\)
\(912\) 0 0
\(913\) 3.17690e7i 1.26133i
\(914\) 0 0
\(915\) −1.83211e7 −0.723436
\(916\) 0 0
\(917\) 1.95084e7i 0.766121i
\(918\) 0 0
\(919\) 2.11310e7 0.825336 0.412668 0.910881i \(-0.364597\pi\)
0.412668 + 0.910881i \(0.364597\pi\)
\(920\) 0 0
\(921\) −4.67887e7 −1.81757
\(922\) 0 0
\(923\) 1.04257e7 0.402811
\(924\) 0 0
\(925\) 1.69350e7i 0.650775i
\(926\) 0 0
\(927\) 1.90982e7 0.729951
\(928\) 0 0
\(929\) −1.53237e7 −0.582538 −0.291269 0.956641i \(-0.594077\pi\)
−0.291269 + 0.956641i \(0.594077\pi\)
\(930\) 0 0
\(931\) 2.13343e7i 0.806684i
\(932\) 0 0
\(933\) −1.91687e7 −0.720922
\(934\) 0 0
\(935\) 1.97245e7 0.737865
\(936\) 0 0
\(937\) −2.82423e7 −1.05087 −0.525437 0.850832i \(-0.676098\pi\)
−0.525437 + 0.850832i \(0.676098\pi\)
\(938\) 0 0
\(939\) 2.87873e7i 1.06546i
\(940\) 0 0
\(941\) −1.91232e7 −0.704022 −0.352011 0.935996i \(-0.614502\pi\)
−0.352011 + 0.935996i \(0.614502\pi\)
\(942\) 0 0
\(943\) 1.28582e6i 0.0470869i
\(944\) 0 0
\(945\) 9.61680e6i 0.350309i
\(946\) 0 0
\(947\) 916050.i 0.0331928i −0.999862 0.0165964i \(-0.994717\pi\)
0.999862 0.0165964i \(-0.00528305\pi\)
\(948\) 0 0
\(949\) 1.13405e7i 0.408758i
\(950\) 0 0
\(951\) −2.95222e7 −1.05852
\(952\) 0 0
\(953\) 7.31338e6 0.260847 0.130423 0.991458i \(-0.458366\pi\)
0.130423 + 0.991458i \(0.458366\pi\)
\(954\) 0 0
\(955\) 4.09272e7i 1.45212i
\(956\) 0 0
\(957\) 3.56082e7 + 4.55901e7i 1.25681 + 1.60913i
\(958\) 0 0
\(959\) 2.16982e7i 0.761863i
\(960\) 0 0
\(961\) −5.64252e7 −1.97090
\(962\) 0 0
\(963\) −1.47803e7 −0.513591
\(964\) 0 0
\(965\) 4.15382e7i 1.43592i
\(966\) 0 0
\(967\) 5.71496e6i 0.196538i 0.995160 + 0.0982692i \(0.0313306\pi\)
−0.995160 + 0.0982692i \(0.968669\pi\)
\(968\) 0 0
\(969\) 6.04086e6i 0.206676i
\(970\) 0 0
\(971\) 3.76567e7i 1.28172i 0.767657 + 0.640861i \(0.221422\pi\)
−0.767657 + 0.640861i \(0.778578\pi\)
\(972\) 0 0
\(973\) 4.21962e7 1.42886
\(974\) 0 0
\(975\) 4.78228e7i 1.61110i
\(976\) 0 0
\(977\) −1.50840e7 −0.505567 −0.252784 0.967523i \(-0.581346\pi\)
−0.252784 + 0.967523i \(0.581346\pi\)
\(978\) 0 0
\(979\) 6.68127e7 2.22793
\(980\) 0 0
\(981\) 2.36278e7 0.783881
\(982\) 0 0
\(983\) 4.82887e7i 1.59390i −0.604043 0.796951i \(-0.706445\pi\)
0.604043 0.796951i \(-0.293555\pi\)
\(984\) 0 0
\(985\) −3.61752e7 −1.18801
\(986\) 0 0
\(987\) 5.67236e7 1.85341
\(988\) 0 0
\(989\) 3.86074e6i 0.125511i
\(990\) 0 0
\(991\) −4.54332e7 −1.46957 −0.734783 0.678303i \(-0.762716\pi\)
−0.734783 + 0.678303i \(0.762716\pi\)
\(992\) 0 0
\(993\) 7.29472e7 2.34766
\(994\) 0 0
\(995\) −9.72222e6 −0.311321
\(996\) 0 0
\(997\) 6.29767e6i 0.200651i 0.994955 + 0.100326i \(0.0319884\pi\)
−0.994955 + 0.100326i \(0.968012\pi\)
\(998\) 0 0
\(999\) −1.71085e6 −0.0542375
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.6.e.c.289.3 12
4.3 odd 2 29.6.b.a.28.9 yes 12
12.11 even 2 261.6.c.b.28.4 12
29.28 even 2 inner 464.6.e.c.289.10 12
116.75 even 4 841.6.a.d.1.9 12
116.99 even 4 841.6.a.d.1.4 12
116.115 odd 2 29.6.b.a.28.4 12
348.347 even 2 261.6.c.b.28.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.6.b.a.28.4 12 116.115 odd 2
29.6.b.a.28.9 yes 12 4.3 odd 2
261.6.c.b.28.4 12 12.11 even 2
261.6.c.b.28.9 12 348.347 even 2
464.6.e.c.289.3 12 1.1 even 1 trivial
464.6.e.c.289.10 12 29.28 even 2 inner
841.6.a.d.1.4 12 116.99 even 4
841.6.a.d.1.9 12 116.75 even 4