gp: [N,k,chi] = [464,3,Mod(463,464)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("464.463");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [20]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 19 1,\beta_1,\ldots,\beta_{19} 1 , β 1 , … , β 1 9 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 20 + 58 x 18 + 2256 x 16 + 48540 x 14 + 757617 x 12 + 7081908 x 10 + 46200312 x 8 + ⋯ + 529984 x^{20} + 58 x^{18} + 2256 x^{16} + 48540 x^{14} + 757617 x^{12} + 7081908 x^{10} + 46200312 x^{8} + \cdots + 529984 x 2 0 + 5 8 x 1 8 + 2 2 5 6 x 1 6 + 4 8 5 4 0 x 1 4 + 7 5 7 6 1 7 x 1 2 + 7 0 8 1 9 0 8 x 1 0 + 4 6 2 0 0 3 1 2 x 8 + ⋯ + 5 2 9 9 8 4
x^20 + 58*x^18 + 2256*x^16 + 48540*x^14 + 757617*x^12 + 7081908*x^10 + 46200312*x^8 + 108855714*x^6 + 191707065*x^4 + 10229128*x^2 + 529984
:
β 1 \beta_{1} β 1 = = =
( − 25 ⋯ 57 ν 18 + ⋯ + 41 ⋯ 12 ) / 34 ⋯ 93 ( - 25\!\cdots\!57 \nu^{18} + \cdots + 41\!\cdots\!12 ) / 34\!\cdots\!93 ( − 2 5 ⋯ 5 7 ν 1 8 + ⋯ + 4 1 ⋯ 1 2 ) / 3 4 ⋯ 9 3
(-2569076908742357*v^18 - 143596497743479620*v^16 - 5498429452685661672*v^14 - 113314991171324597948*v^12 - 1714271974247768941512*v^10 - 14643473794125445111284*v^8 - 88363510896347765600080*v^6 - 68823991593467122571280*v^4 - 3672607595763758101632*v^2 + 4136850913225009283690612) / 346293654618461749330893
β 2 \beta_{2} β 2 = = =
( 26 ⋯ 21 ν 18 + ⋯ − 40 ⋯ 24 ) / 93 ⋯ 34 ( 26\!\cdots\!21 \nu^{18} + \cdots - 40\!\cdots\!24 ) / 93\!\cdots\!34 ( 2 6 ⋯ 2 1 ν 1 8 + ⋯ − 4 0 ⋯ 2 4 ) / 9 3 ⋯ 3 4
(264366659684564368121*v^18 + 14800888554935636412840*v^16 + 566738345539291361887504*v^14 + 11696628535463623759828042*v^12 + 176694758175902924027922384*v^10 + 1509343382950387539568894088*v^8 + 8898151139851505973578725463*v^6 + 7093879345863007144696140960*v^4 + 378545832141492839745236224*v^2 - 40279339214002191809992565724) / 9363087833573968778408684934
β 3 \beta_{3} β 3 = = =
( − 40 ⋯ 28 ν 18 + ⋯ + 11 ⋯ 96 ) / 93 ⋯ 34 ( - 40\!\cdots\!28 \nu^{18} + \cdots + 11\!\cdots\!96 ) / 93\!\cdots\!34 ( − 4 0 ⋯ 2 8 ν 1 8 + ⋯ + 1 1 ⋯ 9 6 ) / 9 3 ⋯ 3 4
(-406128590964369155128*v^18 - 22798675300754612500605*v^16 - 872980258751320834660338*v^14 - 18038227968912959133972117*v^12 - 272173282303001920773682698*v^10 - 2324929991703329310179973561*v^8 - 13712189668545125077231384134*v^6 - 10927117735450277951265373620*v^4 - 583096310833980500695520928*v^2 + 110268176326466510656791521696) / 9363087833573968778408684934
β 4 \beta_{4} β 4 = = =
( 58 ⋯ 65 ν 18 + ⋯ − 62 ⋯ 34 ) / 93 ⋯ 34 ( 58\!\cdots\!65 \nu^{18} + \cdots - 62\!\cdots\!34 ) / 93\!\cdots\!34 ( 5 8 ⋯ 6 5 ν 1 8 + ⋯ − 6 2 ⋯ 3 4 ) / 9 3 ⋯ 3 4
(582111928246451599765*v^18 + 32968429548719183529150*v^16 + 1262388615934757848961740*v^14 + 26213108846987951083479826*v^12 + 393581011364865370246584540*v^10 + 3362006328264102091657517030*v^8 + 19346220559970923691161040825*v^6 + 15801352775081124799351092600*v^4 + 843196781841612599842517440*v^2 - 62766522054160562997236679334) / 9363087833573968778408684934
β 5 \beta_{5} β 5 = = =
( 25 ⋯ 43 ν 19 + ⋯ + 75 ⋯ 04 ν ) / 25 ⋯ 04 ( 25\!\cdots\!43 \nu^{19} + \cdots + 75\!\cdots\!04 \nu ) / 25\!\cdots\!04 ( 2 5 ⋯ 4 3 ν 1 9 + ⋯ + 7 5 ⋯ 0 4 ν ) / 2 5 ⋯ 0 4
(25649645874356742143*v^19 + 1485809172723126608398*v^17 + 57761062842191557111248*v^15 + 1241030954099721101924004*v^13 + 19350114444819807604847087*v^11 + 180400442317521631247028108*v^9 + 1174361193162670962269133864*v^7 + 2727781879567716283333296862*v^5 + 4867114462982245733964448455*v^3 + 7598071911510863632863104*v) / 252101780562240153512890104
β 6 \beta_{6} β 6 = = =
( 30 ⋯ 29 ν 18 + ⋯ + 15 ⋯ 84 ) / 85 ⋯ 94 ( 30\!\cdots\!29 \nu^{18} + \cdots + 15\!\cdots\!84 ) / 85\!\cdots\!94 ( 3 0 ⋯ 2 9 ν 1 8 + ⋯ + 1 5 ⋯ 8 4 ) / 8 5 ⋯ 9 4
(307416039627534248766629*v^18 + 18044418496337051573669973*v^16 + 705440733787027461100542464*v^14 + 15368766225290049412692167535*v^12 + 241834432044369271565404976344*v^10 + 2304263063115861238857441009231*v^8 + 15182938888424599628216495865499*v^6 + 38225777949732786187237052713090*v^4 + 55918655771312111633257126804720*v^2 + 1545062902304282329010254377984) / 852040992855231158835190328994
β 7 \beta_{7} β 7 = = =
( − 68 ⋯ 76 ν 18 + ⋯ − 35 ⋯ 28 ) / 85 ⋯ 94 ( - 68\!\cdots\!76 \nu^{18} + \cdots - 35\!\cdots\!28 ) / 85\!\cdots\!94 ( − 6 8 ⋯ 7 6 ν 1 8 + ⋯ − 3 5 ⋯ 2 8 ) / 8 5 ⋯ 9 4
(-685347441072494409215376*v^18 - 39735804447695723584710659*v^16 - 1545300531437841733717331146*v^14 - 33233887817659402636213520109*v^12 - 518515230355300855179639925586*v^10 - 4842439668754926988256066308657*v^8 - 31557825066539074455288651951838*v^6 - 73937287278722024655913100353470*v^4 - 129266493225918184590473302238616*v^2 - 3551672502745016039935921431328) / 852040992855231158835190328994
β 8 \beta_{8} β 8 = = =
( 19 ⋯ 67 ν 19 + ⋯ + 56 ⋯ 96 ν ) / 34 ⋯ 76 ( 19\!\cdots\!67 \nu^{19} + \cdots + 56\!\cdots\!96 \nu ) / 34\!\cdots\!76 ( 1 9 ⋯ 6 7 ν 1 9 + ⋯ + 5 6 ⋯ 9 6 ν ) / 3 4 ⋯ 7 6
(1905533072466577587640167*v^19 + 110422157453952855215564638*v^17 + 4293059762394565901455048684*v^15 + 92271784158606203032400416452*v^13 + 1438870903503239607834734490455*v^11 + 13422151408947527800829515701140*v^9 + 87336963979027361887729894588776*v^7 + 202866718674022541810201613868654*v^5 + 349379998563508662407883970503091*v^3 + 565073155651919798299655680896*v) / 3408163971420924635340761315976
β 9 \beta_{9} β 9 = = =
( − 51 ⋯ 86 ν 18 + ⋯ − 26 ⋯ 12 ) / 31 ⋯ 63 ( - 51\!\cdots\!86 \nu^{18} + \cdots - 26\!\cdots\!12 ) / 31\!\cdots\!63 ( − 5 1 ⋯ 8 6 ν 1 8 + ⋯ − 2 6 ⋯ 1 2 ) / 3 1 ⋯ 6 3
(-51299291748713484286*v^18 - 2971618345446253216796*v^16 - 115522125684383114222496*v^14 - 2482061908199442203848008*v^12 - 38700228889639615209694174*v^10 - 360800884635043262494056216*v^8 - 2348722386325341924538267728*v^6 - 5455563759135432566666593724*v^4 - 9734228925964491467928896910*v^2 - 267297924385261880778616312) / 31512722570280019189111263
β 10 \beta_{10} β 1 0 = = =
( 25 ⋯ 43 ν 19 + ⋯ + 51 ⋯ 12 ν ) / 31 ⋯ 63 ( 25\!\cdots\!43 \nu^{19} + \cdots + 51\!\cdots\!12 \nu ) / 31\!\cdots\!63 ( 2 5 ⋯ 4 3 ν 1 9 + ⋯ + 5 1 ⋯ 1 2 ν ) / 3 1 ⋯ 6 3
(25649645874356742143*v^19 + 1485809172723126608398*v^17 + 57761062842191557111248*v^15 + 1241030954099721101924004*v^13 + 19350114444819807604847087*v^11 + 180400442317521631247028108*v^9 + 1174361193162670962269133864*v^7 + 2727781879567716283333296862*v^5 + 4867114462982245733964448455*v^3 + 511801633035991170658643312*v) / 31512722570280019189111263
β 11 \beta_{11} β 1 1 = = =
( − 29 ⋯ 35 ν 18 + ⋯ − 15 ⋯ 00 ) / 85 ⋯ 94 ( - 29\!\cdots\!35 \nu^{18} + \cdots - 15\!\cdots\!00 ) / 85\!\cdots\!94 ( − 2 9 ⋯ 3 5 ν 1 8 + ⋯ − 1 5 ⋯ 0 0 ) / 8 5 ⋯ 9 4
(-2937036116960297748244235*v^18 - 170298397170271787820479136*v^16 - 6623360466449326472190597934*v^14 - 142454514877918223931574805304*v^12 - 2222737585472726186044008281054*v^10 - 20754361890727462610744594037192*v^8 - 135226512742830910349741525771123*v^6 - 315894471042598699252559507011304*v^4 - 556231533885897526319996044976720*v^2 - 15279656065420483830128222824000) / 852040992855231158835190328994
β 12 \beta_{12} β 1 2 = = =
( 27 ⋯ 95 ν 19 + ⋯ + 80 ⋯ 00 ν ) / 85 ⋯ 94 ( 27\!\cdots\!95 \nu^{19} + \cdots + 80\!\cdots\!00 \nu ) / 85\!\cdots\!94 ( 2 7 ⋯ 9 5 ν 1 9 + ⋯ + 8 0 ⋯ 0 0 ν ) / 8 5 ⋯ 9 4
(2700520294265849463234695*v^19 + 156546474632779143056580242*v^17 + 6087125257368676117694252661*v^15 + 130871939117642636727121430607*v^13 + 2041036264343183845608803874949*v^11 + 19043471630449303816740773161827*v^9 + 123903699237931404264188333464830*v^7 + 287807219803164719101008840327677*v^5 + 495620458650462601279580975333406*v^3 + 801670063676916873776916488000*v) / 852040992855231158835190328994
β 13 \beta_{13} β 1 3 = = =
( − 89 ⋯ 47 ν 18 + ⋯ − 46 ⋯ 52 ) / 85 ⋯ 94 ( - 89\!\cdots\!47 \nu^{18} + \cdots - 46\!\cdots\!52 ) / 85\!\cdots\!94 ( − 8 9 ⋯ 4 7 ν 1 8 + ⋯ − 4 6 ⋯ 5 2 ) / 8 5 ⋯ 9 4
(-8979679228274530050687947*v^18 - 520865363293914270898459920*v^16 - 20259526766220635324208842910*v^14 - 435916516064628999656379216232*v^12 - 6803210626815551372650907670710*v^10 - 63588831224967391953942209977480*v^8 - 414591758747663866596230109159499*v^6 - 974689468655396771554495810757528*v^4 - 1690281865073905248854335880365432*v^2 - 46452434299134897199190728182752) / 852040992855231158835190328994
β 14 \beta_{14} β 1 4 = = =
( − 44 ⋯ 80 ν 19 + ⋯ − 13 ⋯ 80 ν ) / 85 ⋯ 94 ( - 44\!\cdots\!80 \nu^{19} + \cdots - 13\!\cdots\!80 \nu ) / 85\!\cdots\!94 ( − 4 4 ⋯ 8 0 ν 1 9 + ⋯ − 1 3 ⋯ 8 0 ν ) / 8 5 ⋯ 9 4
(-4434308107142993448390780*v^19 - 256979745662998886151243052*v^17 - 9991484300186614420629061221*v^15 - 214759426460013284611674480987*v^13 - 3349007250240778740658442720714*v^11 - 31237639528902178480883638122087*v^9 - 203284644089762147958770437001910*v^7 - 472191635952544501272923041714567*v^5 - 823761019782892270508072678320137*v^3 - 1315261734535493701040298002880*v) / 852040992855231158835190328994
β 15 \beta_{15} β 1 5 = = =
( − 44 ⋯ 62 ν 19 + ⋯ − 93 ⋯ 68 ν ) / 85 ⋯ 94 ( - 44\!\cdots\!62 \nu^{19} + \cdots - 93\!\cdots\!68 \nu ) / 85\!\cdots\!94 ( − 4 4 ⋯ 6 2 ν 1 9 + ⋯ − 9 3 ⋯ 6 8 ν ) / 8 5 ⋯ 9 4
(-4469771526503350244614562*v^19 - 259566545340771757785399764*v^17 - 10102426761694589697872080211*v^15 - 217686701355759891625795968436*v^13 - 3401961019263634635392618270664*v^11 - 31896592342540034303005742527652*v^9 - 208749264902031000883864974315382*v^7 - 500877664938715518193880452337632*v^5 - 887952286894462239943100043733797*v^3 - 93364292279251798458398558345168*v) / 852040992855231158835190328994
β 16 \beta_{16} β 1 6 = = =
( − 19 ⋯ 27 ν 19 + ⋯ − 41 ⋯ 92 ν ) / 34 ⋯ 76 ( - 19\!\cdots\!27 \nu^{19} + \cdots - 41\!\cdots\!92 \nu ) / 34\!\cdots\!76 ( − 1 9 ⋯ 2 7 ν 1 9 + ⋯ − 4 1 ⋯ 9 2 ν ) / 3 4 ⋯ 7 6
(-19592160250229615706106327*v^19 - 1137913291949046743048616174*v^17 - 44290181293620320581489266616*v^15 - 954503444007828251438429475620*v^13 - 14918081196605720820712880077559*v^11 - 139909718796319782884046330915684*v^9 - 915856169557339469074424479713240*v^7 - 2201213034265096345384384632600302*v^5 - 3900913564775558615392949613467207*v^3 - 410161929163294558540249999540592*v) / 3408163971420924635340761315976
β 17 \beta_{17} β 1 7 = = =
( − 18 ⋯ 53 ν 19 + ⋯ − 39 ⋯ 20 ν ) / 30 ⋯ 16 ( - 18\!\cdots\!53 \nu^{19} + \cdots - 39\!\cdots\!20 \nu ) / 30\!\cdots\!16 ( − 1 8 ⋯ 5 3 ν 1 9 + ⋯ − 3 9 ⋯ 2 0 ν ) / 3 0 ⋯ 1 6
(-1898994520801735394391253*v^19 - 110294140176336440976629762*v^17 - 4292899995400296696092340672*v^15 - 92517114741164081649861235504*v^13 - 1445961465448834198317395425245*v^11 - 13561041897758148266009609849536*v^9 - 88770563742794764110995061064048*v^7 - 213372624854062585828098230482582*v^5 - 378121857063529381829342693921413*v^3 - 39757643841836499596332536304720*v) / 309833088310993148667341937816
β 18 \beta_{18} β 1 8 = = =
( − 23 ⋯ 65 ν 19 + ⋯ − 68 ⋯ 60 ν ) / 26 ⋯ 52 ( - 23\!\cdots\!65 \nu^{19} + \cdots - 68\!\cdots\!60 \nu ) / 26\!\cdots\!52 ( − 2 3 ⋯ 6 5 ν 1 9 + ⋯ − 6 8 ⋯ 6 0 ν ) / 2 6 ⋯ 5 2
(-2313107821337442413022365*v^19 - 134035777031203935072669002*v^17 - 5211182701000414789903751752*v^15 - 111999286832884019095627182132*v^13 - 1746478644092972897946604232509*v^11 - 16288422248462012183020579622036*v^9 - 106006885440275099270699633765640*v^7 - 246233047670934758557184138910722*v^5 - 430853412635289488707167472049605*v^3 - 685867464149074036976037906560*v) / 262166459340071125795443178152
β 19 \beta_{19} β 1 9 = = =
( − 36 ⋯ 45 ν 19 + ⋯ − 75 ⋯ 28 ν ) / 34 ⋯ 76 ( - 36\!\cdots\!45 \nu^{19} + \cdots - 75\!\cdots\!28 \nu ) / 34\!\cdots\!76 ( − 3 6 ⋯ 4 5 ν 1 9 + ⋯ − 7 5 ⋯ 2 8 ν ) / 3 4 ⋯ 7 6
(-36558148370540644454372845*v^19 - 2121519891324360291589131794*v^17 - 82542007510636743986434601584*v^15 - 1777141893820016475849277960336*v^13 - 27753659152330388632236828385845*v^11 - 259794146625708433586868323172144*v^9 - 1697532809954773833102366576382672*v^7 - 4037482697737829723193540488125126*v^5 - 7169577021006838039979712934760477*v^3 - 753867043140354921549310088459728*v) / 3408163971420924635340761315976
ν \nu ν = = =
( β 10 − 8 β 5 ) / 16 ( \beta_{10} - 8\beta_{5} ) / 16 ( β 1 0 − 8 β 5 ) / 1 6
(b10 - 8*b5) / 16
ν 2 \nu^{2} ν 2 = = =
( β 13 + 3 β 11 − 10 β 9 − 4 β 7 + 4 β 6 + 8 β 1 − 96 ) / 16 ( \beta_{13} + 3\beta_{11} - 10\beta_{9} - 4\beta_{7} + 4\beta_{6} + 8\beta _1 - 96 ) / 16 ( β 1 3 + 3 β 1 1 − 1 0 β 9 − 4 β 7 + 4 β 6 + 8 β 1 − 9 6 ) / 1 6
(b13 + 3*b11 - 10*b9 - 4*b7 + 4*b6 + 8*b1 - 96) / 16
ν 3 \nu^{3} ν 3 = = =
β 14 + β 12 + 20 β 5 \beta_{14} + \beta_{12} + 20\beta_{5} β 1 4 + β 1 2 + 2 0 β 5
b14 + b12 + 20*b5
ν 4 \nu^{4} ν 4 = = =
( − 27 β 13 − 77 β 11 + 190 β 9 + 256 β 7 − 96 β 6 − 8 β 4 + ⋯ − 1912 ) / 16 ( - 27 \beta_{13} - 77 \beta_{11} + 190 \beta_{9} + 256 \beta_{7} - 96 \beta_{6} - 8 \beta_{4} + \cdots - 1912 ) / 16 ( − 2 7 β 1 3 − 7 7 β 1 1 + 1 9 0 β 9 + 2 5 6 β 7 − 9 6 β 6 − 8 β 4 + ⋯ − 1 9 1 2 ) / 1 6
(-27*b13 - 77*b11 + 190*b9 + 256*b7 - 96*b6 - 8*b4 - 48*b3 - 8*b2 + 200*b1 - 1912) / 16
ν 5 \nu^{5} ν 5 = = =
( − 96 β 19 + 56 β 18 + 464 β 17 − 360 β 16 − 16 β 15 + ⋯ − 3640 β 5 ) / 16 ( - 96 \beta_{19} + 56 \beta_{18} + 464 \beta_{17} - 360 \beta_{16} - 16 \beta_{15} + \cdots - 3640 \beta_{5} ) / 16 ( − 9 6 β 1 9 + 5 6 β 1 8 + 4 6 4 β 1 7 − 3 6 0 β 1 6 − 1 6 β 1 5 + ⋯ − 3 6 4 0 β 5 ) / 1 6
(-96*b19 + 56*b18 + 464*b17 - 360*b16 - 16*b15 - 312*b14 - 248*b12 - 417*b10 + 48*b8 - 3640*b5) / 16
ν 6 \nu^{6} ν 6 = = =
50 β 4 + 244 β 3 + 100 β 2 − 627 β 1 + 5382 50\beta_{4} + 244\beta_{3} + 100\beta_{2} - 627\beta _1 + 5382 5 0 β 4 + 2 4 4 β 3 + 1 0 0 β 2 − 6 2 7 β 1 + 5 3 8 2
50*b4 + 244*b3 + 100*b2 - 627*b1 + 5382
ν 7 \nu^{7} ν 7 = = =
( 2308 β 19 + 2352 β 18 − 14380 β 17 + 12072 β 16 + 400 β 15 + ⋯ − 89088 β 5 ) / 16 ( 2308 \beta_{19} + 2352 \beta_{18} - 14380 \beta_{17} + 12072 \beta_{16} + 400 \beta_{15} + \cdots - 89088 \beta_{5} ) / 16 ( 2 3 0 8 β 1 9 + 2 3 5 2 β 1 8 − 1 4 3 8 0 β 1 7 + 1 2 0 7 2 β 1 6 + 4 0 0 β 1 5 + ⋯ − 8 9 0 8 8 β 5 ) / 1 6
(2308*b19 + 2352*b18 - 14380*b17 + 12072*b16 + 400*b15 - 9720*b14 - 6968*b12 + 9971*b10 + 2352*b8 - 89088*b5) / 16
ν 8 \nu^{8} ν 8 = = =
( 22043 β 13 + 49309 β 11 − 99710 β 9 − 272096 β 7 + 58480 β 6 + ⋯ − 1044472 ) / 16 ( 22043 \beta_{13} + 49309 \beta_{11} - 99710 \beta_{9} - 272096 \beta_{7} + 58480 \beta_{6} + \cdots - 1044472 ) / 16 ( 2 2 0 4 3 β 1 3 + 4 9 3 0 9 β 1 1 − 9 9 7 1 0 β 9 − 2 7 2 0 9 6 β 7 + 5 8 4 8 0 β 6 + ⋯ − 1 0 4 4 4 7 2 ) / 1 6
(22043*b13 + 49309*b11 - 99710*b9 - 272096*b7 + 58480*b6 - 12872*b4 - 62624*b3 - 33640*b2 + 129832*b1 - 1044472) / 16
ν 9 \nu^{9} ν 9 = = =
− 9437 β 18 + 35103 β 14 + 24057 β 12 − 10424 β 8 + 285079 β 5 -9437\beta_{18} + 35103\beta_{14} + 24057\beta_{12} - 10424\beta_{8} + 285079\beta_{5} − 9 4 3 7 β 1 8 + 3 5 1 0 3 β 1 4 + 2 4 0 5 7 β 1 2 − 1 0 4 2 4 β 8 + 2 8 5 0 7 9 β 5
-9437*b18 + 35103*b14 + 24057*b12 - 10424*b8 + 285079*b5
ν 10 \nu^{10} ν 1 0 = = =
( − 615801 β 13 − 1283595 β 11 + 2507954 β 9 + 7805924 β 7 − 1533124 β 6 + ⋯ − 26562400 ) / 16 ( - 615801 \beta_{13} - 1283595 \beta_{11} + 2507954 \beta_{9} + 7805924 \beta_{7} - 1533124 \beta_{6} + \cdots - 26562400 ) / 16 ( − 6 1 5 8 0 1 β 1 3 − 1 2 8 3 5 9 5 β 1 1 + 2 5 0 7 9 5 4 β 9 + 7 8 0 5 9 2 4 β 7 − 1 5 3 3 1 2 4 β 6 + ⋯ − 2 6 5 6 2 4 0 0 ) / 1 6
(-615801*b13 - 1283595*b11 + 2507954*b9 + 7805924*b7 - 1533124*b6 - 366272*b4 - 1846752*b3 - 1127616*b2 + 3432520*b1 - 26562400) / 16
ν 11 \nu^{11} ν 1 1 = = =
( − 1533124 β 19 + 2213024 β 18 + 11604716 β 17 − 10466664 β 16 + ⋯ − 59942496 β 5 ) / 16 ( - 1533124 \beta_{19} + 2213024 \beta_{18} + 11604716 \beta_{17} - 10466664 \beta_{16} + \cdots - 59942496 \beta_{5} ) / 16 ( − 1 5 3 3 1 2 4 β 1 9 + 2 2 1 3 0 2 4 β 1 8 + 1 1 6 0 4 7 1 6 β 1 7 − 1 0 4 6 6 6 6 4 β 1 6 + ⋯ − 5 9 9 4 2 4 9 6 β 5 ) / 1 6
(-1533124*b19 + 2213024*b18 + 11604716*b17 - 10466664*b16 + 28800*b15 - 7858568*b14 - 5279272*b12 - 6556275*b10 + 2608096*b8 - 59942496*b5) / 16
ν 12 \nu^{12} ν 1 2 = = =
1251749 β 4 + 6549550 β 3 + 4288225 β 2 − 11482965 β 1 + 86881859 1251749\beta_{4} + 6549550\beta_{3} + 4288225\beta_{2} - 11482965\beta _1 + 86881859 1 2 5 1 7 4 9 β 4 + 6 5 4 9 5 5 0 β 3 + 4 2 8 8 2 2 5 β 2 − 1 1 4 8 2 9 6 5 β 1 + 8 6 8 8 1 8 5 9
1251749*b4 + 6549550*b3 + 4288225*b2 - 11482965*b1 + 86881859
ν 13 \nu^{13} ν 1 3 = = =
( 40924864 β 19 + 62410392 β 18 − 320019760 β 17 + 293372712 β 16 + ⋯ − 1599105208 β 5 ) / 16 ( 40924864 \beta_{19} + 62410392 \beta_{18} - 320019760 \beta_{17} + 293372712 \beta_{16} + \cdots - 1599105208 \beta_{5} ) / 16 ( 4 0 9 2 4 8 6 4 β 1 9 + 6 2 4 1 0 3 9 2 β 1 8 − 3 2 0 0 1 9 7 6 0 β 1 7 + 2 9 3 3 7 2 7 1 2 β 1 6 + ⋯ − 1 5 9 9 1 0 5 2 0 8 β 5 ) / 1 6
(40924864*b19 + 62410392*b18 - 320019760*b17 + 293372712*b16 - 4263824*b15 - 216684504*b14 - 144260120*b12 + 174054337*b10 + 76688208*b8 - 1599105208*b5) / 16
ν 14 \nu^{14} ν 1 4 = = =
( 467427049 β 13 + 905490859 β 11 − 1726265554 β 9 − 6016726948 β 7 + ⋯ − 18490094320 ) / 16 ( 467427049 \beta_{13} + 905490859 \beta_{11} - 1726265554 \beta_{9} - 6016726948 \beta_{7} + \cdots - 18490094320 ) / 16 ( 4 6 7 4 2 7 0 4 9 β 1 3 + 9 0 5 4 9 0 8 5 9 β 1 1 − 1 7 2 6 2 6 5 5 5 4 β 9 − 6 0 1 6 7 2 6 9 4 8 β 7 + ⋯ − 1 8 4 9 0 0 9 4 3 2 0 ) / 1 6
(467427049*b13 + 905490859*b11 - 1726265554*b9 - 6016726948*b7 + 1102350660*b6 - 270567248*b4 - 1457747264*b3 - 993580576*b2 + 2475268568*b1 - 18490094320) / 16
ν 15 \nu^{15} ν 1 5 = = =
− 216039314 β 18 + 741487199 β 14 + 491626979 β 12 − 272595074 β 8 + 5376627464 β 5 -216039314\beta_{18} + 741487199\beta_{14} + 491626979\beta_{12} - 272595074\beta_{8} + 5376627464\beta_{5} − 2 1 6 0 3 9 3 1 4 β 1 8 + 7 4 1 4 8 7 1 9 9 β 1 4 + 4 9 1 6 2 6 9 7 9 β 1 2 − 2 7 2 5 9 5 0 7 4 β 8 + 5 3 7 6 6 2 7 4 6 4 β 5
-216039314*b18 + 741487199*b14 + 491626979*b12 - 272595074*b8 + 5376627464*b5
ν 16 \nu^{16} ν 1 6 = = =
( − 12781619355 β 13 − 24339822685 β 11 + 46237165630 β 9 + 164822253184 β 7 + ⋯ − 496493729880 ) / 16 ( - 12781619355 \beta_{13} - 24339822685 \beta_{11} + 46237165630 \beta_{9} + 164822253184 \beta_{7} + \cdots - 496493729880 ) / 16 ( − 1 2 7 8 1 6 1 9 3 5 5 β 1 3 − 2 4 3 3 9 8 2 2 6 8 5 β 1 1 + 4 6 2 3 7 1 6 5 6 3 0 β 9 + 1 6 4 8 2 2 2 5 3 1 8 4 β 7 + ⋯ − 4 9 6 4 9 3 7 2 9 8 8 0 ) / 1 6
(-12781619355*b13 - 24339822685*b11 + 46237165630*b9 + 164822253184*b7 - 29824987600*b6 - 7296454440*b4 - 40134785568*b3 - 28010070760*b2 + 66946429640*b1 - 496493729880) / 16
ν 17 \nu^{17} ν 1 7 = = =
( − 29824987600 β 19 + 47431240008 β 18 + 239065137264 β 17 + ⋯ − 1162234172216 β 5 ) / 16 ( - 29824987600 \beta_{19} + 47431240008 \beta_{18} + 239065137264 \beta_{17} + \cdots - 1162234172216 \beta_{5} ) / 16 ( − 2 9 8 2 4 9 8 7 6 0 0 β 1 9 + 4 7 4 3 1 2 4 0 0 0 8 β 1 8 + 2 3 9 0 6 5 1 3 7 2 6 4 β 1 7 + ⋯ − 1 1 6 2 2 3 4 1 7 2 2 1 6 β 5 ) / 1 6
(-29824987600*b19 + 47431240008*b18 + 239065137264*b17 - 222657311544*b16 + 6120707440*b15 - 161808909656*b14 - 107081215208*b12 - 125965214625*b10 + 60848401888*b8 - 1162234172216*b5) / 16
ν 18 \nu^{18} ν 1 8 = = =
24624841848 β 4 + 137333871144 β 3 + 97198672872 β 2 − 226799011449 β 1 + 1675208165420 24624841848\beta_{4} + 137333871144\beta_{3} + 97198672872\beta_{2} - 226799011449\beta _1 + 1675208165420 2 4 6 2 4 8 4 1 8 4 8 β 4 + 1 3 7 3 3 3 8 7 1 1 4 4 β 3 + 9 7 1 9 8 6 7 2 8 7 2 β 2 − 2 2 6 7 9 9 0 1 1 4 4 9 β 1 + 1 6 7 5 2 0 8 1 6 5 4 2 0
24624841848*b4 + 137333871144*b3 + 97198672872*b2 - 226799011449*b1 + 1675208165420
ν 19 \nu^{19} ν 1 9 = = =
( 808696678404 β 19 + 1295669703936 β 18 − 6510097881804 β 17 + ⋯ − 31482729581728 β 5 ) / 16 ( 808696678404 \beta_{19} + 1295669703936 \beta_{18} - 6510097881804 \beta_{17} + \cdots - 31482729581728 \beta_{5} ) / 16 ( 8 0 8 6 9 6 6 7 8 4 0 4 β 1 9 + 1 2 9 5 6 6 9 7 0 3 9 3 6 β 1 8 − 6 5 1 0 0 9 7 8 8 1 8 0 4 β 1 7 + ⋯ − 3 1 4 8 2 7 2 9 5 8 1 7 2 8 β 5 ) / 1 6
(808696678404*b19 + 1295669703936*b18 - 6510097881804*b17 + 6084993116808*b16 - 186593178624*b15 - 4405731499464*b14 - 2913063060744*b12 + 3409249602131*b10 + 1679261617344*b8 - 31482729581728*b5) / 16
Character values
We give the values of χ \chi χ on generators for ( Z / 464 Z ) × \left(\mathbb{Z}/464\mathbb{Z}\right)^\times ( Z / 4 6 4 Z ) × .
n n n
117 117 1 1 7
175 175 1 7 5
321 321 3 2 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 10 − 58 T 3 8 + 1108 T 3 6 − 7862 T 3 4 + 14051 T 3 2 − 728 T_{3}^{10} - 58T_{3}^{8} + 1108T_{3}^{6} - 7862T_{3}^{4} + 14051T_{3}^{2} - 728 T 3 1 0 − 5 8 T 3 8 + 1 1 0 8 T 3 6 − 7 8 6 2 T 3 4 + 1 4 0 5 1 T 3 2 − 7 2 8
T3^10 - 58*T3^8 + 1108*T3^6 - 7862*T3^4 + 14051*T3^2 - 728
acting on S 3 n e w ( 464 , [ χ ] ) S_{3}^{\mathrm{new}}(464, [\chi]) S 3 n e w ( 4 6 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 20 T^{20} T 2 0
T^20
3 3 3
( T 10 − 58 T 8 + ⋯ − 728 ) 2 (T^{10} - 58 T^{8} + \cdots - 728)^{2} ( T 1 0 − 5 8 T 8 + ⋯ − 7 2 8 ) 2
(T^10 - 58*T^8 + 1108*T^6 - 7862*T^4 + 14051*T^2 - 728)^2
5 5 5
( T 5 + 2 T 4 + ⋯ + 2062 ) 4 (T^{5} + 2 T^{4} + \cdots + 2062)^{4} ( T 5 + 2 T 4 + ⋯ + 2 0 6 2 ) 4
(T^5 + 2*T^4 - 62*T^3 - 152*T^2 + 821*T + 2062)^4
7 7 7
( T 10 + 264 T 8 + ⋯ + 28311552 ) 2 (T^{10} + 264 T^{8} + \cdots + 28311552)^{2} ( T 1 0 + 2 6 4 T 8 + ⋯ + 2 8 3 1 1 5 5 2 ) 2
(T^10 + 264*T^8 + 25488*T^6 + 1080000*T^4 + 17584128*T^2 + 28311552)^2
11 11 1 1
( T 10 − 546 T 8 + ⋯ − 1107288 ) 2 (T^{10} - 546 T^{8} + \cdots - 1107288)^{2} ( T 1 0 − 5 4 6 T 8 + ⋯ − 1 1 0 7 2 8 8 ) 2
(T^10 - 546*T^8 + 67908*T^6 - 2429406*T^4 + 5836707*T^2 - 1107288)^2
13 13 1 3
( T 5 + 4 T 4 + ⋯ − 81034 ) 4 (T^{5} + 4 T^{4} + \cdots - 81034)^{4} ( T 5 + 4 T 4 + ⋯ − 8 1 0 3 4 ) 4
(T^5 + 4*T^4 - 488*T^3 + 1646*T^2 + 29471*T - 81034)^4
17 17 1 7
( T 10 + ⋯ + 329772957696 ) 2 (T^{10} + \cdots + 329772957696)^{2} ( T 1 0 + ⋯ + 3 2 9 7 7 2 9 5 7 6 9 6 ) 2
(T^10 + 1800*T^8 + 983664*T^6 + 198806976*T^4 + 14764253184*T^2 + 329772957696)^2
19 19 1 9
( T 10 − 1332 T 8 + ⋯ − 543449088 ) 2 (T^{10} - 1332 T^{8} + \cdots - 543449088)^{2} ( T 1 0 − 1 3 3 2 T 8 + ⋯ − 5 4 3 4 4 9 0 8 8 ) 2
(T^10 - 1332*T^8 + 262656*T^6 - 17464896*T^4 + 388302336*T^2 - 543449088)^2
23 23 2 3
( T 10 + ⋯ + 9327976906752 ) 2 (T^{10} + \cdots + 9327976906752)^{2} ( T 1 0 + ⋯ + 9 3 2 7 9 7 6 9 0 6 7 5 2 ) 2
(T^10 + 3192*T^8 + 3497040*T^6 + 1506955968*T^4 + 212491468800*T^2 + 9327976906752)^2
29 29 2 9
( T 10 + ⋯ + 420707233300201 ) 2 (T^{10} + \cdots + 420707233300201)^{2} ( T 1 0 + ⋯ + 4 2 0 7 0 7 2 3 3 3 0 0 2 0 1 ) 2
(T^10 - 2*T^9 + 1845*T^8 + 18984*T^7 + 2009874*T^6 + 25583220*T^5 + 1690304034*T^4 + 13427022504*T^3 + 1097449027245*T^2 - 1000492825922*T + 420707233300201)^2
31 31 3 1
( T 10 + ⋯ − 4103194095000 ) 2 (T^{10} + \cdots - 4103194095000)^{2} ( T 1 0 + ⋯ − 4 1 0 3 1 9 4 0 9 5 0 0 0 ) 2
(T^10 - 4098*T^8 + 5583180*T^6 - 2857177854*T^4 + 390398326875*T^2 - 4103194095000)^2
37 37 3 7
( T 10 + ⋯ + 112864794771456 ) 2 (T^{10} + \cdots + 112864794771456)^{2} ( T 1 0 + ⋯ + 1 1 2 8 6 4 7 9 4 7 7 1 4 5 6 ) 2
(T^10 + 10608*T^8 + 37741824*T^6 + 53181222912*T^4 + 25106142855168*T^2 + 112864794771456)^2
41 41 4 1
( T 10 + ⋯ + 11 ⋯ 84 ) 2 (T^{10} + \cdots + 11\!\cdots\!84)^{2} ( T 1 0 + ⋯ + 1 1 ⋯ 8 4 ) 2
(T^10 + 11928*T^8 + 50850864*T^6 + 90128493504*T^4 + 57149660160000*T^2 + 11454874946371584)^2
43 43 4 3
( T 10 + ⋯ − 20067777796248 ) 2 (T^{10} + \cdots - 20067777796248)^{2} ( T 1 0 + ⋯ − 2 0 0 6 7 7 7 7 7 9 6 2 4 8 ) 2
(T^10 - 13314*T^8 + 60251412*T^6 - 100152614142*T^4 + 32982130262547*T^2 - 20067777796248)^2
47 47 4 7
( T 10 + ⋯ − 30 ⋯ 28 ) 2 (T^{10} + \cdots - 30\!\cdots\!28)^{2} ( T 1 0 + ⋯ − 3 0 ⋯ 2 8 ) 2
(T^10 - 16506*T^8 + 106380444*T^6 - 334028639574*T^4 + 509660663201019*T^2 - 301239776733314328)^2
53 53 5 3
( T 5 + 28 T 4 + ⋯ + 12881462 ) 4 (T^{5} + 28 T^{4} + \cdots + 12881462)^{4} ( T 5 + 2 8 T 4 + ⋯ + 1 2 8 8 1 4 6 2 ) 4
(T^5 + 28*T^4 - 4640*T^3 - 94906*T^2 + 1639655*T + 12881462)^4
59 59 5 9
( T 10 + ⋯ + 23 ⋯ 88 ) 2 (T^{10} + \cdots + 23\!\cdots\!88)^{2} ( T 1 0 + ⋯ + 2 3 ⋯ 8 8 ) 2
(T^10 + 20664*T^8 + 148168080*T^6 + 445015537344*T^4 + 551722442674176*T^2 + 234123454225317888)^2
61 61 6 1
( T 10 + ⋯ + 17 ⋯ 64 ) 2 (T^{10} + \cdots + 17\!\cdots\!64)^{2} ( T 1 0 + ⋯ + 1 7 ⋯ 6 4 ) 2
(T^10 + 31560*T^8 + 367430832*T^6 + 1884118292928*T^4 + 3838268675745792*T^2 + 1768090986048651264)^2
67 67 6 7
( T 10 + ⋯ + 12 ⋯ 92 ) 2 (T^{10} + \cdots + 12\!\cdots\!92)^{2} ( T 1 0 + ⋯ + 1 2 ⋯ 9 2 ) 2
(T^10 + 34608*T^8 + 414669312*T^6 + 2035035942912*T^4 + 3435332085743616*T^2 + 12056318592417792)^2
71 71 7 1
( T 10 + ⋯ + 13 ⋯ 92 ) 2 (T^{10} + \cdots + 13\!\cdots\!92)^{2} ( T 1 0 + ⋯ + 1 3 ⋯ 9 2 ) 2
(T^10 + 31776*T^8 + 318875904*T^6 + 994869964800*T^4 + 272563910737920*T^2 + 13043225321275392)^2
73 73 7 3
( T 10 + ⋯ + 22 ⋯ 04 ) 2 (T^{10} + \cdots + 22\!\cdots\!04)^{2} ( T 1 0 + ⋯ + 2 2 ⋯ 0 4 ) 2
(T^10 + 18480*T^8 + 112591872*T^6 + 237806972928*T^4 + 68583099727872*T^2 + 2217393367547904)^2
79 79 7 9
( T 10 + ⋯ − 81 ⋯ 00 ) 2 (T^{10} + \cdots - 81\!\cdots\!00)^{2} ( T 1 0 + ⋯ − 8 1 ⋯ 0 0 ) 2
(T^10 - 35322*T^8 + 331252716*T^6 - 1214881616214*T^4 + 1797249452445675*T^2 - 813323211741495000)^2
83 83 8 3
( T 10 + ⋯ + 914685545152512 ) 2 (T^{10} + \cdots + 914685545152512)^{2} ( T 1 0 + ⋯ + 9 1 4 6 8 5 5 4 5 1 5 2 5 1 2 ) 2
(T^10 + 25896*T^8 + 150735312*T^6 + 94514357952*T^4 + 17388702535680*T^2 + 914685545152512)^2
89 89 8 9
( T 10 + ⋯ + 34 ⋯ 44 ) 2 (T^{10} + \cdots + 34\!\cdots\!44)^{2} ( T 1 0 + ⋯ + 3 4 ⋯ 4 4 ) 2
(T^10 + 50520*T^8 + 819518256*T^6 + 4798767881664*T^4 + 8342183260827648*T^2 + 3426123565806649344)^2
97 97 9 7
( T 10 + ⋯ + 38 ⋯ 36 ) 2 (T^{10} + \cdots + 38\!\cdots\!36)^{2} ( T 1 0 + ⋯ + 3 8 ⋯ 3 6 ) 2
(T^10 + 49224*T^8 + 774459504*T^6 + 4140703046592*T^4 + 2656103875891200*T^2 + 38107739847131136)^2
show more
show less