Properties

Label 464.3.h.c
Level 464464
Weight 33
Character orbit 464.h
Analytic conductor 12.64312.643
Analytic rank 00
Dimension 2020
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [464,3,Mod(463,464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("464.463"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 3 3
Character orbit: [χ][\chi] == 464.h (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.643084266312.6430842663
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x20+58x18+2256x16+48540x14+757617x12+7081908x10+46200312x8++529984 x^{20} + 58 x^{18} + 2256 x^{16} + 48540 x^{14} + 757617 x^{12} + 7081908 x^{10} + 46200312 x^{8} + \cdots + 529984 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 23932 2^{39}\cdot 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ5q3β2q5β7q7+(β1+3)q9+β18q11+(β41)q13+(β8+β5)q15β15q17+(β12β5)q19++(8β18β14++11β5)q99+O(q100) q - \beta_{5} q^{3} - \beta_{2} q^{5} - \beta_{7} q^{7} + ( - \beta_1 + 3) q^{9} + \beta_{18} q^{11} + (\beta_{4} - 1) q^{13} + ( - \beta_{8} + \beta_{5}) q^{15} - \beta_{15} q^{17} + ( - \beta_{12} - \beta_{5}) q^{19}+ \cdots + ( - 8 \beta_{18} - \beta_{14} + \cdots + 11 \beta_{5}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q8q5+52q916q13+12q25+4q2996q33112q4576q49112q53+120q57+136q6552q81+O(q100) 20 q - 8 q^{5} + 52 q^{9} - 16 q^{13} + 12 q^{25} + 4 q^{29} - 96 q^{33} - 112 q^{45} - 76 q^{49} - 112 q^{53} + 120 q^{57} + 136 q^{65} - 52 q^{81}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+58x18+2256x16+48540x14+757617x12+7081908x10+46200312x8++529984 x^{20} + 58 x^{18} + 2256 x^{16} + 48540 x^{14} + 757617 x^{12} + 7081908 x^{10} + 46200312 x^{8} + \cdots + 529984 : Copy content Toggle raw display

β1\beta_{1}== (25 ⁣ ⁣57ν18++41 ⁣ ⁣12)/34 ⁣ ⁣93 ( - 25\!\cdots\!57 \nu^{18} + \cdots + 41\!\cdots\!12 ) / 34\!\cdots\!93 Copy content Toggle raw display
β2\beta_{2}== (26 ⁣ ⁣21ν18+40 ⁣ ⁣24)/93 ⁣ ⁣34 ( 26\!\cdots\!21 \nu^{18} + \cdots - 40\!\cdots\!24 ) / 93\!\cdots\!34 Copy content Toggle raw display
β3\beta_{3}== (40 ⁣ ⁣28ν18++11 ⁣ ⁣96)/93 ⁣ ⁣34 ( - 40\!\cdots\!28 \nu^{18} + \cdots + 11\!\cdots\!96 ) / 93\!\cdots\!34 Copy content Toggle raw display
β4\beta_{4}== (58 ⁣ ⁣65ν18+62 ⁣ ⁣34)/93 ⁣ ⁣34 ( 58\!\cdots\!65 \nu^{18} + \cdots - 62\!\cdots\!34 ) / 93\!\cdots\!34 Copy content Toggle raw display
β5\beta_{5}== (25 ⁣ ⁣43ν19++75 ⁣ ⁣04ν)/25 ⁣ ⁣04 ( 25\!\cdots\!43 \nu^{19} + \cdots + 75\!\cdots\!04 \nu ) / 25\!\cdots\!04 Copy content Toggle raw display
β6\beta_{6}== (30 ⁣ ⁣29ν18++15 ⁣ ⁣84)/85 ⁣ ⁣94 ( 30\!\cdots\!29 \nu^{18} + \cdots + 15\!\cdots\!84 ) / 85\!\cdots\!94 Copy content Toggle raw display
β7\beta_{7}== (68 ⁣ ⁣76ν18+35 ⁣ ⁣28)/85 ⁣ ⁣94 ( - 68\!\cdots\!76 \nu^{18} + \cdots - 35\!\cdots\!28 ) / 85\!\cdots\!94 Copy content Toggle raw display
β8\beta_{8}== (19 ⁣ ⁣67ν19++56 ⁣ ⁣96ν)/34 ⁣ ⁣76 ( 19\!\cdots\!67 \nu^{19} + \cdots + 56\!\cdots\!96 \nu ) / 34\!\cdots\!76 Copy content Toggle raw display
β9\beta_{9}== (51 ⁣ ⁣86ν18+26 ⁣ ⁣12)/31 ⁣ ⁣63 ( - 51\!\cdots\!86 \nu^{18} + \cdots - 26\!\cdots\!12 ) / 31\!\cdots\!63 Copy content Toggle raw display
β10\beta_{10}== (25 ⁣ ⁣43ν19++51 ⁣ ⁣12ν)/31 ⁣ ⁣63 ( 25\!\cdots\!43 \nu^{19} + \cdots + 51\!\cdots\!12 \nu ) / 31\!\cdots\!63 Copy content Toggle raw display
β11\beta_{11}== (29 ⁣ ⁣35ν18+15 ⁣ ⁣00)/85 ⁣ ⁣94 ( - 29\!\cdots\!35 \nu^{18} + \cdots - 15\!\cdots\!00 ) / 85\!\cdots\!94 Copy content Toggle raw display
β12\beta_{12}== (27 ⁣ ⁣95ν19++80 ⁣ ⁣00ν)/85 ⁣ ⁣94 ( 27\!\cdots\!95 \nu^{19} + \cdots + 80\!\cdots\!00 \nu ) / 85\!\cdots\!94 Copy content Toggle raw display
β13\beta_{13}== (89 ⁣ ⁣47ν18+46 ⁣ ⁣52)/85 ⁣ ⁣94 ( - 89\!\cdots\!47 \nu^{18} + \cdots - 46\!\cdots\!52 ) / 85\!\cdots\!94 Copy content Toggle raw display
β14\beta_{14}== (44 ⁣ ⁣80ν19+13 ⁣ ⁣80ν)/85 ⁣ ⁣94 ( - 44\!\cdots\!80 \nu^{19} + \cdots - 13\!\cdots\!80 \nu ) / 85\!\cdots\!94 Copy content Toggle raw display
β15\beta_{15}== (44 ⁣ ⁣62ν19+93 ⁣ ⁣68ν)/85 ⁣ ⁣94 ( - 44\!\cdots\!62 \nu^{19} + \cdots - 93\!\cdots\!68 \nu ) / 85\!\cdots\!94 Copy content Toggle raw display
β16\beta_{16}== (19 ⁣ ⁣27ν19+41 ⁣ ⁣92ν)/34 ⁣ ⁣76 ( - 19\!\cdots\!27 \nu^{19} + \cdots - 41\!\cdots\!92 \nu ) / 34\!\cdots\!76 Copy content Toggle raw display
β17\beta_{17}== (18 ⁣ ⁣53ν19+39 ⁣ ⁣20ν)/30 ⁣ ⁣16 ( - 18\!\cdots\!53 \nu^{19} + \cdots - 39\!\cdots\!20 \nu ) / 30\!\cdots\!16 Copy content Toggle raw display
β18\beta_{18}== (23 ⁣ ⁣65ν19+68 ⁣ ⁣60ν)/26 ⁣ ⁣52 ( - 23\!\cdots\!65 \nu^{19} + \cdots - 68\!\cdots\!60 \nu ) / 26\!\cdots\!52 Copy content Toggle raw display
β19\beta_{19}== (36 ⁣ ⁣45ν19+75 ⁣ ⁣28ν)/34 ⁣ ⁣76 ( - 36\!\cdots\!45 \nu^{19} + \cdots - 75\!\cdots\!28 \nu ) / 34\!\cdots\!76 Copy content Toggle raw display
ν\nu== (β108β5)/16 ( \beta_{10} - 8\beta_{5} ) / 16 Copy content Toggle raw display
ν2\nu^{2}== (β13+3β1110β94β7+4β6+8β196)/16 ( \beta_{13} + 3\beta_{11} - 10\beta_{9} - 4\beta_{7} + 4\beta_{6} + 8\beta _1 - 96 ) / 16 Copy content Toggle raw display
ν3\nu^{3}== β14+β12+20β5 \beta_{14} + \beta_{12} + 20\beta_{5} Copy content Toggle raw display
ν4\nu^{4}== (27β1377β11+190β9+256β796β68β4+1912)/16 ( - 27 \beta_{13} - 77 \beta_{11} + 190 \beta_{9} + 256 \beta_{7} - 96 \beta_{6} - 8 \beta_{4} + \cdots - 1912 ) / 16 Copy content Toggle raw display
ν5\nu^{5}== (96β19+56β18+464β17360β1616β15+3640β5)/16 ( - 96 \beta_{19} + 56 \beta_{18} + 464 \beta_{17} - 360 \beta_{16} - 16 \beta_{15} + \cdots - 3640 \beta_{5} ) / 16 Copy content Toggle raw display
ν6\nu^{6}== 50β4+244β3+100β2627β1+5382 50\beta_{4} + 244\beta_{3} + 100\beta_{2} - 627\beta _1 + 5382 Copy content Toggle raw display
ν7\nu^{7}== (2308β19+2352β1814380β17+12072β16+400β15+89088β5)/16 ( 2308 \beta_{19} + 2352 \beta_{18} - 14380 \beta_{17} + 12072 \beta_{16} + 400 \beta_{15} + \cdots - 89088 \beta_{5} ) / 16 Copy content Toggle raw display
ν8\nu^{8}== (22043β13+49309β1199710β9272096β7+58480β6+1044472)/16 ( 22043 \beta_{13} + 49309 \beta_{11} - 99710 \beta_{9} - 272096 \beta_{7} + 58480 \beta_{6} + \cdots - 1044472 ) / 16 Copy content Toggle raw display
ν9\nu^{9}== 9437β18+35103β14+24057β1210424β8+285079β5 -9437\beta_{18} + 35103\beta_{14} + 24057\beta_{12} - 10424\beta_{8} + 285079\beta_{5} Copy content Toggle raw display
ν10\nu^{10}== (615801β131283595β11+2507954β9+7805924β71533124β6+26562400)/16 ( - 615801 \beta_{13} - 1283595 \beta_{11} + 2507954 \beta_{9} + 7805924 \beta_{7} - 1533124 \beta_{6} + \cdots - 26562400 ) / 16 Copy content Toggle raw display
ν11\nu^{11}== (1533124β19+2213024β18+11604716β1710466664β16+59942496β5)/16 ( - 1533124 \beta_{19} + 2213024 \beta_{18} + 11604716 \beta_{17} - 10466664 \beta_{16} + \cdots - 59942496 \beta_{5} ) / 16 Copy content Toggle raw display
ν12\nu^{12}== 1251749β4+6549550β3+4288225β211482965β1+86881859 1251749\beta_{4} + 6549550\beta_{3} + 4288225\beta_{2} - 11482965\beta _1 + 86881859 Copy content Toggle raw display
ν13\nu^{13}== (40924864β19+62410392β18320019760β17+293372712β16+1599105208β5)/16 ( 40924864 \beta_{19} + 62410392 \beta_{18} - 320019760 \beta_{17} + 293372712 \beta_{16} + \cdots - 1599105208 \beta_{5} ) / 16 Copy content Toggle raw display
ν14\nu^{14}== (467427049β13+905490859β111726265554β96016726948β7+18490094320)/16 ( 467427049 \beta_{13} + 905490859 \beta_{11} - 1726265554 \beta_{9} - 6016726948 \beta_{7} + \cdots - 18490094320 ) / 16 Copy content Toggle raw display
ν15\nu^{15}== 216039314β18+741487199β14+491626979β12272595074β8+5376627464β5 -216039314\beta_{18} + 741487199\beta_{14} + 491626979\beta_{12} - 272595074\beta_{8} + 5376627464\beta_{5} Copy content Toggle raw display
ν16\nu^{16}== (12781619355β1324339822685β11+46237165630β9+164822253184β7+496493729880)/16 ( - 12781619355 \beta_{13} - 24339822685 \beta_{11} + 46237165630 \beta_{9} + 164822253184 \beta_{7} + \cdots - 496493729880 ) / 16 Copy content Toggle raw display
ν17\nu^{17}== (29824987600β19+47431240008β18+239065137264β17+1162234172216β5)/16 ( - 29824987600 \beta_{19} + 47431240008 \beta_{18} + 239065137264 \beta_{17} + \cdots - 1162234172216 \beta_{5} ) / 16 Copy content Toggle raw display
ν18\nu^{18}== 24624841848β4+137333871144β3+97198672872β2226799011449β1+1675208165420 24624841848\beta_{4} + 137333871144\beta_{3} + 97198672872\beta_{2} - 226799011449\beta _1 + 1675208165420 Copy content Toggle raw display
ν19\nu^{19}== (808696678404β19+1295669703936β186510097881804β17+31482729581728β5)/16 ( 808696678404 \beta_{19} + 1295669703936 \beta_{18} - 6510097881804 \beta_{17} + \cdots - 31482729581728 \beta_{5} ) / 16 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/464Z)×\left(\mathbb{Z}/464\mathbb{Z}\right)^\times.

nn 117117 175175 321321
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
463.1
−2.60639 + 4.51439i
−2.60639 4.51439i
−1.97925 3.42816i
−1.97925 + 3.42816i
−1.77151 3.06835i
−1.77151 + 3.06835i
−0.798572 1.38317i
−0.798572 + 1.38317i
−0.115536 + 0.200115i
−0.115536 0.200115i
0.115536 0.200115i
0.115536 + 0.200115i
0.798572 + 1.38317i
0.798572 1.38317i
1.77151 + 3.06835i
1.77151 3.06835i
1.97925 + 3.42816i
1.97925 3.42816i
2.60639 4.51439i
2.60639 + 4.51439i
0 −5.21277 0 −2.51799 0 9.89679i 0 18.1730 0
463.2 0 −5.21277 0 −2.51799 0 9.89679i 0 18.1730 0
463.3 0 −3.95850 0 6.81848 0 7.89420i 0 6.66973 0
463.4 0 −3.95850 0 6.81848 0 7.89420i 0 6.66973 0
463.5 0 −3.54302 0 −5.75893 0 7.46178i 0 3.55302 0
463.6 0 −3.54302 0 −5.75893 0 7.46178i 0 3.55302 0
463.7 0 −1.59714 0 −4.84550 0 1.34200i 0 −6.44913 0
463.8 0 −1.59714 0 −4.84550 0 1.34200i 0 −6.44913 0
463.9 0 −0.231073 0 4.30394 0 6.80119i 0 −8.94661 0
463.10 0 −0.231073 0 4.30394 0 6.80119i 0 −8.94661 0
463.11 0 0.231073 0 4.30394 0 6.80119i 0 −8.94661 0
463.12 0 0.231073 0 4.30394 0 6.80119i 0 −8.94661 0
463.13 0 1.59714 0 −4.84550 0 1.34200i 0 −6.44913 0
463.14 0 1.59714 0 −4.84550 0 1.34200i 0 −6.44913 0
463.15 0 3.54302 0 −5.75893 0 7.46178i 0 3.55302 0
463.16 0 3.54302 0 −5.75893 0 7.46178i 0 3.55302 0
463.17 0 3.95850 0 6.81848 0 7.89420i 0 6.66973 0
463.18 0 3.95850 0 6.81848 0 7.89420i 0 6.66973 0
463.19 0 5.21277 0 −2.51799 0 9.89679i 0 18.1730 0
463.20 0 5.21277 0 −2.51799 0 9.89679i 0 18.1730 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 463.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
29.b even 2 1 inner
116.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.3.h.c 20
4.b odd 2 1 inner 464.3.h.c 20
29.b even 2 1 inner 464.3.h.c 20
116.d odd 2 1 inner 464.3.h.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
464.3.h.c 20 1.a even 1 1 trivial
464.3.h.c 20 4.b odd 2 1 inner
464.3.h.c 20 29.b even 2 1 inner
464.3.h.c 20 116.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T31058T38+1108T367862T34+14051T32728 T_{3}^{10} - 58T_{3}^{8} + 1108T_{3}^{6} - 7862T_{3}^{4} + 14051T_{3}^{2} - 728 acting on S3new(464,[χ])S_{3}^{\mathrm{new}}(464, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 (T1058T8+728)2 (T^{10} - 58 T^{8} + \cdots - 728)^{2} Copy content Toggle raw display
55 (T5+2T4++2062)4 (T^{5} + 2 T^{4} + \cdots + 2062)^{4} Copy content Toggle raw display
77 (T10+264T8++28311552)2 (T^{10} + 264 T^{8} + \cdots + 28311552)^{2} Copy content Toggle raw display
1111 (T10546T8+1107288)2 (T^{10} - 546 T^{8} + \cdots - 1107288)^{2} Copy content Toggle raw display
1313 (T5+4T4+81034)4 (T^{5} + 4 T^{4} + \cdots - 81034)^{4} Copy content Toggle raw display
1717 (T10++329772957696)2 (T^{10} + \cdots + 329772957696)^{2} Copy content Toggle raw display
1919 (T101332T8+543449088)2 (T^{10} - 1332 T^{8} + \cdots - 543449088)^{2} Copy content Toggle raw display
2323 (T10++9327976906752)2 (T^{10} + \cdots + 9327976906752)^{2} Copy content Toggle raw display
2929 (T10++420707233300201)2 (T^{10} + \cdots + 420707233300201)^{2} Copy content Toggle raw display
3131 (T10+4103194095000)2 (T^{10} + \cdots - 4103194095000)^{2} Copy content Toggle raw display
3737 (T10++112864794771456)2 (T^{10} + \cdots + 112864794771456)^{2} Copy content Toggle raw display
4141 (T10++11 ⁣ ⁣84)2 (T^{10} + \cdots + 11\!\cdots\!84)^{2} Copy content Toggle raw display
4343 (T10+20067777796248)2 (T^{10} + \cdots - 20067777796248)^{2} Copy content Toggle raw display
4747 (T10+30 ⁣ ⁣28)2 (T^{10} + \cdots - 30\!\cdots\!28)^{2} Copy content Toggle raw display
5353 (T5+28T4++12881462)4 (T^{5} + 28 T^{4} + \cdots + 12881462)^{4} Copy content Toggle raw display
5959 (T10++23 ⁣ ⁣88)2 (T^{10} + \cdots + 23\!\cdots\!88)^{2} Copy content Toggle raw display
6161 (T10++17 ⁣ ⁣64)2 (T^{10} + \cdots + 17\!\cdots\!64)^{2} Copy content Toggle raw display
6767 (T10++12 ⁣ ⁣92)2 (T^{10} + \cdots + 12\!\cdots\!92)^{2} Copy content Toggle raw display
7171 (T10++13 ⁣ ⁣92)2 (T^{10} + \cdots + 13\!\cdots\!92)^{2} Copy content Toggle raw display
7373 (T10++22 ⁣ ⁣04)2 (T^{10} + \cdots + 22\!\cdots\!04)^{2} Copy content Toggle raw display
7979 (T10+81 ⁣ ⁣00)2 (T^{10} + \cdots - 81\!\cdots\!00)^{2} Copy content Toggle raw display
8383 (T10++914685545152512)2 (T^{10} + \cdots + 914685545152512)^{2} Copy content Toggle raw display
8989 (T10++34 ⁣ ⁣44)2 (T^{10} + \cdots + 34\!\cdots\!44)^{2} Copy content Toggle raw display
9797 (T10++38 ⁣ ⁣36)2 (T^{10} + \cdots + 38\!\cdots\!36)^{2} Copy content Toggle raw display
show more
show less