Properties

Label 4620.2.h.e.1849.5
Level $4620$
Weight $2$
Character 4620.1849
Analytic conductor $36.891$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4620,2,Mod(1849,4620)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4620.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4620, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4620.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-4,0,0,0,-14,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8908857338\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 12 x^{12} - 32 x^{11} + 86 x^{10} - 220 x^{9} + 585 x^{8} - 1536 x^{7} + \cdots + 78125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.5
Root \(-0.217835 - 2.22543i\) of defining polynomial
Character \(\chi\) \(=\) 4620.1849
Dual form 4620.2.h.e.1849.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(0.217835 - 2.22543i) q^{5} -1.00000i q^{7} -1.00000 q^{9} +1.00000 q^{11} +5.67621i q^{13} +(-2.22543 - 0.217835i) q^{15} +0.433388i q^{17} +5.87997 q^{19} -1.00000 q^{21} -7.78581i q^{23} +(-4.90510 - 0.969556i) q^{25} +1.00000i q^{27} +4.26921 q^{29} +6.65690 q^{31} -1.00000i q^{33} +(-2.22543 - 0.217835i) q^{35} +3.69831i q^{37} +5.67621 q^{39} +6.88552 q^{41} +6.40776i q^{43} +(-0.217835 + 2.22543i) q^{45} -3.94415i q^{47} -1.00000 q^{49} +0.433388 q^{51} -8.69042i q^{53} +(0.217835 - 2.22543i) q^{55} -5.87997i q^{57} -3.82395 q^{59} -11.2978 q^{61} +1.00000i q^{63} +(12.6320 + 1.23648i) q^{65} -10.6922i q^{67} -7.78581 q^{69} +10.7234 q^{71} -9.32221i q^{73} +(-0.969556 + 4.90510i) q^{75} -1.00000i q^{77} +17.1007 q^{79} +1.00000 q^{81} -0.808171i q^{83} +(0.964477 + 0.0944073i) q^{85} -4.26921i q^{87} -3.85329 q^{89} +5.67621 q^{91} -6.65690i q^{93} +(1.28086 - 13.0855i) q^{95} -1.84873i q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{5} - 14 q^{9} + 14 q^{11} + 6 q^{19} - 14 q^{21} - 8 q^{25} + 38 q^{29} + 4 q^{31} + 8 q^{39} - 12 q^{41} + 4 q^{45} - 14 q^{49} + 14 q^{51} - 4 q^{55} + 18 q^{59} - 54 q^{61} - 2 q^{65} + 26 q^{69}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4620\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(1541\) \(2311\) \(2521\) \(3697\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.217835 2.22543i 0.0974190 0.995243i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 5.67621i 1.57430i 0.616763 + 0.787149i \(0.288444\pi\)
−0.616763 + 0.787149i \(0.711556\pi\)
\(14\) 0 0
\(15\) −2.22543 0.217835i −0.574604 0.0562449i
\(16\) 0 0
\(17\) 0.433388i 0.105112i 0.998618 + 0.0525561i \(0.0167368\pi\)
−0.998618 + 0.0525561i \(0.983263\pi\)
\(18\) 0 0
\(19\) 5.87997 1.34896 0.674478 0.738295i \(-0.264369\pi\)
0.674478 + 0.738295i \(0.264369\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 7.78581i 1.62345i −0.584037 0.811727i \(-0.698528\pi\)
0.584037 0.811727i \(-0.301472\pi\)
\(24\) 0 0
\(25\) −4.90510 0.969556i −0.981019 0.193911i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.26921 0.792772 0.396386 0.918084i \(-0.370264\pi\)
0.396386 + 0.918084i \(0.370264\pi\)
\(30\) 0 0
\(31\) 6.65690 1.19561 0.597807 0.801640i \(-0.296039\pi\)
0.597807 + 0.801640i \(0.296039\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) −2.22543 0.217835i −0.376167 0.0368209i
\(36\) 0 0
\(37\) 3.69831i 0.607998i 0.952672 + 0.303999i \(0.0983220\pi\)
−0.952672 + 0.303999i \(0.901678\pi\)
\(38\) 0 0
\(39\) 5.67621 0.908921
\(40\) 0 0
\(41\) 6.88552 1.07534 0.537669 0.843156i \(-0.319305\pi\)
0.537669 + 0.843156i \(0.319305\pi\)
\(42\) 0 0
\(43\) 6.40776i 0.977174i 0.872515 + 0.488587i \(0.162488\pi\)
−0.872515 + 0.488587i \(0.837512\pi\)
\(44\) 0 0
\(45\) −0.217835 + 2.22543i −0.0324730 + 0.331748i
\(46\) 0 0
\(47\) 3.94415i 0.575314i −0.957733 0.287657i \(-0.907124\pi\)
0.957733 0.287657i \(-0.0928763\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0.433388 0.0606865
\(52\) 0 0
\(53\) 8.69042i 1.19372i −0.802345 0.596860i \(-0.796415\pi\)
0.802345 0.596860i \(-0.203585\pi\)
\(54\) 0 0
\(55\) 0.217835 2.22543i 0.0293729 0.300077i
\(56\) 0 0
\(57\) 5.87997i 0.778820i
\(58\) 0 0
\(59\) −3.82395 −0.497836 −0.248918 0.968525i \(-0.580075\pi\)
−0.248918 + 0.968525i \(0.580075\pi\)
\(60\) 0 0
\(61\) −11.2978 −1.44654 −0.723269 0.690566i \(-0.757361\pi\)
−0.723269 + 0.690566i \(0.757361\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 12.6320 + 1.23648i 1.56681 + 0.153366i
\(66\) 0 0
\(67\) 10.6922i 1.30626i −0.757248 0.653128i \(-0.773456\pi\)
0.757248 0.653128i \(-0.226544\pi\)
\(68\) 0 0
\(69\) −7.78581 −0.937302
\(70\) 0 0
\(71\) 10.7234 1.27263 0.636317 0.771428i \(-0.280457\pi\)
0.636317 + 0.771428i \(0.280457\pi\)
\(72\) 0 0
\(73\) 9.32221i 1.09108i −0.838084 0.545541i \(-0.816324\pi\)
0.838084 0.545541i \(-0.183676\pi\)
\(74\) 0 0
\(75\) −0.969556 + 4.90510i −0.111955 + 0.566392i
\(76\) 0 0
\(77\) 1.00000i 0.113961i
\(78\) 0 0
\(79\) 17.1007 1.92398 0.961989 0.273088i \(-0.0880449\pi\)
0.961989 + 0.273088i \(0.0880449\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.808171i 0.0887083i −0.999016 0.0443541i \(-0.985877\pi\)
0.999016 0.0443541i \(-0.0141230\pi\)
\(84\) 0 0
\(85\) 0.964477 + 0.0944073i 0.104612 + 0.0102399i
\(86\) 0 0
\(87\) 4.26921i 0.457707i
\(88\) 0 0
\(89\) −3.85329 −0.408448 −0.204224 0.978924i \(-0.565467\pi\)
−0.204224 + 0.978924i \(0.565467\pi\)
\(90\) 0 0
\(91\) 5.67621 0.595029
\(92\) 0 0
\(93\) 6.65690i 0.690288i
\(94\) 0 0
\(95\) 1.28086 13.0855i 0.131414 1.34254i
\(96\) 0 0
\(97\) 1.84873i 0.187710i −0.995586 0.0938550i \(-0.970081\pi\)
0.995586 0.0938550i \(-0.0299190\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 6.58942 0.655672 0.327836 0.944735i \(-0.393681\pi\)
0.327836 + 0.944735i \(0.393681\pi\)
\(102\) 0 0
\(103\) 1.81144i 0.178486i −0.996010 0.0892432i \(-0.971555\pi\)
0.996010 0.0892432i \(-0.0284448\pi\)
\(104\) 0 0
\(105\) −0.217835 + 2.22543i −0.0212586 + 0.217180i
\(106\) 0 0
\(107\) 5.76329i 0.557159i 0.960413 + 0.278579i \(0.0898635\pi\)
−0.960413 + 0.278579i \(0.910136\pi\)
\(108\) 0 0
\(109\) 11.6042 1.11148 0.555738 0.831357i \(-0.312436\pi\)
0.555738 + 0.831357i \(0.312436\pi\)
\(110\) 0 0
\(111\) 3.69831 0.351028
\(112\) 0 0
\(113\) 6.04973i 0.569111i 0.958660 + 0.284555i \(0.0918460\pi\)
−0.958660 + 0.284555i \(0.908154\pi\)
\(114\) 0 0
\(115\) −17.3268 1.69603i −1.61573 0.158155i
\(116\) 0 0
\(117\) 5.67621i 0.524766i
\(118\) 0 0
\(119\) 0.433388 0.0397287
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 6.88552i 0.620846i
\(124\) 0 0
\(125\) −3.22618 + 10.7048i −0.288559 + 0.957462i
\(126\) 0 0
\(127\) 18.4582i 1.63790i 0.573864 + 0.818950i \(0.305444\pi\)
−0.573864 + 0.818950i \(0.694556\pi\)
\(128\) 0 0
\(129\) 6.40776 0.564172
\(130\) 0 0
\(131\) −9.49331 −0.829434 −0.414717 0.909950i \(-0.636119\pi\)
−0.414717 + 0.909950i \(0.636119\pi\)
\(132\) 0 0
\(133\) 5.87997i 0.509858i
\(134\) 0 0
\(135\) 2.22543 + 0.217835i 0.191535 + 0.0187483i
\(136\) 0 0
\(137\) 12.7048i 1.08545i −0.839911 0.542724i \(-0.817393\pi\)
0.839911 0.542724i \(-0.182607\pi\)
\(138\) 0 0
\(139\) 13.0820 1.10960 0.554798 0.831985i \(-0.312795\pi\)
0.554798 + 0.831985i \(0.312795\pi\)
\(140\) 0 0
\(141\) −3.94415 −0.332158
\(142\) 0 0
\(143\) 5.67621i 0.474669i
\(144\) 0 0
\(145\) 0.929984 9.50083i 0.0772310 0.789001i
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) −7.49955 −0.614387 −0.307194 0.951647i \(-0.599390\pi\)
−0.307194 + 0.951647i \(0.599390\pi\)
\(150\) 0 0
\(151\) −20.4872 −1.66722 −0.833611 0.552352i \(-0.813730\pi\)
−0.833611 + 0.552352i \(0.813730\pi\)
\(152\) 0 0
\(153\) 0.433388i 0.0350374i
\(154\) 0 0
\(155\) 1.45011 14.8145i 0.116476 1.18993i
\(156\) 0 0
\(157\) 3.01973i 0.241001i −0.992713 0.120501i \(-0.961550\pi\)
0.992713 0.120501i \(-0.0384500\pi\)
\(158\) 0 0
\(159\) −8.69042 −0.689195
\(160\) 0 0
\(161\) −7.78581 −0.613608
\(162\) 0 0
\(163\) 12.5558i 0.983450i −0.870751 0.491725i \(-0.836367\pi\)
0.870751 0.491725i \(-0.163633\pi\)
\(164\) 0 0
\(165\) −2.22543 0.217835i −0.173250 0.0169585i
\(166\) 0 0
\(167\) 5.39426i 0.417421i −0.977978 0.208710i \(-0.933073\pi\)
0.977978 0.208710i \(-0.0669266\pi\)
\(168\) 0 0
\(169\) −19.2194 −1.47841
\(170\) 0 0
\(171\) −5.87997 −0.449652
\(172\) 0 0
\(173\) 20.5911i 1.56551i −0.622328 0.782756i \(-0.713813\pi\)
0.622328 0.782756i \(-0.286187\pi\)
\(174\) 0 0
\(175\) −0.969556 + 4.90510i −0.0732915 + 0.370790i
\(176\) 0 0
\(177\) 3.82395i 0.287426i
\(178\) 0 0
\(179\) −17.9388 −1.34081 −0.670403 0.741997i \(-0.733879\pi\)
−0.670403 + 0.741997i \(0.733879\pi\)
\(180\) 0 0
\(181\) −20.3115 −1.50974 −0.754870 0.655874i \(-0.772300\pi\)
−0.754870 + 0.655874i \(0.772300\pi\)
\(182\) 0 0
\(183\) 11.2978i 0.835159i
\(184\) 0 0
\(185\) 8.23033 + 0.805622i 0.605106 + 0.0592305i
\(186\) 0 0
\(187\) 0.433388i 0.0316925i
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −19.2708 −1.39438 −0.697192 0.716884i \(-0.745568\pi\)
−0.697192 + 0.716884i \(0.745568\pi\)
\(192\) 0 0
\(193\) 3.13322i 0.225534i 0.993621 + 0.112767i \(0.0359714\pi\)
−0.993621 + 0.112767i \(0.964029\pi\)
\(194\) 0 0
\(195\) 1.23648 12.6320i 0.0885462 0.904598i
\(196\) 0 0
\(197\) 3.76683i 0.268376i −0.990956 0.134188i \(-0.957157\pi\)
0.990956 0.134188i \(-0.0428426\pi\)
\(198\) 0 0
\(199\) −11.0146 −0.780806 −0.390403 0.920644i \(-0.627664\pi\)
−0.390403 + 0.920644i \(0.627664\pi\)
\(200\) 0 0
\(201\) −10.6922 −0.754167
\(202\) 0 0
\(203\) 4.26921i 0.299640i
\(204\) 0 0
\(205\) 1.49991 15.3233i 0.104758 1.07022i
\(206\) 0 0
\(207\) 7.78581i 0.541151i
\(208\) 0 0
\(209\) 5.87997 0.406726
\(210\) 0 0
\(211\) −23.8421 −1.64136 −0.820678 0.571391i \(-0.806404\pi\)
−0.820678 + 0.571391i \(0.806404\pi\)
\(212\) 0 0
\(213\) 10.7234i 0.734755i
\(214\) 0 0
\(215\) 14.2600 + 1.39584i 0.972526 + 0.0951953i
\(216\) 0 0
\(217\) 6.65690i 0.451900i
\(218\) 0 0
\(219\) −9.32221 −0.629936
\(220\) 0 0
\(221\) −2.46000 −0.165478
\(222\) 0 0
\(223\) 6.60520i 0.442317i 0.975238 + 0.221158i \(0.0709838\pi\)
−0.975238 + 0.221158i \(0.929016\pi\)
\(224\) 0 0
\(225\) 4.90510 + 0.969556i 0.327006 + 0.0646370i
\(226\) 0 0
\(227\) 24.9423i 1.65548i 0.561111 + 0.827741i \(0.310374\pi\)
−0.561111 + 0.827741i \(0.689626\pi\)
\(228\) 0 0
\(229\) 17.3402 1.14588 0.572938 0.819599i \(-0.305804\pi\)
0.572938 + 0.819599i \(0.305804\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) 8.80675i 0.576950i 0.957487 + 0.288475i \(0.0931482\pi\)
−0.957487 + 0.288475i \(0.906852\pi\)
\(234\) 0 0
\(235\) −8.77745 0.859176i −0.572578 0.0560465i
\(236\) 0 0
\(237\) 17.1007i 1.11081i
\(238\) 0 0
\(239\) 7.99183 0.516949 0.258474 0.966018i \(-0.416780\pi\)
0.258474 + 0.966018i \(0.416780\pi\)
\(240\) 0 0
\(241\) 19.8225 1.27688 0.638440 0.769672i \(-0.279580\pi\)
0.638440 + 0.769672i \(0.279580\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −0.217835 + 2.22543i −0.0139170 + 0.142178i
\(246\) 0 0
\(247\) 33.3759i 2.12366i
\(248\) 0 0
\(249\) −0.808171 −0.0512157
\(250\) 0 0
\(251\) 30.5388 1.92759 0.963796 0.266640i \(-0.0859135\pi\)
0.963796 + 0.266640i \(0.0859135\pi\)
\(252\) 0 0
\(253\) 7.78581i 0.489490i
\(254\) 0 0
\(255\) 0.0944073 0.964477i 0.00591202 0.0603979i
\(256\) 0 0
\(257\) 29.1537i 1.81856i −0.416190 0.909278i \(-0.636635\pi\)
0.416190 0.909278i \(-0.363365\pi\)
\(258\) 0 0
\(259\) 3.69831 0.229802
\(260\) 0 0
\(261\) −4.26921 −0.264257
\(262\) 0 0
\(263\) 0.585861i 0.0361257i −0.999837 0.0180629i \(-0.994250\pi\)
0.999837 0.0180629i \(-0.00574990\pi\)
\(264\) 0 0
\(265\) −19.3399 1.89308i −1.18804 0.116291i
\(266\) 0 0
\(267\) 3.85329i 0.235818i
\(268\) 0 0
\(269\) 6.49648 0.396097 0.198049 0.980192i \(-0.436540\pi\)
0.198049 + 0.980192i \(0.436540\pi\)
\(270\) 0 0
\(271\) −13.7204 −0.833452 −0.416726 0.909032i \(-0.636823\pi\)
−0.416726 + 0.909032i \(0.636823\pi\)
\(272\) 0 0
\(273\) 5.67621i 0.343540i
\(274\) 0 0
\(275\) −4.90510 0.969556i −0.295788 0.0584664i
\(276\) 0 0
\(277\) 6.45187i 0.387656i −0.981036 0.193828i \(-0.937910\pi\)
0.981036 0.193828i \(-0.0620903\pi\)
\(278\) 0 0
\(279\) −6.65690 −0.398538
\(280\) 0 0
\(281\) −11.0156 −0.657138 −0.328569 0.944480i \(-0.606566\pi\)
−0.328569 + 0.944480i \(0.606566\pi\)
\(282\) 0 0
\(283\) 7.45618i 0.443224i −0.975135 0.221612i \(-0.928868\pi\)
0.975135 0.221612i \(-0.0711319\pi\)
\(284\) 0 0
\(285\) −13.0855 1.28086i −0.775116 0.0758719i
\(286\) 0 0
\(287\) 6.88552i 0.406439i
\(288\) 0 0
\(289\) 16.8122 0.988951
\(290\) 0 0
\(291\) −1.84873 −0.108374
\(292\) 0 0
\(293\) 26.7720i 1.56404i 0.623254 + 0.782020i \(0.285810\pi\)
−0.623254 + 0.782020i \(0.714190\pi\)
\(294\) 0 0
\(295\) −0.832992 + 8.50994i −0.0484987 + 0.495468i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 0 0
\(299\) 44.1939 2.55580
\(300\) 0 0
\(301\) 6.40776 0.369337
\(302\) 0 0
\(303\) 6.58942i 0.378552i
\(304\) 0 0
\(305\) −2.46107 + 25.1425i −0.140920 + 1.43966i
\(306\) 0 0
\(307\) 28.1359i 1.60580i −0.596115 0.802899i \(-0.703290\pi\)
0.596115 0.802899i \(-0.296710\pi\)
\(308\) 0 0
\(309\) −1.81144 −0.103049
\(310\) 0 0
\(311\) 13.3097 0.754726 0.377363 0.926065i \(-0.376831\pi\)
0.377363 + 0.926065i \(0.376831\pi\)
\(312\) 0 0
\(313\) 6.56503i 0.371077i 0.982637 + 0.185539i \(0.0594030\pi\)
−0.982637 + 0.185539i \(0.940597\pi\)
\(314\) 0 0
\(315\) 2.22543 + 0.217835i 0.125389 + 0.0122736i
\(316\) 0 0
\(317\) 13.5458i 0.760807i −0.924821 0.380404i \(-0.875785\pi\)
0.924821 0.380404i \(-0.124215\pi\)
\(318\) 0 0
\(319\) 4.26921 0.239030
\(320\) 0 0
\(321\) 5.76329 0.321676
\(322\) 0 0
\(323\) 2.54831i 0.141792i
\(324\) 0 0
\(325\) 5.50340 27.8424i 0.305274 1.54442i
\(326\) 0 0
\(327\) 11.6042i 0.641711i
\(328\) 0 0
\(329\) −3.94415 −0.217448
\(330\) 0 0
\(331\) −22.9859 −1.26342 −0.631709 0.775206i \(-0.717646\pi\)
−0.631709 + 0.775206i \(0.717646\pi\)
\(332\) 0 0
\(333\) 3.69831i 0.202666i
\(334\) 0 0
\(335\) −23.7947 2.32913i −1.30004 0.127254i
\(336\) 0 0
\(337\) 23.7866i 1.29574i −0.761752 0.647868i \(-0.775661\pi\)
0.761752 0.647868i \(-0.224339\pi\)
\(338\) 0 0
\(339\) 6.04973 0.328576
\(340\) 0 0
\(341\) 6.65690 0.360491
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −1.69603 + 17.3268i −0.0913110 + 0.932843i
\(346\) 0 0
\(347\) 12.1023i 0.649685i −0.945768 0.324843i \(-0.894689\pi\)
0.945768 0.324843i \(-0.105311\pi\)
\(348\) 0 0
\(349\) −4.78911 −0.256355 −0.128177 0.991751i \(-0.540913\pi\)
−0.128177 + 0.991751i \(0.540913\pi\)
\(350\) 0 0
\(351\) −5.67621 −0.302974
\(352\) 0 0
\(353\) 14.3031i 0.761276i −0.924724 0.380638i \(-0.875704\pi\)
0.924724 0.380638i \(-0.124296\pi\)
\(354\) 0 0
\(355\) 2.33594 23.8642i 0.123979 1.26658i
\(356\) 0 0
\(357\) 0.433388i 0.0229373i
\(358\) 0 0
\(359\) 19.9799 1.05450 0.527250 0.849710i \(-0.323223\pi\)
0.527250 + 0.849710i \(0.323223\pi\)
\(360\) 0 0
\(361\) 15.5740 0.819684
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) −20.7459 2.03071i −1.08589 0.106292i
\(366\) 0 0
\(367\) 32.3246i 1.68733i 0.536870 + 0.843665i \(0.319607\pi\)
−0.536870 + 0.843665i \(0.680393\pi\)
\(368\) 0 0
\(369\) −6.88552 −0.358446
\(370\) 0 0
\(371\) −8.69042 −0.451184
\(372\) 0 0
\(373\) 37.0793i 1.91990i 0.280179 + 0.959948i \(0.409606\pi\)
−0.280179 + 0.959948i \(0.590394\pi\)
\(374\) 0 0
\(375\) 10.7048 + 3.22618i 0.552791 + 0.166599i
\(376\) 0 0
\(377\) 24.2329i 1.24806i
\(378\) 0 0
\(379\) 2.02571 0.104054 0.0520270 0.998646i \(-0.483432\pi\)
0.0520270 + 0.998646i \(0.483432\pi\)
\(380\) 0 0
\(381\) 18.4582 0.945642
\(382\) 0 0
\(383\) 24.5770i 1.25582i −0.778284 0.627912i \(-0.783910\pi\)
0.778284 0.627912i \(-0.216090\pi\)
\(384\) 0 0
\(385\) −2.22543 0.217835i −0.113419 0.0111019i
\(386\) 0 0
\(387\) 6.40776i 0.325725i
\(388\) 0 0
\(389\) 32.8334 1.66472 0.832361 0.554234i \(-0.186989\pi\)
0.832361 + 0.554234i \(0.186989\pi\)
\(390\) 0 0
\(391\) 3.37428 0.170645
\(392\) 0 0
\(393\) 9.49331i 0.478874i
\(394\) 0 0
\(395\) 3.72514 38.0564i 0.187432 1.91483i
\(396\) 0 0
\(397\) 22.3516i 1.12179i −0.827886 0.560896i \(-0.810457\pi\)
0.827886 0.560896i \(-0.189543\pi\)
\(398\) 0 0
\(399\) −5.87997 −0.294366
\(400\) 0 0
\(401\) 10.6097 0.529822 0.264911 0.964273i \(-0.414657\pi\)
0.264911 + 0.964273i \(0.414657\pi\)
\(402\) 0 0
\(403\) 37.7860i 1.88225i
\(404\) 0 0
\(405\) 0.217835 2.22543i 0.0108243 0.110583i
\(406\) 0 0
\(407\) 3.69831i 0.183318i
\(408\) 0 0
\(409\) −0.943231 −0.0466398 −0.0233199 0.999728i \(-0.507424\pi\)
−0.0233199 + 0.999728i \(0.507424\pi\)
\(410\) 0 0
\(411\) −12.7048 −0.626683
\(412\) 0 0
\(413\) 3.82395i 0.188164i
\(414\) 0 0
\(415\) −1.79853 0.176048i −0.0882863 0.00864187i
\(416\) 0 0
\(417\) 13.0820i 0.640626i
\(418\) 0 0
\(419\) 0.279835 0.0136708 0.00683542 0.999977i \(-0.497824\pi\)
0.00683542 + 0.999977i \(0.497824\pi\)
\(420\) 0 0
\(421\) −35.3133 −1.72106 −0.860532 0.509396i \(-0.829869\pi\)
−0.860532 + 0.509396i \(0.829869\pi\)
\(422\) 0 0
\(423\) 3.94415i 0.191771i
\(424\) 0 0
\(425\) 0.420194 2.12581i 0.0203824 0.103117i
\(426\) 0 0
\(427\) 11.2978i 0.546740i
\(428\) 0 0
\(429\) 5.67621 0.274050
\(430\) 0 0
\(431\) 1.69963 0.0818682 0.0409341 0.999162i \(-0.486967\pi\)
0.0409341 + 0.999162i \(0.486967\pi\)
\(432\) 0 0
\(433\) 20.7461i 0.996996i −0.866891 0.498498i \(-0.833885\pi\)
0.866891 0.498498i \(-0.166115\pi\)
\(434\) 0 0
\(435\) −9.50083 0.929984i −0.455530 0.0445893i
\(436\) 0 0
\(437\) 45.7803i 2.18997i
\(438\) 0 0
\(439\) −4.44320 −0.212062 −0.106031 0.994363i \(-0.533814\pi\)
−0.106031 + 0.994363i \(0.533814\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 23.9390i 1.13737i 0.822554 + 0.568687i \(0.192549\pi\)
−0.822554 + 0.568687i \(0.807451\pi\)
\(444\) 0 0
\(445\) −0.839384 + 8.57524i −0.0397906 + 0.406506i
\(446\) 0 0
\(447\) 7.49955i 0.354717i
\(448\) 0 0
\(449\) 2.77064 0.130755 0.0653774 0.997861i \(-0.479175\pi\)
0.0653774 + 0.997861i \(0.479175\pi\)
\(450\) 0 0
\(451\) 6.88552 0.324226
\(452\) 0 0
\(453\) 20.4872i 0.962571i
\(454\) 0 0
\(455\) 1.23648 12.6320i 0.0579671 0.592198i
\(456\) 0 0
\(457\) 27.1298i 1.26908i −0.772891 0.634539i \(-0.781190\pi\)
0.772891 0.634539i \(-0.218810\pi\)
\(458\) 0 0
\(459\) −0.433388 −0.0202288
\(460\) 0 0
\(461\) 18.8843 0.879529 0.439764 0.898113i \(-0.355062\pi\)
0.439764 + 0.898113i \(0.355062\pi\)
\(462\) 0 0
\(463\) 5.13620i 0.238700i 0.992852 + 0.119350i \(0.0380810\pi\)
−0.992852 + 0.119350i \(0.961919\pi\)
\(464\) 0 0
\(465\) −14.8145 1.45011i −0.687005 0.0672472i
\(466\) 0 0
\(467\) 1.76667i 0.0817515i 0.999164 + 0.0408758i \(0.0130148\pi\)
−0.999164 + 0.0408758i \(0.986985\pi\)
\(468\) 0 0
\(469\) −10.6922 −0.493718
\(470\) 0 0
\(471\) −3.01973 −0.139142
\(472\) 0 0
\(473\) 6.40776i 0.294629i
\(474\) 0 0
\(475\) −28.8418 5.70095i −1.32335 0.261578i
\(476\) 0 0
\(477\) 8.69042i 0.397907i
\(478\) 0 0
\(479\) 36.1681 1.65256 0.826281 0.563258i \(-0.190452\pi\)
0.826281 + 0.563258i \(0.190452\pi\)
\(480\) 0 0
\(481\) −20.9924 −0.957170
\(482\) 0 0
\(483\) 7.78581i 0.354267i
\(484\) 0 0
\(485\) −4.11422 0.402719i −0.186817 0.0182865i
\(486\) 0 0
\(487\) 1.65393i 0.0749468i −0.999298 0.0374734i \(-0.988069\pi\)
0.999298 0.0374734i \(-0.0119310\pi\)
\(488\) 0 0
\(489\) −12.5558 −0.567795
\(490\) 0 0
\(491\) 35.7826 1.61485 0.807424 0.589972i \(-0.200861\pi\)
0.807424 + 0.589972i \(0.200861\pi\)
\(492\) 0 0
\(493\) 1.85022i 0.0833299i
\(494\) 0 0
\(495\) −0.217835 + 2.22543i −0.00979097 + 0.100026i
\(496\) 0 0
\(497\) 10.7234i 0.481010i
\(498\) 0 0
\(499\) 36.6187 1.63928 0.819640 0.572879i \(-0.194174\pi\)
0.819640 + 0.572879i \(0.194174\pi\)
\(500\) 0 0
\(501\) −5.39426 −0.240998
\(502\) 0 0
\(503\) 27.9780i 1.24748i −0.781632 0.623739i \(-0.785613\pi\)
0.781632 0.623739i \(-0.214387\pi\)
\(504\) 0 0
\(505\) 1.43541 14.6643i 0.0638748 0.652553i
\(506\) 0 0
\(507\) 19.2194i 0.853563i
\(508\) 0 0
\(509\) −11.2545 −0.498846 −0.249423 0.968395i \(-0.580241\pi\)
−0.249423 + 0.968395i \(0.580241\pi\)
\(510\) 0 0
\(511\) −9.32221 −0.412390
\(512\) 0 0
\(513\) 5.87997i 0.259607i
\(514\) 0 0
\(515\) −4.03124 0.394596i −0.177638 0.0173880i
\(516\) 0 0
\(517\) 3.94415i 0.173464i
\(518\) 0 0
\(519\) −20.5911 −0.903849
\(520\) 0 0
\(521\) 10.7655 0.471644 0.235822 0.971796i \(-0.424222\pi\)
0.235822 + 0.971796i \(0.424222\pi\)
\(522\) 0 0
\(523\) 41.8359i 1.82935i 0.404185 + 0.914677i \(0.367555\pi\)
−0.404185 + 0.914677i \(0.632445\pi\)
\(524\) 0 0
\(525\) 4.90510 + 0.969556i 0.214076 + 0.0423149i
\(526\) 0 0
\(527\) 2.88502i 0.125674i
\(528\) 0 0
\(529\) −37.6189 −1.63560
\(530\) 0 0
\(531\) 3.82395 0.165945
\(532\) 0 0
\(533\) 39.0837i 1.69290i
\(534\) 0 0
\(535\) 12.8258 + 1.25545i 0.554509 + 0.0542778i
\(536\) 0 0
\(537\) 17.9388i 0.774115i
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 4.96464 0.213447 0.106723 0.994289i \(-0.465964\pi\)
0.106723 + 0.994289i \(0.465964\pi\)
\(542\) 0 0
\(543\) 20.3115i 0.871649i
\(544\) 0 0
\(545\) 2.52780 25.8243i 0.108279 1.10619i
\(546\) 0 0
\(547\) 17.6539i 0.754826i 0.926045 + 0.377413i \(0.123186\pi\)
−0.926045 + 0.377413i \(0.876814\pi\)
\(548\) 0 0
\(549\) 11.2978 0.482180
\(550\) 0 0
\(551\) 25.1028 1.06941
\(552\) 0 0
\(553\) 17.1007i 0.727195i
\(554\) 0 0
\(555\) 0.805622 8.23033i 0.0341968 0.349358i
\(556\) 0 0
\(557\) 23.2282i 0.984212i 0.870535 + 0.492106i \(0.163773\pi\)
−0.870535 + 0.492106i \(0.836227\pi\)
\(558\) 0 0
\(559\) −36.3718 −1.53836
\(560\) 0 0
\(561\) 0.433388 0.0182977
\(562\) 0 0
\(563\) 4.29920i 0.181190i −0.995888 0.0905949i \(-0.971123\pi\)
0.995888 0.0905949i \(-0.0288768\pi\)
\(564\) 0 0
\(565\) 13.4633 + 1.31785i 0.566404 + 0.0554422i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) −24.4765 −1.02611 −0.513054 0.858356i \(-0.671486\pi\)
−0.513054 + 0.858356i \(0.671486\pi\)
\(570\) 0 0
\(571\) −16.1177 −0.674503 −0.337252 0.941415i \(-0.609497\pi\)
−0.337252 + 0.941415i \(0.609497\pi\)
\(572\) 0 0
\(573\) 19.2708i 0.805049i
\(574\) 0 0
\(575\) −7.54878 + 38.1902i −0.314806 + 1.59264i
\(576\) 0 0
\(577\) 16.7954i 0.699202i −0.936899 0.349601i \(-0.886317\pi\)
0.936899 0.349601i \(-0.113683\pi\)
\(578\) 0 0
\(579\) 3.13322 0.130212
\(580\) 0 0
\(581\) −0.808171 −0.0335286
\(582\) 0 0
\(583\) 8.69042i 0.359920i
\(584\) 0 0
\(585\) −12.6320 1.23648i −0.522270 0.0511222i
\(586\) 0 0
\(587\) 12.2404i 0.505217i 0.967569 + 0.252608i \(0.0812884\pi\)
−0.967569 + 0.252608i \(0.918712\pi\)
\(588\) 0 0
\(589\) 39.1423 1.61283
\(590\) 0 0
\(591\) −3.76683 −0.154947
\(592\) 0 0
\(593\) 17.1341i 0.703611i −0.936073 0.351806i \(-0.885568\pi\)
0.936073 0.351806i \(-0.114432\pi\)
\(594\) 0 0
\(595\) 0.0944073 0.964477i 0.00387032 0.0395397i
\(596\) 0 0
\(597\) 11.0146i 0.450799i
\(598\) 0 0
\(599\) −5.19551 −0.212283 −0.106141 0.994351i \(-0.533850\pi\)
−0.106141 + 0.994351i \(0.533850\pi\)
\(600\) 0 0
\(601\) −16.0347 −0.654069 −0.327035 0.945012i \(-0.606049\pi\)
−0.327035 + 0.945012i \(0.606049\pi\)
\(602\) 0 0
\(603\) 10.6922i 0.435418i
\(604\) 0 0
\(605\) 0.217835 2.22543i 0.00885627 0.0904767i
\(606\) 0 0
\(607\) 15.7127i 0.637757i −0.947796 0.318879i \(-0.896694\pi\)
0.947796 0.318879i \(-0.103306\pi\)
\(608\) 0 0
\(609\) −4.26921 −0.172997
\(610\) 0 0
\(611\) 22.3879 0.905716
\(612\) 0 0
\(613\) 31.9917i 1.29213i −0.763281 0.646067i \(-0.776413\pi\)
0.763281 0.646067i \(-0.223587\pi\)
\(614\) 0 0
\(615\) −15.3233 1.49991i −0.617893 0.0604822i
\(616\) 0 0
\(617\) 27.0459i 1.08883i −0.838818 0.544413i \(-0.816753\pi\)
0.838818 0.544413i \(-0.183247\pi\)
\(618\) 0 0
\(619\) 41.5774 1.67114 0.835568 0.549386i \(-0.185139\pi\)
0.835568 + 0.549386i \(0.185139\pi\)
\(620\) 0 0
\(621\) 7.78581 0.312434
\(622\) 0 0
\(623\) 3.85329i 0.154379i
\(624\) 0 0
\(625\) 23.1199 + 9.51153i 0.924797 + 0.380461i
\(626\) 0 0
\(627\) 5.87997i 0.234823i
\(628\) 0 0
\(629\) −1.60280 −0.0639080
\(630\) 0 0
\(631\) 18.4082 0.732819 0.366410 0.930454i \(-0.380587\pi\)
0.366410 + 0.930454i \(0.380587\pi\)
\(632\) 0 0
\(633\) 23.8421i 0.947638i
\(634\) 0 0
\(635\) 41.0775 + 4.02085i 1.63011 + 0.159563i
\(636\) 0 0
\(637\) 5.67621i 0.224900i
\(638\) 0 0
\(639\) −10.7234 −0.424211
\(640\) 0 0
\(641\) −35.3955 −1.39804 −0.699020 0.715102i \(-0.746380\pi\)
−0.699020 + 0.715102i \(0.746380\pi\)
\(642\) 0 0
\(643\) 10.7233i 0.422884i −0.977391 0.211442i \(-0.932184\pi\)
0.977391 0.211442i \(-0.0678159\pi\)
\(644\) 0 0
\(645\) 1.39584 14.2600i 0.0549610 0.561488i
\(646\) 0 0
\(647\) 22.6713i 0.891299i 0.895207 + 0.445650i \(0.147027\pi\)
−0.895207 + 0.445650i \(0.852973\pi\)
\(648\) 0 0
\(649\) −3.82395 −0.150103
\(650\) 0 0
\(651\) −6.65690 −0.260904
\(652\) 0 0
\(653\) 38.2867i 1.49827i 0.662415 + 0.749137i \(0.269532\pi\)
−0.662415 + 0.749137i \(0.730468\pi\)
\(654\) 0 0
\(655\) −2.06798 + 21.1267i −0.0808026 + 0.825489i
\(656\) 0 0
\(657\) 9.32221i 0.363694i
\(658\) 0 0
\(659\) 22.6296 0.881526 0.440763 0.897624i \(-0.354708\pi\)
0.440763 + 0.897624i \(0.354708\pi\)
\(660\) 0 0
\(661\) 13.9801 0.543763 0.271881 0.962331i \(-0.412354\pi\)
0.271881 + 0.962331i \(0.412354\pi\)
\(662\) 0 0
\(663\) 2.46000i 0.0955387i
\(664\) 0 0
\(665\) −13.0855 1.28086i −0.507433 0.0496698i
\(666\) 0 0
\(667\) 33.2392i 1.28703i
\(668\) 0 0
\(669\) 6.60520 0.255372
\(670\) 0 0
\(671\) −11.2978 −0.436148
\(672\) 0 0
\(673\) 29.5356i 1.13851i −0.822160 0.569257i \(-0.807231\pi\)
0.822160 0.569257i \(-0.192769\pi\)
\(674\) 0 0
\(675\) 0.969556 4.90510i 0.0373182 0.188797i
\(676\) 0 0
\(677\) 36.1349i 1.38878i 0.719600 + 0.694388i \(0.244325\pi\)
−0.719600 + 0.694388i \(0.755675\pi\)
\(678\) 0 0
\(679\) −1.84873 −0.0709477
\(680\) 0 0
\(681\) 24.9423 0.955793
\(682\) 0 0
\(683\) 38.9588i 1.49072i 0.666663 + 0.745359i \(0.267722\pi\)
−0.666663 + 0.745359i \(0.732278\pi\)
\(684\) 0 0
\(685\) −28.2737 2.76756i −1.08028 0.105743i
\(686\) 0 0
\(687\) 17.3402i 0.661571i
\(688\) 0 0
\(689\) 49.3287 1.87927
\(690\) 0 0
\(691\) 20.5528 0.781866 0.390933 0.920419i \(-0.372152\pi\)
0.390933 + 0.920419i \(0.372152\pi\)
\(692\) 0 0
\(693\) 1.00000i 0.0379869i
\(694\) 0 0
\(695\) 2.84971 29.1130i 0.108096 1.10432i
\(696\) 0 0
\(697\) 2.98410i 0.113031i
\(698\) 0 0
\(699\) 8.80675 0.333102
\(700\) 0 0
\(701\) −41.2759 −1.55897 −0.779484 0.626422i \(-0.784519\pi\)
−0.779484 + 0.626422i \(0.784519\pi\)
\(702\) 0 0
\(703\) 21.7459i 0.820163i
\(704\) 0 0
\(705\) −0.859176 + 8.77745i −0.0323585 + 0.330578i
\(706\) 0 0
\(707\) 6.58942i 0.247821i
\(708\) 0 0
\(709\) 20.2336 0.759890 0.379945 0.925009i \(-0.375943\pi\)
0.379945 + 0.925009i \(0.375943\pi\)
\(710\) 0 0
\(711\) −17.1007 −0.641326
\(712\) 0 0
\(713\) 51.8294i 1.94103i
\(714\) 0 0
\(715\) 12.6320 + 1.23648i 0.472411 + 0.0462417i
\(716\) 0 0
\(717\) 7.99183i 0.298460i
\(718\) 0 0
\(719\) 43.4826 1.62163 0.810814 0.585304i \(-0.199025\pi\)
0.810814 + 0.585304i \(0.199025\pi\)
\(720\) 0 0
\(721\) −1.81144 −0.0674615
\(722\) 0 0
\(723\) 19.8225i 0.737207i
\(724\) 0 0
\(725\) −20.9409 4.13923i −0.777724 0.153727i
\(726\) 0 0
\(727\) 37.2464i 1.38139i 0.723145 + 0.690696i \(0.242696\pi\)
−0.723145 + 0.690696i \(0.757304\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −2.77705 −0.102713
\(732\) 0 0
\(733\) 2.22955i 0.0823502i 0.999152 + 0.0411751i \(0.0131101\pi\)
−0.999152 + 0.0411751i \(0.986890\pi\)
\(734\) 0 0
\(735\) 2.22543 + 0.217835i 0.0820863 + 0.00803498i
\(736\) 0 0
\(737\) 10.6922i 0.393851i
\(738\) 0 0
\(739\) −48.2592 −1.77524 −0.887621 0.460575i \(-0.847643\pi\)
−0.887621 + 0.460575i \(0.847643\pi\)
\(740\) 0 0
\(741\) 33.3759 1.22610
\(742\) 0 0
\(743\) 16.6812i 0.611975i 0.952036 + 0.305987i \(0.0989865\pi\)
−0.952036 + 0.305987i \(0.901013\pi\)
\(744\) 0 0
\(745\) −1.63367 + 16.6897i −0.0598530 + 0.611465i
\(746\) 0 0
\(747\) 0.808171i 0.0295694i
\(748\) 0 0
\(749\) 5.76329 0.210586
\(750\) 0 0
\(751\) −8.83634 −0.322443 −0.161221 0.986918i \(-0.551543\pi\)
−0.161221 + 0.986918i \(0.551543\pi\)
\(752\) 0 0
\(753\) 30.5388i 1.11290i
\(754\) 0 0
\(755\) −4.46283 + 45.5928i −0.162419 + 1.65929i
\(756\) 0 0
\(757\) 51.5202i 1.87253i 0.351290 + 0.936267i \(0.385743\pi\)
−0.351290 + 0.936267i \(0.614257\pi\)
\(758\) 0 0
\(759\) −7.78581 −0.282607
\(760\) 0 0
\(761\) −7.37450 −0.267325 −0.133663 0.991027i \(-0.542674\pi\)
−0.133663 + 0.991027i \(0.542674\pi\)
\(762\) 0 0
\(763\) 11.6042i 0.420099i
\(764\) 0 0
\(765\) −0.964477 0.0944073i −0.0348707 0.00341330i
\(766\) 0 0
\(767\) 21.7056i 0.783742i
\(768\) 0 0
\(769\) −22.9247 −0.826685 −0.413342 0.910576i \(-0.635639\pi\)
−0.413342 + 0.910576i \(0.635639\pi\)
\(770\) 0 0
\(771\) −29.1537 −1.04994
\(772\) 0 0
\(773\) 23.0412i 0.828733i −0.910110 0.414366i \(-0.864003\pi\)
0.910110 0.414366i \(-0.135997\pi\)
\(774\) 0 0
\(775\) −32.6527 6.45424i −1.17292 0.231843i
\(776\) 0 0
\(777\) 3.69831i 0.132676i
\(778\) 0 0
\(779\) 40.4866 1.45058
\(780\) 0 0
\(781\) 10.7234 0.383713
\(782\) 0 0
\(783\) 4.26921i 0.152569i
\(784\) 0 0
\(785\) −6.72021 0.657805i −0.239855 0.0234781i
\(786\) 0 0
\(787\) 2.28921i 0.0816014i 0.999167 + 0.0408007i \(0.0129909\pi\)
−0.999167 + 0.0408007i \(0.987009\pi\)
\(788\) 0 0
\(789\) −0.585861 −0.0208572
\(790\) 0 0
\(791\) 6.04973 0.215104
\(792\) 0 0
\(793\) 64.1289i 2.27728i
\(794\) 0 0
\(795\) −1.89308 + 19.3399i −0.0671407 + 0.685917i
\(796\) 0 0
\(797\) 28.8513i 1.02197i −0.859591 0.510983i \(-0.829282\pi\)
0.859591 0.510983i \(-0.170718\pi\)
\(798\) 0 0
\(799\) 1.70935 0.0604725
\(800\) 0 0
\(801\) 3.85329 0.136149
\(802\) 0 0
\(803\) 9.32221i 0.328973i
\(804\) 0 0
\(805\) −1.69603 + 17.3268i −0.0597770 + 0.610689i
\(806\) 0 0
\(807\) 6.49648i 0.228687i
\(808\) 0 0
\(809\) −27.6656 −0.972669 −0.486335 0.873773i \(-0.661666\pi\)
−0.486335 + 0.873773i \(0.661666\pi\)
\(810\) 0 0
\(811\) −0.216516 −0.00760290 −0.00380145 0.999993i \(-0.501210\pi\)
−0.00380145 + 0.999993i \(0.501210\pi\)
\(812\) 0 0
\(813\) 13.7204i 0.481194i
\(814\) 0 0
\(815\) −27.9422 2.73511i −0.978772 0.0958066i
\(816\) 0 0
\(817\) 37.6774i 1.31817i
\(818\) 0 0
\(819\) −5.67621 −0.198343
\(820\) 0 0
\(821\) −3.47329 −0.121218 −0.0606092 0.998162i \(-0.519304\pi\)
−0.0606092 + 0.998162i \(0.519304\pi\)
\(822\) 0 0
\(823\) 38.7760i 1.35165i 0.737063 + 0.675824i \(0.236212\pi\)
−0.737063 + 0.675824i \(0.763788\pi\)
\(824\) 0 0
\(825\) −0.969556 + 4.90510i −0.0337556 + 0.170774i
\(826\) 0 0
\(827\) 28.7546i 0.999896i 0.866056 + 0.499948i \(0.166647\pi\)
−0.866056 + 0.499948i \(0.833353\pi\)
\(828\) 0 0
\(829\) −42.4781 −1.47532 −0.737662 0.675170i \(-0.764070\pi\)
−0.737662 + 0.675170i \(0.764070\pi\)
\(830\) 0 0
\(831\) −6.45187 −0.223813
\(832\) 0 0
\(833\) 0.433388i 0.0150160i
\(834\) 0 0
\(835\) −12.0046 1.17506i −0.415435 0.0406647i
\(836\) 0 0
\(837\) 6.65690i 0.230096i
\(838\) 0 0
\(839\) 25.2866 0.872992 0.436496 0.899706i \(-0.356219\pi\)
0.436496 + 0.899706i \(0.356219\pi\)
\(840\) 0 0
\(841\) −10.7739 −0.371513
\(842\) 0 0
\(843\) 11.0156i 0.379399i
\(844\) 0 0
\(845\) −4.18666 + 42.7714i −0.144026 + 1.47138i
\(846\) 0 0
\(847\) 1.00000i 0.0343604i
\(848\) 0 0
\(849\) −7.45618 −0.255896
\(850\) 0 0
\(851\) 28.7943 0.987057
\(852\) 0 0
\(853\) 10.7215i 0.367098i −0.983011 0.183549i \(-0.941241\pi\)
0.983011 0.183549i \(-0.0587586\pi\)
\(854\) 0 0
\(855\) −1.28086 + 13.0855i −0.0438046 + 0.447513i
\(856\) 0 0
\(857\) 8.78941i 0.300240i 0.988668 + 0.150120i \(0.0479661\pi\)
−0.988668 + 0.150120i \(0.952034\pi\)
\(858\) 0 0
\(859\) 37.6204 1.28359 0.641796 0.766875i \(-0.278189\pi\)
0.641796 + 0.766875i \(0.278189\pi\)
\(860\) 0 0
\(861\) −6.88552 −0.234658
\(862\) 0 0
\(863\) 26.9014i 0.915734i 0.889021 + 0.457867i \(0.151386\pi\)
−0.889021 + 0.457867i \(0.848614\pi\)
\(864\) 0 0
\(865\) −45.8241 4.48547i −1.55807 0.152511i
\(866\) 0 0
\(867\) 16.8122i 0.570971i
\(868\) 0 0
\(869\) 17.1007 0.580101
\(870\) 0 0
\(871\) 60.6910 2.05644
\(872\) 0 0
\(873\) 1.84873i 0.0625700i
\(874\) 0 0
\(875\) 10.7048 + 3.22618i 0.361887 + 0.109065i
\(876\) 0 0
\(877\) 28.8722i 0.974944i 0.873139 + 0.487472i \(0.162081\pi\)
−0.873139 + 0.487472i \(0.837919\pi\)
\(878\) 0 0
\(879\) 26.7720 0.902999
\(880\) 0 0
\(881\) 55.8405 1.88132 0.940658 0.339356i \(-0.110209\pi\)
0.940658 + 0.339356i \(0.110209\pi\)
\(882\) 0 0
\(883\) 6.67689i 0.224695i 0.993669 + 0.112348i \(0.0358370\pi\)
−0.993669 + 0.112348i \(0.964163\pi\)
\(884\) 0 0
\(885\) 8.50994 + 0.832992i 0.286059 + 0.0280007i
\(886\) 0 0
\(887\) 17.7562i 0.596196i 0.954535 + 0.298098i \(0.0963523\pi\)
−0.954535 + 0.298098i \(0.903648\pi\)
\(888\) 0 0
\(889\) 18.4582 0.619068
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 23.1915i 0.776074i
\(894\) 0 0
\(895\) −3.90770 + 39.9215i −0.130620 + 1.33443i
\(896\) 0 0
\(897\) 44.1939i 1.47559i
\(898\) 0 0
\(899\) 28.4197 0.947849
\(900\) 0 0
\(901\) 3.76633 0.125475
\(902\) 0 0
\(903\) 6.40776i 0.213237i
\(904\) 0 0
\(905\) −4.42456 + 45.2018i −0.147077 + 1.50256i
\(906\) 0 0
\(907\) 21.6291i 0.718183i 0.933302 + 0.359091i \(0.116913\pi\)
−0.933302 + 0.359091i \(0.883087\pi\)
\(908\) 0 0
\(909\) −6.58942 −0.218557
\(910\) 0 0
\(911\) −56.2734 −1.86442 −0.932211 0.361916i \(-0.882123\pi\)
−0.932211 + 0.361916i \(0.882123\pi\)
\(912\) 0 0
\(913\) 0.808171i 0.0267465i
\(914\) 0 0
\(915\) 25.1425 + 2.46107i 0.831187 + 0.0813604i
\(916\) 0 0
\(917\) 9.49331i 0.313497i
\(918\) 0 0
\(919\) 30.8891 1.01894 0.509469 0.860489i \(-0.329842\pi\)
0.509469 + 0.860489i \(0.329842\pi\)
\(920\) 0 0
\(921\) −28.1359 −0.927108
\(922\) 0 0
\(923\) 60.8683i 2.00350i
\(924\) 0 0
\(925\) 3.58572 18.1406i 0.117898 0.596458i
\(926\) 0 0
\(927\) 1.81144i 0.0594955i
\(928\) 0 0
\(929\) −1.84255 −0.0604520 −0.0302260 0.999543i \(-0.509623\pi\)
−0.0302260 + 0.999543i \(0.509623\pi\)
\(930\) 0 0
\(931\) −5.87997 −0.192708
\(932\) 0 0
\(933\) 13.3097i 0.435741i
\(934\) 0 0
\(935\) 0.964477 + 0.0944073i 0.0315418 + 0.00308745i
\(936\) 0 0
\(937\) 53.2459i 1.73947i 0.493522 + 0.869733i \(0.335709\pi\)
−0.493522 + 0.869733i \(0.664291\pi\)
\(938\) 0 0
\(939\) 6.56503 0.214242
\(940\) 0 0
\(941\) −4.10568 −0.133841 −0.0669207 0.997758i \(-0.521317\pi\)
−0.0669207 + 0.997758i \(0.521317\pi\)
\(942\) 0 0
\(943\) 53.6093i 1.74576i
\(944\) 0 0
\(945\) 0.217835 2.22543i 0.00708619 0.0723933i
\(946\) 0 0
\(947\) 47.8953i 1.55639i 0.628025 + 0.778193i \(0.283864\pi\)
−0.628025 + 0.778193i \(0.716136\pi\)
\(948\) 0 0
\(949\) 52.9148 1.71769
\(950\) 0 0
\(951\) −13.5458 −0.439252
\(952\) 0 0
\(953\) 29.5318i 0.956628i 0.878189 + 0.478314i \(0.158752\pi\)
−0.878189 + 0.478314i \(0.841248\pi\)
\(954\) 0 0
\(955\) −4.19786 + 42.8858i −0.135840 + 1.38775i
\(956\) 0 0
\(957\) 4.26921i 0.138004i
\(958\) 0 0
\(959\) −12.7048 −0.410260
\(960\) 0 0
\(961\) 13.3143 0.429494
\(962\) 0 0
\(963\) 5.76329i 0.185720i
\(964\) 0 0
\(965\) 6.97278 + 0.682527i 0.224462 + 0.0219713i
\(966\) 0 0
\(967\) 14.7651i 0.474813i −0.971410 0.237406i \(-0.923703\pi\)
0.971410 0.237406i \(-0.0762973\pi\)
\(968\) 0 0
\(969\) 2.54831 0.0818635
\(970\) 0 0
\(971\) −57.0117 −1.82959 −0.914796 0.403916i \(-0.867649\pi\)
−0.914796 + 0.403916i \(0.867649\pi\)
\(972\) 0 0
\(973\) 13.0820i 0.419388i
\(974\) 0 0
\(975\) −27.8424 5.50340i −0.891669 0.176250i
\(976\) 0 0
\(977\) 22.0910i 0.706753i 0.935481 + 0.353377i \(0.114967\pi\)
−0.935481 + 0.353377i \(0.885033\pi\)
\(978\) 0 0
\(979\) −3.85329 −0.123152
\(980\) 0 0
\(981\) −11.6042 −0.370492
\(982\) 0 0
\(983\) 19.4362i 0.619917i 0.950750 + 0.309959i \(0.100315\pi\)
−0.950750 + 0.309959i \(0.899685\pi\)
\(984\) 0 0
\(985\) −8.38283 0.820550i −0.267099 0.0261449i
\(986\) 0 0
\(987\) 3.94415i 0.125544i
\(988\) 0 0
\(989\) 49.8896 1.58640
\(990\) 0 0
\(991\) −15.0776 −0.478957 −0.239478 0.970902i \(-0.576976\pi\)
−0.239478 + 0.970902i \(0.576976\pi\)
\(992\) 0 0
\(993\) 22.9859i 0.729435i
\(994\) 0 0
\(995\) −2.39938 + 24.5123i −0.0760653 + 0.777092i
\(996\) 0 0
\(997\) 34.4387i 1.09068i 0.838214 + 0.545342i \(0.183600\pi\)
−0.838214 + 0.545342i \(0.816400\pi\)
\(998\) 0 0
\(999\) −3.69831 −0.117009
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4620.2.h.e.1849.5 14
5.4 even 2 inner 4620.2.h.e.1849.12 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4620.2.h.e.1849.5 14 1.1 even 1 trivial
4620.2.h.e.1849.12 yes 14 5.4 even 2 inner