Properties

Label 4620.2.h.e.1849.11
Level $4620$
Weight $2$
Character 4620.1849
Analytic conductor $36.891$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4620,2,Mod(1849,4620)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4620.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4620, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4620.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-4,0,0,0,-14,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8908857338\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 12 x^{12} - 32 x^{11} + 86 x^{10} - 220 x^{9} + 585 x^{8} - 1536 x^{7} + \cdots + 78125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.11
Root \(0.151739 - 2.23091i\) of defining polynomial
Character \(\chi\) \(=\) 4620.1849
Dual form 4620.2.h.e.1849.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-0.151739 - 2.23091i) q^{5} +1.00000i q^{7} -1.00000 q^{9} +1.00000 q^{11} -3.38902i q^{13} +(2.23091 - 0.151739i) q^{15} +4.81652i q^{17} -2.96123 q^{19} -1.00000 q^{21} -2.03848i q^{23} +(-4.95395 + 0.677032i) q^{25} -1.00000i q^{27} +7.32176 q^{29} -4.29904 q^{31} +1.00000i q^{33} +(2.23091 - 0.151739i) q^{35} -6.82236i q^{37} +3.38902 q^{39} +7.50965 q^{41} +7.04690i q^{43} +(0.151739 + 2.23091i) q^{45} -10.0772i q^{47} -1.00000 q^{49} -4.81652 q^{51} -2.21412i q^{53} +(-0.151739 - 2.23091i) q^{55} -2.96123i q^{57} -3.12508 q^{59} +9.01516 q^{61} -1.00000i q^{63} +(-7.56061 + 0.514246i) q^{65} -7.88349i q^{67} +2.03848 q^{69} -12.3116 q^{71} -1.06878i q^{73} +(-0.677032 - 4.95395i) q^{75} +1.00000i q^{77} +5.81097 q^{79} +1.00000 q^{81} -5.76593i q^{83} +(10.7452 - 0.730852i) q^{85} +7.32176i q^{87} -8.49297 q^{89} +3.38902 q^{91} -4.29904i q^{93} +(0.449334 + 6.60626i) q^{95} -2.53311i q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{5} - 14 q^{9} + 14 q^{11} + 6 q^{19} - 14 q^{21} - 8 q^{25} + 38 q^{29} + 4 q^{31} + 8 q^{39} - 12 q^{41} + 4 q^{45} - 14 q^{49} + 14 q^{51} - 4 q^{55} + 18 q^{59} - 54 q^{61} - 2 q^{65} + 26 q^{69}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4620\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(1541\) \(2311\) \(2521\) \(3697\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −0.151739 2.23091i −0.0678596 0.997695i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 3.38902i 0.939946i −0.882681 0.469973i \(-0.844264\pi\)
0.882681 0.469973i \(-0.155736\pi\)
\(14\) 0 0
\(15\) 2.23091 0.151739i 0.576019 0.0391788i
\(16\) 0 0
\(17\) 4.81652i 1.16818i 0.811690 + 0.584089i \(0.198548\pi\)
−0.811690 + 0.584089i \(0.801452\pi\)
\(18\) 0 0
\(19\) −2.96123 −0.679354 −0.339677 0.940542i \(-0.610318\pi\)
−0.339677 + 0.940542i \(0.610318\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 2.03848i 0.425052i −0.977155 0.212526i \(-0.931831\pi\)
0.977155 0.212526i \(-0.0681689\pi\)
\(24\) 0 0
\(25\) −4.95395 + 0.677032i −0.990790 + 0.135406i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 7.32176 1.35962 0.679809 0.733389i \(-0.262063\pi\)
0.679809 + 0.733389i \(0.262063\pi\)
\(30\) 0 0
\(31\) −4.29904 −0.772131 −0.386065 0.922471i \(-0.626166\pi\)
−0.386065 + 0.922471i \(0.626166\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) 2.23091 0.151739i 0.377093 0.0256485i
\(36\) 0 0
\(37\) 6.82236i 1.12159i −0.827955 0.560794i \(-0.810496\pi\)
0.827955 0.560794i \(-0.189504\pi\)
\(38\) 0 0
\(39\) 3.38902 0.542678
\(40\) 0 0
\(41\) 7.50965 1.17281 0.586405 0.810018i \(-0.300543\pi\)
0.586405 + 0.810018i \(0.300543\pi\)
\(42\) 0 0
\(43\) 7.04690i 1.07464i 0.843378 + 0.537321i \(0.180564\pi\)
−0.843378 + 0.537321i \(0.819436\pi\)
\(44\) 0 0
\(45\) 0.151739 + 2.23091i 0.0226199 + 0.332565i
\(46\) 0 0
\(47\) 10.0772i 1.46991i −0.678115 0.734956i \(-0.737203\pi\)
0.678115 0.734956i \(-0.262797\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −4.81652 −0.674448
\(52\) 0 0
\(53\) 2.21412i 0.304133i −0.988370 0.152067i \(-0.951407\pi\)
0.988370 0.152067i \(-0.0485929\pi\)
\(54\) 0 0
\(55\) −0.151739 2.23091i −0.0204604 0.300816i
\(56\) 0 0
\(57\) 2.96123i 0.392225i
\(58\) 0 0
\(59\) −3.12508 −0.406851 −0.203426 0.979090i \(-0.565208\pi\)
−0.203426 + 0.979090i \(0.565208\pi\)
\(60\) 0 0
\(61\) 9.01516 1.15427 0.577136 0.816648i \(-0.304170\pi\)
0.577136 + 0.816648i \(0.304170\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) −7.56061 + 0.514246i −0.937779 + 0.0637844i
\(66\) 0 0
\(67\) 7.88349i 0.963121i −0.876413 0.481561i \(-0.840070\pi\)
0.876413 0.481561i \(-0.159930\pi\)
\(68\) 0 0
\(69\) 2.03848 0.245404
\(70\) 0 0
\(71\) −12.3116 −1.46112 −0.730560 0.682849i \(-0.760741\pi\)
−0.730560 + 0.682849i \(0.760741\pi\)
\(72\) 0 0
\(73\) 1.06878i 0.125091i −0.998042 0.0625457i \(-0.980078\pi\)
0.998042 0.0625457i \(-0.0199219\pi\)
\(74\) 0 0
\(75\) −0.677032 4.95395i −0.0781769 0.572033i
\(76\) 0 0
\(77\) 1.00000i 0.113961i
\(78\) 0 0
\(79\) 5.81097 0.653785 0.326893 0.945061i \(-0.393998\pi\)
0.326893 + 0.945061i \(0.393998\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.76593i 0.632893i −0.948610 0.316447i \(-0.897510\pi\)
0.948610 0.316447i \(-0.102490\pi\)
\(84\) 0 0
\(85\) 10.7452 0.730852i 1.16548 0.0792721i
\(86\) 0 0
\(87\) 7.32176i 0.784975i
\(88\) 0 0
\(89\) −8.49297 −0.900253 −0.450127 0.892965i \(-0.648621\pi\)
−0.450127 + 0.892965i \(0.648621\pi\)
\(90\) 0 0
\(91\) 3.38902 0.355266
\(92\) 0 0
\(93\) 4.29904i 0.445790i
\(94\) 0 0
\(95\) 0.449334 + 6.60626i 0.0461007 + 0.677788i
\(96\) 0 0
\(97\) 2.53311i 0.257198i −0.991697 0.128599i \(-0.958952\pi\)
0.991697 0.128599i \(-0.0410480\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) −18.8305 −1.87370 −0.936852 0.349726i \(-0.886275\pi\)
−0.936852 + 0.349726i \(0.886275\pi\)
\(102\) 0 0
\(103\) 0.191906i 0.0189090i 0.999955 + 0.00945451i \(0.00300951\pi\)
−0.999955 + 0.00945451i \(0.996990\pi\)
\(104\) 0 0
\(105\) 0.151739 + 2.23091i 0.0148082 + 0.217715i
\(106\) 0 0
\(107\) 13.0381i 1.26044i −0.776416 0.630221i \(-0.782964\pi\)
0.776416 0.630221i \(-0.217036\pi\)
\(108\) 0 0
\(109\) 13.7451 1.31654 0.658272 0.752780i \(-0.271288\pi\)
0.658272 + 0.752780i \(0.271288\pi\)
\(110\) 0 0
\(111\) 6.82236 0.647549
\(112\) 0 0
\(113\) 12.3484i 1.16164i 0.814033 + 0.580819i \(0.197268\pi\)
−0.814033 + 0.580819i \(0.802732\pi\)
\(114\) 0 0
\(115\) −4.54766 + 0.309316i −0.424072 + 0.0288438i
\(116\) 0 0
\(117\) 3.38902i 0.313315i
\(118\) 0 0
\(119\) −4.81652 −0.441530
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 7.50965i 0.677122i
\(124\) 0 0
\(125\) 2.26211 + 10.9491i 0.202329 + 0.979318i
\(126\) 0 0
\(127\) 17.1239i 1.51950i −0.650213 0.759752i \(-0.725321\pi\)
0.650213 0.759752i \(-0.274679\pi\)
\(128\) 0 0
\(129\) −7.04690 −0.620445
\(130\) 0 0
\(131\) −20.8886 −1.82505 −0.912523 0.409025i \(-0.865869\pi\)
−0.912523 + 0.409025i \(0.865869\pi\)
\(132\) 0 0
\(133\) 2.96123i 0.256772i
\(134\) 0 0
\(135\) −2.23091 + 0.151739i −0.192006 + 0.0130596i
\(136\) 0 0
\(137\) 12.9479i 1.10621i −0.833110 0.553107i \(-0.813442\pi\)
0.833110 0.553107i \(-0.186558\pi\)
\(138\) 0 0
\(139\) −9.33171 −0.791505 −0.395753 0.918357i \(-0.629516\pi\)
−0.395753 + 0.918357i \(0.629516\pi\)
\(140\) 0 0
\(141\) 10.0772 0.848654
\(142\) 0 0
\(143\) 3.38902i 0.283404i
\(144\) 0 0
\(145\) −1.11100 16.3342i −0.0922631 1.35648i
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) 24.2248 1.98458 0.992288 0.123951i \(-0.0395566\pi\)
0.992288 + 0.123951i \(0.0395566\pi\)
\(150\) 0 0
\(151\) −10.1828 −0.828662 −0.414331 0.910126i \(-0.635984\pi\)
−0.414331 + 0.910126i \(0.635984\pi\)
\(152\) 0 0
\(153\) 4.81652i 0.389392i
\(154\) 0 0
\(155\) 0.652331 + 9.59079i 0.0523965 + 0.770351i
\(156\) 0 0
\(157\) 10.8219i 0.863678i −0.901951 0.431839i \(-0.857865\pi\)
0.901951 0.431839i \(-0.142135\pi\)
\(158\) 0 0
\(159\) 2.21412 0.175591
\(160\) 0 0
\(161\) 2.03848 0.160654
\(162\) 0 0
\(163\) 12.9680i 1.01573i −0.861437 0.507865i \(-0.830435\pi\)
0.861437 0.507865i \(-0.169565\pi\)
\(164\) 0 0
\(165\) 2.23091 0.151739i 0.173676 0.0118128i
\(166\) 0 0
\(167\) 9.42488i 0.729319i −0.931141 0.364659i \(-0.881185\pi\)
0.931141 0.364659i \(-0.118815\pi\)
\(168\) 0 0
\(169\) 1.51453 0.116502
\(170\) 0 0
\(171\) 2.96123 0.226451
\(172\) 0 0
\(173\) 12.5524i 0.954342i −0.878810 0.477171i \(-0.841662\pi\)
0.878810 0.477171i \(-0.158338\pi\)
\(174\) 0 0
\(175\) −0.677032 4.95395i −0.0511788 0.374483i
\(176\) 0 0
\(177\) 3.12508i 0.234896i
\(178\) 0 0
\(179\) −4.77271 −0.356729 −0.178365 0.983964i \(-0.557081\pi\)
−0.178365 + 0.983964i \(0.557081\pi\)
\(180\) 0 0
\(181\) −7.11292 −0.528699 −0.264350 0.964427i \(-0.585157\pi\)
−0.264350 + 0.964427i \(0.585157\pi\)
\(182\) 0 0
\(183\) 9.01516i 0.666420i
\(184\) 0 0
\(185\) −15.2201 + 1.03522i −1.11900 + 0.0761106i
\(186\) 0 0
\(187\) 4.81652i 0.352219i
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −14.6340 −1.05888 −0.529439 0.848348i \(-0.677597\pi\)
−0.529439 + 0.848348i \(0.677597\pi\)
\(192\) 0 0
\(193\) 13.6330i 0.981328i −0.871349 0.490664i \(-0.836754\pi\)
0.871349 0.490664i \(-0.163246\pi\)
\(194\) 0 0
\(195\) −0.514246 7.56061i −0.0368259 0.541427i
\(196\) 0 0
\(197\) 0.330782i 0.0235672i −0.999931 0.0117836i \(-0.996249\pi\)
0.999931 0.0117836i \(-0.00375093\pi\)
\(198\) 0 0
\(199\) 20.1131 1.42578 0.712889 0.701277i \(-0.247387\pi\)
0.712889 + 0.701277i \(0.247387\pi\)
\(200\) 0 0
\(201\) 7.88349 0.556058
\(202\) 0 0
\(203\) 7.32176i 0.513887i
\(204\) 0 0
\(205\) −1.13950 16.7534i −0.0795864 1.17011i
\(206\) 0 0
\(207\) 2.03848i 0.141684i
\(208\) 0 0
\(209\) −2.96123 −0.204833
\(210\) 0 0
\(211\) −5.52882 −0.380619 −0.190310 0.981724i \(-0.560949\pi\)
−0.190310 + 0.981724i \(0.560949\pi\)
\(212\) 0 0
\(213\) 12.3116i 0.843578i
\(214\) 0 0
\(215\) 15.7210 1.06929i 1.07216 0.0729248i
\(216\) 0 0
\(217\) 4.29904i 0.291838i
\(218\) 0 0
\(219\) 1.06878 0.0722216
\(220\) 0 0
\(221\) 16.3233 1.09802
\(222\) 0 0
\(223\) 13.1597i 0.881242i −0.897693 0.440621i \(-0.854758\pi\)
0.897693 0.440621i \(-0.145242\pi\)
\(224\) 0 0
\(225\) 4.95395 0.677032i 0.330263 0.0451355i
\(226\) 0 0
\(227\) 12.8202i 0.850908i 0.904980 + 0.425454i \(0.139886\pi\)
−0.904980 + 0.425454i \(0.860114\pi\)
\(228\) 0 0
\(229\) 28.0550 1.85393 0.926964 0.375150i \(-0.122409\pi\)
0.926964 + 0.375150i \(0.122409\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) 26.1136i 1.71076i −0.518003 0.855379i \(-0.673324\pi\)
0.518003 0.855379i \(-0.326676\pi\)
\(234\) 0 0
\(235\) −22.4814 + 1.52910i −1.46652 + 0.0997477i
\(236\) 0 0
\(237\) 5.81097i 0.377463i
\(238\) 0 0
\(239\) −20.3797 −1.31825 −0.659126 0.752033i \(-0.729074\pi\)
−0.659126 + 0.752033i \(0.729074\pi\)
\(240\) 0 0
\(241\) −4.99845 −0.321979 −0.160989 0.986956i \(-0.551468\pi\)
−0.160989 + 0.986956i \(0.551468\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0.151739 + 2.23091i 0.00969423 + 0.142528i
\(246\) 0 0
\(247\) 10.0357i 0.638555i
\(248\) 0 0
\(249\) 5.76593 0.365401
\(250\) 0 0
\(251\) 2.67141 0.168618 0.0843091 0.996440i \(-0.473132\pi\)
0.0843091 + 0.996440i \(0.473132\pi\)
\(252\) 0 0
\(253\) 2.03848i 0.128158i
\(254\) 0 0
\(255\) 0.730852 + 10.7452i 0.0457678 + 0.672893i
\(256\) 0 0
\(257\) 28.8879i 1.80198i 0.433844 + 0.900988i \(0.357157\pi\)
−0.433844 + 0.900988i \(0.642843\pi\)
\(258\) 0 0
\(259\) 6.82236 0.423921
\(260\) 0 0
\(261\) −7.32176 −0.453206
\(262\) 0 0
\(263\) 16.2179i 1.00004i −0.866014 0.500019i \(-0.833326\pi\)
0.866014 0.500019i \(-0.166674\pi\)
\(264\) 0 0
\(265\) −4.93952 + 0.335968i −0.303432 + 0.0206384i
\(266\) 0 0
\(267\) 8.49297i 0.519762i
\(268\) 0 0
\(269\) 15.1952 0.926470 0.463235 0.886235i \(-0.346689\pi\)
0.463235 + 0.886235i \(0.346689\pi\)
\(270\) 0 0
\(271\) 5.71049 0.346888 0.173444 0.984844i \(-0.444510\pi\)
0.173444 + 0.984844i \(0.444510\pi\)
\(272\) 0 0
\(273\) 3.38902i 0.205113i
\(274\) 0 0
\(275\) −4.95395 + 0.677032i −0.298734 + 0.0408266i
\(276\) 0 0
\(277\) 12.6726i 0.761420i 0.924694 + 0.380710i \(0.124320\pi\)
−0.924694 + 0.380710i \(0.875680\pi\)
\(278\) 0 0
\(279\) 4.29904 0.257377
\(280\) 0 0
\(281\) 4.97868 0.297003 0.148502 0.988912i \(-0.452555\pi\)
0.148502 + 0.988912i \(0.452555\pi\)
\(282\) 0 0
\(283\) 0.549902i 0.0326883i −0.999866 0.0163442i \(-0.994797\pi\)
0.999866 0.0163442i \(-0.00520274\pi\)
\(284\) 0 0
\(285\) −6.60626 + 0.449334i −0.391321 + 0.0266162i
\(286\) 0 0
\(287\) 7.50965i 0.443280i
\(288\) 0 0
\(289\) −6.19885 −0.364639
\(290\) 0 0
\(291\) 2.53311 0.148493
\(292\) 0 0
\(293\) 19.5587i 1.14263i −0.820729 0.571317i \(-0.806433\pi\)
0.820729 0.571317i \(-0.193567\pi\)
\(294\) 0 0
\(295\) 0.474196 + 6.97179i 0.0276088 + 0.405914i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 0 0
\(299\) −6.90844 −0.399525
\(300\) 0 0
\(301\) −7.04690 −0.406177
\(302\) 0 0
\(303\) 18.8305i 1.08178i
\(304\) 0 0
\(305\) −1.36795 20.1120i −0.0783285 1.15161i
\(306\) 0 0
\(307\) 10.7762i 0.615031i −0.951543 0.307515i \(-0.900502\pi\)
0.951543 0.307515i \(-0.0994975\pi\)
\(308\) 0 0
\(309\) −0.191906 −0.0109171
\(310\) 0 0
\(311\) −18.3169 −1.03866 −0.519329 0.854574i \(-0.673818\pi\)
−0.519329 + 0.854574i \(0.673818\pi\)
\(312\) 0 0
\(313\) 0.863241i 0.0487933i 0.999702 + 0.0243966i \(0.00776646\pi\)
−0.999702 + 0.0243966i \(0.992234\pi\)
\(314\) 0 0
\(315\) −2.23091 + 0.151739i −0.125698 + 0.00854951i
\(316\) 0 0
\(317\) 2.76184i 0.155121i 0.996988 + 0.0775603i \(0.0247130\pi\)
−0.996988 + 0.0775603i \(0.975287\pi\)
\(318\) 0 0
\(319\) 7.32176 0.409940
\(320\) 0 0
\(321\) 13.0381 0.727716
\(322\) 0 0
\(323\) 14.2628i 0.793606i
\(324\) 0 0
\(325\) 2.29448 + 16.7890i 0.127275 + 0.931289i
\(326\) 0 0
\(327\) 13.7451i 0.760107i
\(328\) 0 0
\(329\) 10.0772 0.555574
\(330\) 0 0
\(331\) 32.7451 1.79983 0.899916 0.436064i \(-0.143628\pi\)
0.899916 + 0.436064i \(0.143628\pi\)
\(332\) 0 0
\(333\) 6.82236i 0.373863i
\(334\) 0 0
\(335\) −17.5874 + 1.19623i −0.960901 + 0.0653570i
\(336\) 0 0
\(337\) 9.07475i 0.494333i 0.968973 + 0.247167i \(0.0794995\pi\)
−0.968973 + 0.247167i \(0.920500\pi\)
\(338\) 0 0
\(339\) −12.3484 −0.670672
\(340\) 0 0
\(341\) −4.29904 −0.232806
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −0.309316 4.54766i −0.0166530 0.244838i
\(346\) 0 0
\(347\) 29.9947i 1.61020i 0.593138 + 0.805100i \(0.297889\pi\)
−0.593138 + 0.805100i \(0.702111\pi\)
\(348\) 0 0
\(349\) 8.98598 0.481009 0.240504 0.970648i \(-0.422687\pi\)
0.240504 + 0.970648i \(0.422687\pi\)
\(350\) 0 0
\(351\) −3.38902 −0.180893
\(352\) 0 0
\(353\) 10.4164i 0.554408i −0.960811 0.277204i \(-0.910592\pi\)
0.960811 0.277204i \(-0.0894078\pi\)
\(354\) 0 0
\(355\) 1.86815 + 27.4661i 0.0991510 + 1.45775i
\(356\) 0 0
\(357\) 4.81652i 0.254917i
\(358\) 0 0
\(359\) −17.4454 −0.920735 −0.460367 0.887728i \(-0.652282\pi\)
−0.460367 + 0.887728i \(0.652282\pi\)
\(360\) 0 0
\(361\) −10.2311 −0.538479
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) −2.38436 + 0.162176i −0.124803 + 0.00848866i
\(366\) 0 0
\(367\) 3.53828i 0.184697i −0.995727 0.0923484i \(-0.970563\pi\)
0.995727 0.0923484i \(-0.0294374\pi\)
\(368\) 0 0
\(369\) −7.50965 −0.390937
\(370\) 0 0
\(371\) 2.21412 0.114952
\(372\) 0 0
\(373\) 14.0779i 0.728925i −0.931218 0.364463i \(-0.881253\pi\)
0.931218 0.364463i \(-0.118747\pi\)
\(374\) 0 0
\(375\) −10.9491 + 2.26211i −0.565409 + 0.116815i
\(376\) 0 0
\(377\) 24.8136i 1.27797i
\(378\) 0 0
\(379\) 32.0475 1.64617 0.823085 0.567918i \(-0.192251\pi\)
0.823085 + 0.567918i \(0.192251\pi\)
\(380\) 0 0
\(381\) 17.1239 0.877286
\(382\) 0 0
\(383\) 22.3390i 1.14147i 0.821135 + 0.570734i \(0.193341\pi\)
−0.821135 + 0.570734i \(0.806659\pi\)
\(384\) 0 0
\(385\) 2.23091 0.151739i 0.113698 0.00773332i
\(386\) 0 0
\(387\) 7.04690i 0.358214i
\(388\) 0 0
\(389\) −3.74503 −0.189881 −0.0949404 0.995483i \(-0.530266\pi\)
−0.0949404 + 0.995483i \(0.530266\pi\)
\(390\) 0 0
\(391\) 9.81836 0.496536
\(392\) 0 0
\(393\) 20.8886i 1.05369i
\(394\) 0 0
\(395\) −0.881750 12.9638i −0.0443656 0.652278i
\(396\) 0 0
\(397\) 32.7965i 1.64601i −0.568036 0.823004i \(-0.692297\pi\)
0.568036 0.823004i \(-0.307703\pi\)
\(398\) 0 0
\(399\) 2.96123 0.148247
\(400\) 0 0
\(401\) −23.5449 −1.17578 −0.587889 0.808942i \(-0.700041\pi\)
−0.587889 + 0.808942i \(0.700041\pi\)
\(402\) 0 0
\(403\) 14.5695i 0.725761i
\(404\) 0 0
\(405\) −0.151739 2.23091i −0.00753996 0.110855i
\(406\) 0 0
\(407\) 6.82236i 0.338172i
\(408\) 0 0
\(409\) −17.2005 −0.850509 −0.425254 0.905074i \(-0.639815\pi\)
−0.425254 + 0.905074i \(0.639815\pi\)
\(410\) 0 0
\(411\) 12.9479 0.638673
\(412\) 0 0
\(413\) 3.12508i 0.153775i
\(414\) 0 0
\(415\) −12.8633 + 0.874915i −0.631434 + 0.0429479i
\(416\) 0 0
\(417\) 9.33171i 0.456976i
\(418\) 0 0
\(419\) −13.8627 −0.677236 −0.338618 0.940924i \(-0.609959\pi\)
−0.338618 + 0.940924i \(0.609959\pi\)
\(420\) 0 0
\(421\) 6.27285 0.305720 0.152860 0.988248i \(-0.451152\pi\)
0.152860 + 0.988248i \(0.451152\pi\)
\(422\) 0 0
\(423\) 10.0772i 0.489971i
\(424\) 0 0
\(425\) −3.26094 23.8608i −0.158179 1.15742i
\(426\) 0 0
\(427\) 9.01516i 0.436274i
\(428\) 0 0
\(429\) 3.38902 0.163624
\(430\) 0 0
\(431\) 19.6629 0.947129 0.473565 0.880759i \(-0.342967\pi\)
0.473565 + 0.880759i \(0.342967\pi\)
\(432\) 0 0
\(433\) 10.8292i 0.520420i −0.965552 0.260210i \(-0.916208\pi\)
0.965552 0.260210i \(-0.0837918\pi\)
\(434\) 0 0
\(435\) 16.3342 1.11100i 0.783166 0.0532681i
\(436\) 0 0
\(437\) 6.03640i 0.288760i
\(438\) 0 0
\(439\) 8.12495 0.387783 0.193891 0.981023i \(-0.437889\pi\)
0.193891 + 0.981023i \(0.437889\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 22.8005i 1.08328i 0.840610 + 0.541641i \(0.182197\pi\)
−0.840610 + 0.541641i \(0.817803\pi\)
\(444\) 0 0
\(445\) 1.28871 + 18.9471i 0.0610909 + 0.898178i
\(446\) 0 0
\(447\) 24.2248i 1.14580i
\(448\) 0 0
\(449\) 15.8095 0.746095 0.373047 0.927812i \(-0.378313\pi\)
0.373047 + 0.927812i \(0.378313\pi\)
\(450\) 0 0
\(451\) 7.50965 0.353615
\(452\) 0 0
\(453\) 10.1828i 0.478428i
\(454\) 0 0
\(455\) −0.514246 7.56061i −0.0241082 0.354447i
\(456\) 0 0
\(457\) 12.6199i 0.590334i 0.955446 + 0.295167i \(0.0953753\pi\)
−0.955446 + 0.295167i \(0.904625\pi\)
\(458\) 0 0
\(459\) 4.81652 0.224816
\(460\) 0 0
\(461\) −2.77071 −0.129045 −0.0645224 0.997916i \(-0.520552\pi\)
−0.0645224 + 0.997916i \(0.520552\pi\)
\(462\) 0 0
\(463\) 34.1613i 1.58761i −0.608172 0.793805i \(-0.708097\pi\)
0.608172 0.793805i \(-0.291903\pi\)
\(464\) 0 0
\(465\) −9.59079 + 0.652331i −0.444762 + 0.0302511i
\(466\) 0 0
\(467\) 19.8327i 0.917750i −0.888501 0.458875i \(-0.848253\pi\)
0.888501 0.458875i \(-0.151747\pi\)
\(468\) 0 0
\(469\) 7.88349 0.364026
\(470\) 0 0
\(471\) 10.8219 0.498645
\(472\) 0 0
\(473\) 7.04690i 0.324017i
\(474\) 0 0
\(475\) 14.6698 2.00485i 0.673097 0.0919888i
\(476\) 0 0
\(477\) 2.21412i 0.101378i
\(478\) 0 0
\(479\) 10.4343 0.476757 0.238379 0.971172i \(-0.423384\pi\)
0.238379 + 0.971172i \(0.423384\pi\)
\(480\) 0 0
\(481\) −23.1211 −1.05423
\(482\) 0 0
\(483\) 2.03848i 0.0927538i
\(484\) 0 0
\(485\) −5.65115 + 0.384371i −0.256605 + 0.0174534i
\(486\) 0 0
\(487\) 10.8586i 0.492051i 0.969263 + 0.246026i \(0.0791247\pi\)
−0.969263 + 0.246026i \(0.920875\pi\)
\(488\) 0 0
\(489\) 12.9680 0.586432
\(490\) 0 0
\(491\) 28.5156 1.28689 0.643446 0.765491i \(-0.277504\pi\)
0.643446 + 0.765491i \(0.277504\pi\)
\(492\) 0 0
\(493\) 35.2654i 1.58827i
\(494\) 0 0
\(495\) 0.151739 + 2.23091i 0.00682015 + 0.100272i
\(496\) 0 0
\(497\) 12.3116i 0.552251i
\(498\) 0 0
\(499\) 18.8229 0.842628 0.421314 0.906915i \(-0.361569\pi\)
0.421314 + 0.906915i \(0.361569\pi\)
\(500\) 0 0
\(501\) 9.42488 0.421072
\(502\) 0 0
\(503\) 16.8546i 0.751508i 0.926719 + 0.375754i \(0.122616\pi\)
−0.926719 + 0.375754i \(0.877384\pi\)
\(504\) 0 0
\(505\) 2.85731 + 42.0092i 0.127149 + 1.86938i
\(506\) 0 0
\(507\) 1.51453i 0.0672627i
\(508\) 0 0
\(509\) −31.1638 −1.38131 −0.690655 0.723184i \(-0.742678\pi\)
−0.690655 + 0.723184i \(0.742678\pi\)
\(510\) 0 0
\(511\) 1.06878 0.0472801
\(512\) 0 0
\(513\) 2.96123i 0.130742i
\(514\) 0 0
\(515\) 0.428125 0.0291195i 0.0188654 0.00128316i
\(516\) 0 0
\(517\) 10.0772i 0.443195i
\(518\) 0 0
\(519\) 12.5524 0.550990
\(520\) 0 0
\(521\) −13.9556 −0.611405 −0.305702 0.952127i \(-0.598891\pi\)
−0.305702 + 0.952127i \(0.598891\pi\)
\(522\) 0 0
\(523\) 12.9192i 0.564916i 0.959280 + 0.282458i \(0.0911498\pi\)
−0.959280 + 0.282458i \(0.908850\pi\)
\(524\) 0 0
\(525\) 4.95395 0.677032i 0.216208 0.0295481i
\(526\) 0 0
\(527\) 20.7064i 0.901985i
\(528\) 0 0
\(529\) 18.8446 0.819331
\(530\) 0 0
\(531\) 3.12508 0.135617
\(532\) 0 0
\(533\) 25.4504i 1.10238i
\(534\) 0 0
\(535\) −29.0869 + 1.97839i −1.25754 + 0.0855331i
\(536\) 0 0
\(537\) 4.77271i 0.205958i
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −7.41829 −0.318937 −0.159469 0.987203i \(-0.550978\pi\)
−0.159469 + 0.987203i \(0.550978\pi\)
\(542\) 0 0
\(543\) 7.11292i 0.305245i
\(544\) 0 0
\(545\) −2.08567 30.6642i −0.0893401 1.31351i
\(546\) 0 0
\(547\) 17.9007i 0.765379i −0.923877 0.382690i \(-0.874998\pi\)
0.923877 0.382690i \(-0.125002\pi\)
\(548\) 0 0
\(549\) −9.01516 −0.384758
\(550\) 0 0
\(551\) −21.6815 −0.923661
\(552\) 0 0
\(553\) 5.81097i 0.247108i
\(554\) 0 0
\(555\) −1.03522 15.2201i −0.0439425 0.646057i
\(556\) 0 0
\(557\) 6.19444i 0.262467i −0.991351 0.131233i \(-0.958106\pi\)
0.991351 0.131233i \(-0.0418937\pi\)
\(558\) 0 0
\(559\) 23.8821 1.01011
\(560\) 0 0
\(561\) −4.81652 −0.203354
\(562\) 0 0
\(563\) 20.7997i 0.876603i −0.898828 0.438301i \(-0.855580\pi\)
0.898828 0.438301i \(-0.144420\pi\)
\(564\) 0 0
\(565\) 27.5482 1.87373i 1.15896 0.0788283i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) −3.40101 −0.142578 −0.0712889 0.997456i \(-0.522711\pi\)
−0.0712889 + 0.997456i \(0.522711\pi\)
\(570\) 0 0
\(571\) 21.7365 0.909644 0.454822 0.890582i \(-0.349703\pi\)
0.454822 + 0.890582i \(0.349703\pi\)
\(572\) 0 0
\(573\) 14.6340i 0.611343i
\(574\) 0 0
\(575\) 1.38011 + 10.0985i 0.0575547 + 0.421137i
\(576\) 0 0
\(577\) 4.37074i 0.181956i 0.995853 + 0.0909781i \(0.0289993\pi\)
−0.995853 + 0.0909781i \(0.971001\pi\)
\(578\) 0 0
\(579\) 13.6330 0.566570
\(580\) 0 0
\(581\) 5.76593 0.239211
\(582\) 0 0
\(583\) 2.21412i 0.0916997i
\(584\) 0 0
\(585\) 7.56061 0.514246i 0.312593 0.0212615i
\(586\) 0 0
\(587\) 25.8142i 1.06547i 0.846283 + 0.532733i \(0.178835\pi\)
−0.846283 + 0.532733i \(0.821165\pi\)
\(588\) 0 0
\(589\) 12.7305 0.524550
\(590\) 0 0
\(591\) 0.330782 0.0136066
\(592\) 0 0
\(593\) 33.8908i 1.39173i −0.718174 0.695864i \(-0.755022\pi\)
0.718174 0.695864i \(-0.244978\pi\)
\(594\) 0 0
\(595\) 0.730852 + 10.7452i 0.0299620 + 0.440512i
\(596\) 0 0
\(597\) 20.1131i 0.823173i
\(598\) 0 0
\(599\) 33.2287 1.35769 0.678843 0.734283i \(-0.262481\pi\)
0.678843 + 0.734283i \(0.262481\pi\)
\(600\) 0 0
\(601\) 16.3536 0.667076 0.333538 0.942737i \(-0.391758\pi\)
0.333538 + 0.942737i \(0.391758\pi\)
\(602\) 0 0
\(603\) 7.88349i 0.321040i
\(604\) 0 0
\(605\) −0.151739 2.23091i −0.00616906 0.0906995i
\(606\) 0 0
\(607\) 31.9496i 1.29680i 0.761301 + 0.648398i \(0.224561\pi\)
−0.761301 + 0.648398i \(0.775439\pi\)
\(608\) 0 0
\(609\) −7.32176 −0.296693
\(610\) 0 0
\(611\) −34.1519 −1.38164
\(612\) 0 0
\(613\) 1.93598i 0.0781935i 0.999235 + 0.0390968i \(0.0124481\pi\)
−0.999235 + 0.0390968i \(0.987552\pi\)
\(614\) 0 0
\(615\) 16.7534 1.13950i 0.675561 0.0459492i
\(616\) 0 0
\(617\) 16.8681i 0.679086i 0.940591 + 0.339543i \(0.110272\pi\)
−0.940591 + 0.339543i \(0.889728\pi\)
\(618\) 0 0
\(619\) −10.3947 −0.417798 −0.208899 0.977937i \(-0.566988\pi\)
−0.208899 + 0.977937i \(0.566988\pi\)
\(620\) 0 0
\(621\) −2.03848 −0.0818012
\(622\) 0 0
\(623\) 8.49297i 0.340264i
\(624\) 0 0
\(625\) 24.0833 6.70797i 0.963330 0.268319i
\(626\) 0 0
\(627\) 2.96123i 0.118260i
\(628\) 0 0
\(629\) 32.8600 1.31021
\(630\) 0 0
\(631\) −25.0492 −0.997192 −0.498596 0.866835i \(-0.666151\pi\)
−0.498596 + 0.866835i \(0.666151\pi\)
\(632\) 0 0
\(633\) 5.52882i 0.219751i
\(634\) 0 0
\(635\) −38.2020 + 2.59836i −1.51600 + 0.103113i
\(636\) 0 0
\(637\) 3.38902i 0.134278i
\(638\) 0 0
\(639\) 12.3116 0.487040
\(640\) 0 0
\(641\) 27.0840 1.06975 0.534877 0.844930i \(-0.320358\pi\)
0.534877 + 0.844930i \(0.320358\pi\)
\(642\) 0 0
\(643\) 46.7234i 1.84259i 0.388861 + 0.921296i \(0.372869\pi\)
−0.388861 + 0.921296i \(0.627131\pi\)
\(644\) 0 0
\(645\) 1.06929 + 15.7210i 0.0421032 + 0.619015i
\(646\) 0 0
\(647\) 8.15802i 0.320725i −0.987058 0.160362i \(-0.948734\pi\)
0.987058 0.160362i \(-0.0512663\pi\)
\(648\) 0 0
\(649\) −3.12508 −0.122670
\(650\) 0 0
\(651\) 4.29904 0.168493
\(652\) 0 0
\(653\) 45.7326i 1.78965i 0.446412 + 0.894827i \(0.352701\pi\)
−0.446412 + 0.894827i \(0.647299\pi\)
\(654\) 0 0
\(655\) 3.16961 + 46.6007i 0.123847 + 1.82084i
\(656\) 0 0
\(657\) 1.06878i 0.0416972i
\(658\) 0 0
\(659\) −14.9934 −0.584061 −0.292030 0.956409i \(-0.594331\pi\)
−0.292030 + 0.956409i \(0.594331\pi\)
\(660\) 0 0
\(661\) −8.73743 −0.339847 −0.169923 0.985457i \(-0.554352\pi\)
−0.169923 + 0.985457i \(0.554352\pi\)
\(662\) 0 0
\(663\) 16.3233i 0.633944i
\(664\) 0 0
\(665\) −6.60626 + 0.449334i −0.256180 + 0.0174244i
\(666\) 0 0
\(667\) 14.9252i 0.577907i
\(668\) 0 0
\(669\) 13.1597 0.508785
\(670\) 0 0
\(671\) 9.01516 0.348026
\(672\) 0 0
\(673\) 13.2701i 0.511526i 0.966740 + 0.255763i \(0.0823266\pi\)
−0.966740 + 0.255763i \(0.917673\pi\)
\(674\) 0 0
\(675\) 0.677032 + 4.95395i 0.0260590 + 0.190678i
\(676\) 0 0
\(677\) 8.89896i 0.342015i 0.985270 + 0.171007i \(0.0547022\pi\)
−0.985270 + 0.171007i \(0.945298\pi\)
\(678\) 0 0
\(679\) 2.53311 0.0972118
\(680\) 0 0
\(681\) −12.8202 −0.491272
\(682\) 0 0
\(683\) 15.4081i 0.589573i −0.955563 0.294787i \(-0.904751\pi\)
0.955563 0.294787i \(-0.0952486\pi\)
\(684\) 0 0
\(685\) −28.8856 + 1.96470i −1.10366 + 0.0750673i
\(686\) 0 0
\(687\) 28.0550i 1.07037i
\(688\) 0 0
\(689\) −7.50372 −0.285869
\(690\) 0 0
\(691\) −39.1277 −1.48849 −0.744244 0.667908i \(-0.767190\pi\)
−0.744244 + 0.667908i \(0.767190\pi\)
\(692\) 0 0
\(693\) 1.00000i 0.0379869i
\(694\) 0 0
\(695\) 1.41598 + 20.8182i 0.0537113 + 0.789681i
\(696\) 0 0
\(697\) 36.1704i 1.37005i
\(698\) 0 0
\(699\) 26.1136 0.987707
\(700\) 0 0
\(701\) −22.4261 −0.847023 −0.423511 0.905891i \(-0.639203\pi\)
−0.423511 + 0.905891i \(0.639203\pi\)
\(702\) 0 0
\(703\) 20.2026i 0.761955i
\(704\) 0 0
\(705\) −1.52910 22.4814i −0.0575893 0.846698i
\(706\) 0 0
\(707\) 18.8305i 0.708193i
\(708\) 0 0
\(709\) −23.7547 −0.892127 −0.446063 0.895001i \(-0.647174\pi\)
−0.446063 + 0.895001i \(0.647174\pi\)
\(710\) 0 0
\(711\) −5.81097 −0.217928
\(712\) 0 0
\(713\) 8.76349i 0.328195i
\(714\) 0 0
\(715\) −7.56061 + 0.514246i −0.282751 + 0.0192317i
\(716\) 0 0
\(717\) 20.3797i 0.761093i
\(718\) 0 0
\(719\) −12.8015 −0.477417 −0.238709 0.971091i \(-0.576724\pi\)
−0.238709 + 0.971091i \(0.576724\pi\)
\(720\) 0 0
\(721\) −0.191906 −0.00714694
\(722\) 0 0
\(723\) 4.99845i 0.185894i
\(724\) 0 0
\(725\) −36.2717 + 4.95707i −1.34710 + 0.184101i
\(726\) 0 0
\(727\) 50.6012i 1.87670i −0.345692 0.938348i \(-0.612356\pi\)
0.345692 0.938348i \(-0.387644\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −33.9415 −1.25537
\(732\) 0 0
\(733\) 41.1552i 1.52010i 0.649863 + 0.760052i \(0.274826\pi\)
−0.649863 + 0.760052i \(0.725174\pi\)
\(734\) 0 0
\(735\) −2.23091 + 0.151739i −0.0822885 + 0.00559697i
\(736\) 0 0
\(737\) 7.88349i 0.290392i
\(738\) 0 0
\(739\) 50.0765 1.84210 0.921048 0.389450i \(-0.127335\pi\)
0.921048 + 0.389450i \(0.127335\pi\)
\(740\) 0 0
\(741\) −10.0357 −0.368670
\(742\) 0 0
\(743\) 28.8228i 1.05741i 0.848806 + 0.528704i \(0.177322\pi\)
−0.848806 + 0.528704i \(0.822678\pi\)
\(744\) 0 0
\(745\) −3.67585 54.0435i −0.134673 1.98000i
\(746\) 0 0
\(747\) 5.76593i 0.210964i
\(748\) 0 0
\(749\) 13.0381 0.476402
\(750\) 0 0
\(751\) −12.1268 −0.442513 −0.221257 0.975216i \(-0.571016\pi\)
−0.221257 + 0.975216i \(0.571016\pi\)
\(752\) 0 0
\(753\) 2.67141i 0.0973517i
\(754\) 0 0
\(755\) 1.54512 + 22.7169i 0.0562327 + 0.826751i
\(756\) 0 0
\(757\) 8.63104i 0.313700i −0.987622 0.156850i \(-0.949866\pi\)
0.987622 0.156850i \(-0.0501340\pi\)
\(758\) 0 0
\(759\) 2.03848 0.0739920
\(760\) 0 0
\(761\) 5.78831 0.209826 0.104913 0.994481i \(-0.466544\pi\)
0.104913 + 0.994481i \(0.466544\pi\)
\(762\) 0 0
\(763\) 13.7451i 0.497607i
\(764\) 0 0
\(765\) −10.7452 + 0.730852i −0.388495 + 0.0264240i
\(766\) 0 0
\(767\) 10.5910i 0.382418i
\(768\) 0 0
\(769\) −43.9440 −1.58466 −0.792331 0.610091i \(-0.791133\pi\)
−0.792331 + 0.610091i \(0.791133\pi\)
\(770\) 0 0
\(771\) −28.8879 −1.04037
\(772\) 0 0
\(773\) 8.30909i 0.298857i −0.988773 0.149429i \(-0.952257\pi\)
0.988773 0.149429i \(-0.0477434\pi\)
\(774\) 0 0
\(775\) 21.2972 2.91059i 0.765019 0.104551i
\(776\) 0 0
\(777\) 6.82236i 0.244751i
\(778\) 0 0
\(779\) −22.2378 −0.796752
\(780\) 0 0
\(781\) −12.3116 −0.440544
\(782\) 0 0
\(783\) 7.32176i 0.261658i
\(784\) 0 0
\(785\) −24.1426 + 1.64209i −0.861687 + 0.0586089i
\(786\) 0 0
\(787\) 13.1652i 0.469288i 0.972081 + 0.234644i \(0.0753924\pi\)
−0.972081 + 0.234644i \(0.924608\pi\)
\(788\) 0 0
\(789\) 16.2179 0.577372
\(790\) 0 0
\(791\) −12.3484 −0.439058
\(792\) 0 0
\(793\) 30.5526i 1.08495i
\(794\) 0 0
\(795\) −0.335968 4.93952i −0.0119156 0.175187i
\(796\) 0 0
\(797\) 1.24357i 0.0440495i 0.999757 + 0.0220248i \(0.00701127\pi\)
−0.999757 + 0.0220248i \(0.992989\pi\)
\(798\) 0 0
\(799\) 48.5371 1.71712
\(800\) 0 0
\(801\) 8.49297 0.300084
\(802\) 0 0
\(803\) 1.06878i 0.0377165i
\(804\) 0 0
\(805\) −0.309316 4.54766i −0.0109019 0.160284i
\(806\) 0 0
\(807\) 15.1952i 0.534898i
\(808\) 0 0
\(809\) −40.9417 −1.43943 −0.719716 0.694268i \(-0.755728\pi\)
−0.719716 + 0.694268i \(0.755728\pi\)
\(810\) 0 0
\(811\) −43.9307 −1.54262 −0.771308 0.636463i \(-0.780397\pi\)
−0.771308 + 0.636463i \(0.780397\pi\)
\(812\) 0 0
\(813\) 5.71049i 0.200276i
\(814\) 0 0
\(815\) −28.9304 + 1.96774i −1.01339 + 0.0689270i
\(816\) 0 0
\(817\) 20.8675i 0.730062i
\(818\) 0 0
\(819\) −3.38902 −0.118422
\(820\) 0 0
\(821\) −39.7766 −1.38821 −0.694106 0.719872i \(-0.744200\pi\)
−0.694106 + 0.719872i \(0.744200\pi\)
\(822\) 0 0
\(823\) 38.4688i 1.34094i −0.741938 0.670468i \(-0.766093\pi\)
0.741938 0.670468i \(-0.233907\pi\)
\(824\) 0 0
\(825\) −0.677032 4.95395i −0.0235712 0.172474i
\(826\) 0 0
\(827\) 46.7428i 1.62541i 0.582678 + 0.812703i \(0.302005\pi\)
−0.582678 + 0.812703i \(0.697995\pi\)
\(828\) 0 0
\(829\) −47.1386 −1.63719 −0.818595 0.574371i \(-0.805247\pi\)
−0.818595 + 0.574371i \(0.805247\pi\)
\(830\) 0 0
\(831\) −12.6726 −0.439606
\(832\) 0 0
\(833\) 4.81652i 0.166882i
\(834\) 0 0
\(835\) −21.0261 + 1.43012i −0.727638 + 0.0494913i
\(836\) 0 0
\(837\) 4.29904i 0.148597i
\(838\) 0 0
\(839\) 37.9005 1.30847 0.654235 0.756291i \(-0.272991\pi\)
0.654235 + 0.756291i \(0.272991\pi\)
\(840\) 0 0
\(841\) 24.6082 0.848559
\(842\) 0 0
\(843\) 4.97868i 0.171475i
\(844\) 0 0
\(845\) −0.229813 3.37879i −0.00790581 0.116234i
\(846\) 0 0
\(847\) 1.00000i 0.0343604i
\(848\) 0 0
\(849\) 0.549902 0.0188726
\(850\) 0 0
\(851\) −13.9072 −0.476733
\(852\) 0 0
\(853\) 0.240696i 0.00824129i 0.999992 + 0.00412064i \(0.00131165\pi\)
−0.999992 + 0.00412064i \(0.998688\pi\)
\(854\) 0 0
\(855\) −0.449334 6.60626i −0.0153669 0.225929i
\(856\) 0 0
\(857\) 22.8751i 0.781399i 0.920518 + 0.390699i \(0.127767\pi\)
−0.920518 + 0.390699i \(0.872233\pi\)
\(858\) 0 0
\(859\) −28.8705 −0.985047 −0.492524 0.870299i \(-0.663925\pi\)
−0.492524 + 0.870299i \(0.663925\pi\)
\(860\) 0 0
\(861\) −7.50965 −0.255928
\(862\) 0 0
\(863\) 32.7619i 1.11523i 0.830100 + 0.557615i \(0.188283\pi\)
−0.830100 + 0.557615i \(0.811717\pi\)
\(864\) 0 0
\(865\) −28.0033 + 1.90469i −0.952142 + 0.0647613i
\(866\) 0 0
\(867\) 6.19885i 0.210524i
\(868\) 0 0
\(869\) 5.81097 0.197124
\(870\) 0 0
\(871\) −26.7173 −0.905281
\(872\) 0 0
\(873\) 2.53311i 0.0857327i
\(874\) 0 0
\(875\) −10.9491 + 2.26211i −0.370147 + 0.0764731i
\(876\) 0 0
\(877\) 0.0942057i 0.00318110i 0.999999 + 0.00159055i \(0.000506288\pi\)
−0.999999 + 0.00159055i \(0.999494\pi\)
\(878\) 0 0
\(879\) 19.5587 0.659700
\(880\) 0 0
\(881\) 28.1290 0.947690 0.473845 0.880608i \(-0.342866\pi\)
0.473845 + 0.880608i \(0.342866\pi\)
\(882\) 0 0
\(883\) 3.71466i 0.125008i −0.998045 0.0625042i \(-0.980091\pi\)
0.998045 0.0625042i \(-0.0199087\pi\)
\(884\) 0 0
\(885\) −6.97179 + 0.474196i −0.234354 + 0.0159399i
\(886\) 0 0
\(887\) 13.5731i 0.455739i −0.973692 0.227870i \(-0.926824\pi\)
0.973692 0.227870i \(-0.0731760\pi\)
\(888\) 0 0
\(889\) 17.1239 0.574318
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 29.8410i 0.998590i
\(894\) 0 0
\(895\) 0.724205 + 10.6475i 0.0242075 + 0.355907i
\(896\) 0 0
\(897\) 6.90844i 0.230666i
\(898\) 0 0
\(899\) −31.4766 −1.04980
\(900\) 0 0
\(901\) 10.6644 0.355282
\(902\) 0 0
\(903\) 7.04690i 0.234506i
\(904\) 0 0
\(905\) 1.07931 + 15.8683i 0.0358773 + 0.527480i
\(906\) 0 0
\(907\) 16.9317i 0.562207i −0.959677 0.281104i \(-0.909300\pi\)
0.959677 0.281104i \(-0.0907005\pi\)
\(908\) 0 0
\(909\) 18.8305 0.624568
\(910\) 0 0
\(911\) −2.22474 −0.0737088 −0.0368544 0.999321i \(-0.511734\pi\)
−0.0368544 + 0.999321i \(0.511734\pi\)
\(912\) 0 0
\(913\) 5.76593i 0.190825i
\(914\) 0 0
\(915\) 20.1120 1.36795i 0.664884 0.0452230i
\(916\) 0 0
\(917\) 20.8886i 0.689803i
\(918\) 0 0
\(919\) 13.9917 0.461544 0.230772 0.973008i \(-0.425875\pi\)
0.230772 + 0.973008i \(0.425875\pi\)
\(920\) 0 0
\(921\) 10.7762 0.355088
\(922\) 0 0
\(923\) 41.7243i 1.37337i
\(924\) 0 0
\(925\) 4.61895 + 33.7976i 0.151870 + 1.11126i
\(926\) 0 0
\(927\) 0.191906i 0.00630301i
\(928\) 0 0
\(929\) 11.0149 0.361387 0.180694 0.983539i \(-0.442166\pi\)
0.180694 + 0.983539i \(0.442166\pi\)
\(930\) 0 0
\(931\) 2.96123 0.0970505
\(932\) 0 0
\(933\) 18.3169i 0.599670i
\(934\) 0 0
\(935\) 10.7452 0.730852i 0.351407 0.0239014i
\(936\) 0 0
\(937\) 16.2565i 0.531078i −0.964100 0.265539i \(-0.914450\pi\)
0.964100 0.265539i \(-0.0855499\pi\)
\(938\) 0 0
\(939\) −0.863241 −0.0281708
\(940\) 0 0
\(941\) 20.5336 0.669376 0.334688 0.942329i \(-0.391369\pi\)
0.334688 + 0.942329i \(0.391369\pi\)
\(942\) 0 0
\(943\) 15.3082i 0.498505i
\(944\) 0 0
\(945\) −0.151739 2.23091i −0.00493606 0.0725716i
\(946\) 0 0
\(947\) 30.7115i 0.997989i 0.866605 + 0.498995i \(0.166297\pi\)
−0.866605 + 0.498995i \(0.833703\pi\)
\(948\) 0 0
\(949\) −3.62213 −0.117579
\(950\) 0 0
\(951\) −2.76184 −0.0895589
\(952\) 0 0
\(953\) 5.72512i 0.185455i −0.995692 0.0927274i \(-0.970441\pi\)
0.995692 0.0927274i \(-0.0295585\pi\)
\(954\) 0 0
\(955\) 2.22054 + 32.6471i 0.0718550 + 1.05644i
\(956\) 0 0
\(957\) 7.32176i 0.236679i
\(958\) 0 0
\(959\) 12.9479 0.418110
\(960\) 0 0
\(961\) −12.5182 −0.403814
\(962\) 0 0
\(963\) 13.0381i 0.420147i
\(964\) 0 0
\(965\) −30.4141 + 2.06866i −0.979065 + 0.0665925i
\(966\) 0 0
\(967\) 44.1493i 1.41975i 0.704329 + 0.709873i \(0.251248\pi\)
−0.704329 + 0.709873i \(0.748752\pi\)
\(968\) 0 0
\(969\) 14.2628 0.458188
\(970\) 0 0
\(971\) −36.4494 −1.16972 −0.584858 0.811136i \(-0.698850\pi\)
−0.584858 + 0.811136i \(0.698850\pi\)
\(972\) 0 0
\(973\) 9.33171i 0.299161i
\(974\) 0 0
\(975\) −16.7890 + 2.29448i −0.537680 + 0.0734820i
\(976\) 0 0
\(977\) 25.1541i 0.804751i 0.915475 + 0.402376i \(0.131815\pi\)
−0.915475 + 0.402376i \(0.868185\pi\)
\(978\) 0 0
\(979\) −8.49297 −0.271437
\(980\) 0 0
\(981\) −13.7451 −0.438848
\(982\) 0 0
\(983\) 28.4471i 0.907321i 0.891175 + 0.453660i \(0.149882\pi\)
−0.891175 + 0.453660i \(0.850118\pi\)
\(984\) 0 0
\(985\) −0.737946 + 0.0501925i −0.0235129 + 0.00159926i
\(986\) 0 0
\(987\) 10.0772i 0.320761i
\(988\) 0 0
\(989\) 14.3649 0.456778
\(990\) 0 0
\(991\) 23.9184 0.759794 0.379897 0.925029i \(-0.375959\pi\)
0.379897 + 0.925029i \(0.375959\pi\)
\(992\) 0 0
\(993\) 32.7451i 1.03913i
\(994\) 0 0
\(995\) −3.05193 44.8705i −0.0967527 1.42249i
\(996\) 0 0
\(997\) 47.9664i 1.51911i 0.650443 + 0.759555i \(0.274583\pi\)
−0.650443 + 0.759555i \(0.725417\pi\)
\(998\) 0 0
\(999\) −6.82236 −0.215850
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4620.2.h.e.1849.11 yes 14
5.4 even 2 inner 4620.2.h.e.1849.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4620.2.h.e.1849.4 14 5.4 even 2 inner
4620.2.h.e.1849.11 yes 14 1.1 even 1 trivial