Properties

Label 4620.2.h.e.1849.10
Level $4620$
Weight $2$
Character 4620.1849
Analytic conductor $36.891$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4620,2,Mod(1849,4620)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4620.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4620, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4620.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-4,0,0,0,-14,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8908857338\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 12 x^{12} - 32 x^{11} + 86 x^{10} - 220 x^{9} + 585 x^{8} - 1536 x^{7} + \cdots + 78125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.10
Root \(1.56500 - 1.59711i\) of defining polynomial
Character \(\chi\) \(=\) 4620.1849
Dual form 4620.2.h.e.1849.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.56500 - 1.59711i) q^{5} +1.00000i q^{7} -1.00000 q^{9} +1.00000 q^{11} +0.122890i q^{13} +(1.59711 - 1.56500i) q^{15} -0.802598i q^{17} +7.00100 q^{19} -1.00000 q^{21} -3.44318i q^{23} +(-0.101546 + 4.99897i) q^{25} -1.00000i q^{27} -4.73924 q^{29} +1.99706 q^{31} +1.00000i q^{33} +(1.59711 - 1.56500i) q^{35} -3.45598i q^{37} -0.122890 q^{39} -11.7902 q^{41} -6.54753i q^{43} +(1.56500 + 1.59711i) q^{45} +0.536484i q^{47} -1.00000 q^{49} +0.802598 q^{51} +10.7389i q^{53} +(-1.56500 - 1.59711i) q^{55} +7.00100i q^{57} -12.8744 q^{59} +5.10051 q^{61} -1.00000i q^{63} +(0.196269 - 0.192323i) q^{65} -2.25594i q^{67} +3.44318 q^{69} +8.41853 q^{71} -5.45423i q^{73} +(-4.99897 - 0.101546i) q^{75} +1.00000i q^{77} +6.49664 q^{79} +1.00000 q^{81} +5.67053i q^{83} +(-1.28184 + 1.25607i) q^{85} -4.73924i q^{87} +13.5387 q^{89} -0.122890 q^{91} +1.99706i q^{93} +(-10.9566 - 11.1814i) q^{95} -7.67347i q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{5} - 14 q^{9} + 14 q^{11} + 6 q^{19} - 14 q^{21} - 8 q^{25} + 38 q^{29} + 4 q^{31} + 8 q^{39} - 12 q^{41} + 4 q^{45} - 14 q^{49} + 14 q^{51} - 4 q^{55} + 18 q^{59} - 54 q^{61} - 2 q^{65} + 26 q^{69}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4620\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(1541\) \(2311\) \(2521\) \(3697\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.56500 1.59711i −0.699890 0.714251i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0.122890i 0.0340835i 0.999855 + 0.0170418i \(0.00542483\pi\)
−0.999855 + 0.0170418i \(0.994575\pi\)
\(14\) 0 0
\(15\) 1.59711 1.56500i 0.412373 0.404081i
\(16\) 0 0
\(17\) 0.802598i 0.194658i −0.995252 0.0973292i \(-0.968970\pi\)
0.995252 0.0973292i \(-0.0310300\pi\)
\(18\) 0 0
\(19\) 7.00100 1.60614 0.803070 0.595885i \(-0.203199\pi\)
0.803070 + 0.595885i \(0.203199\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 3.44318i 0.717953i −0.933347 0.358977i \(-0.883126\pi\)
0.933347 0.358977i \(-0.116874\pi\)
\(24\) 0 0
\(25\) −0.101546 + 4.99897i −0.0203093 + 0.999794i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −4.73924 −0.880056 −0.440028 0.897984i \(-0.645031\pi\)
−0.440028 + 0.897984i \(0.645031\pi\)
\(30\) 0 0
\(31\) 1.99706 0.358683 0.179342 0.983787i \(-0.442603\pi\)
0.179342 + 0.983787i \(0.442603\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) 1.59711 1.56500i 0.269962 0.264533i
\(36\) 0 0
\(37\) 3.45598i 0.568160i −0.958801 0.284080i \(-0.908312\pi\)
0.958801 0.284080i \(-0.0916882\pi\)
\(38\) 0 0
\(39\) −0.122890 −0.0196781
\(40\) 0 0
\(41\) −11.7902 −1.84133 −0.920664 0.390356i \(-0.872352\pi\)
−0.920664 + 0.390356i \(0.872352\pi\)
\(42\) 0 0
\(43\) 6.54753i 0.998489i −0.866461 0.499245i \(-0.833611\pi\)
0.866461 0.499245i \(-0.166389\pi\)
\(44\) 0 0
\(45\) 1.56500 + 1.59711i 0.233297 + 0.238084i
\(46\) 0 0
\(47\) 0.536484i 0.0782543i 0.999234 + 0.0391271i \(0.0124577\pi\)
−0.999234 + 0.0391271i \(0.987542\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0.802598 0.112386
\(52\) 0 0
\(53\) 10.7389i 1.47511i 0.675289 + 0.737553i \(0.264019\pi\)
−0.675289 + 0.737553i \(0.735981\pi\)
\(54\) 0 0
\(55\) −1.56500 1.59711i −0.211025 0.215355i
\(56\) 0 0
\(57\) 7.00100i 0.927305i
\(58\) 0 0
\(59\) −12.8744 −1.67610 −0.838051 0.545591i \(-0.816305\pi\)
−0.838051 + 0.545591i \(0.816305\pi\)
\(60\) 0 0
\(61\) 5.10051 0.653053 0.326526 0.945188i \(-0.394122\pi\)
0.326526 + 0.945188i \(0.394122\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 0.196269 0.192323i 0.0243442 0.0238547i
\(66\) 0 0
\(67\) 2.25594i 0.275607i −0.990460 0.137803i \(-0.955996\pi\)
0.990460 0.137803i \(-0.0440042\pi\)
\(68\) 0 0
\(69\) 3.44318 0.414510
\(70\) 0 0
\(71\) 8.41853 0.999096 0.499548 0.866286i \(-0.333499\pi\)
0.499548 + 0.866286i \(0.333499\pi\)
\(72\) 0 0
\(73\) 5.45423i 0.638369i −0.947693 0.319185i \(-0.896591\pi\)
0.947693 0.319185i \(-0.103409\pi\)
\(74\) 0 0
\(75\) −4.99897 0.101546i −0.577231 0.0117256i
\(76\) 0 0
\(77\) 1.00000i 0.113961i
\(78\) 0 0
\(79\) 6.49664 0.730929 0.365465 0.930825i \(-0.380910\pi\)
0.365465 + 0.930825i \(0.380910\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.67053i 0.622422i 0.950341 + 0.311211i \(0.100735\pi\)
−0.950341 + 0.311211i \(0.899265\pi\)
\(84\) 0 0
\(85\) −1.28184 + 1.25607i −0.139035 + 0.136239i
\(86\) 0 0
\(87\) 4.73924i 0.508100i
\(88\) 0 0
\(89\) 13.5387 1.43510 0.717548 0.696509i \(-0.245264\pi\)
0.717548 + 0.696509i \(0.245264\pi\)
\(90\) 0 0
\(91\) −0.122890 −0.0128824
\(92\) 0 0
\(93\) 1.99706i 0.207086i
\(94\) 0 0
\(95\) −10.9566 11.1814i −1.12412 1.14719i
\(96\) 0 0
\(97\) 7.67347i 0.779123i −0.921000 0.389561i \(-0.872627\pi\)
0.921000 0.389561i \(-0.127373\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 8.09255 0.805239 0.402619 0.915367i \(-0.368100\pi\)
0.402619 + 0.915367i \(0.368100\pi\)
\(102\) 0 0
\(103\) 9.18812i 0.905332i −0.891680 0.452666i \(-0.850473\pi\)
0.891680 0.452666i \(-0.149527\pi\)
\(104\) 0 0
\(105\) 1.56500 + 1.59711i 0.152728 + 0.155862i
\(106\) 0 0
\(107\) 14.0151i 1.35489i −0.735573 0.677445i \(-0.763087\pi\)
0.735573 0.677445i \(-0.236913\pi\)
\(108\) 0 0
\(109\) −0.988199 −0.0946523 −0.0473261 0.998879i \(-0.515070\pi\)
−0.0473261 + 0.998879i \(0.515070\pi\)
\(110\) 0 0
\(111\) 3.45598 0.328027
\(112\) 0 0
\(113\) 16.1437i 1.51867i −0.650701 0.759334i \(-0.725525\pi\)
0.650701 0.759334i \(-0.274475\pi\)
\(114\) 0 0
\(115\) −5.49915 + 5.38858i −0.512799 + 0.502488i
\(116\) 0 0
\(117\) 0.122890i 0.0113612i
\(118\) 0 0
\(119\) 0.802598 0.0735740
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 11.7902i 1.06309i
\(124\) 0 0
\(125\) 8.14284 7.66121i 0.728318 0.685239i
\(126\) 0 0
\(127\) 14.5957i 1.29516i 0.761998 + 0.647579i \(0.224218\pi\)
−0.761998 + 0.647579i \(0.775782\pi\)
\(128\) 0 0
\(129\) 6.54753 0.576478
\(130\) 0 0
\(131\) −3.72330 −0.325307 −0.162653 0.986683i \(-0.552005\pi\)
−0.162653 + 0.986683i \(0.552005\pi\)
\(132\) 0 0
\(133\) 7.00100i 0.607064i
\(134\) 0 0
\(135\) −1.59711 + 1.56500i −0.137458 + 0.134694i
\(136\) 0 0
\(137\) 0.484151i 0.0413638i −0.999786 0.0206819i \(-0.993416\pi\)
0.999786 0.0206819i \(-0.00658372\pi\)
\(138\) 0 0
\(139\) 21.8921 1.85686 0.928431 0.371505i \(-0.121158\pi\)
0.928431 + 0.371505i \(0.121158\pi\)
\(140\) 0 0
\(141\) −0.536484 −0.0451801
\(142\) 0 0
\(143\) 0.122890i 0.0102766i
\(144\) 0 0
\(145\) 7.41692 + 7.56911i 0.615942 + 0.628581i
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) 11.7443 0.962128 0.481064 0.876686i \(-0.340251\pi\)
0.481064 + 0.876686i \(0.340251\pi\)
\(150\) 0 0
\(151\) −2.01138 −0.163684 −0.0818419 0.996645i \(-0.526080\pi\)
−0.0818419 + 0.996645i \(0.526080\pi\)
\(152\) 0 0
\(153\) 0.802598i 0.0648862i
\(154\) 0 0
\(155\) −3.12541 3.18954i −0.251039 0.256190i
\(156\) 0 0
\(157\) 23.1571i 1.84814i −0.382225 0.924069i \(-0.624842\pi\)
0.382225 0.924069i \(-0.375158\pi\)
\(158\) 0 0
\(159\) −10.7389 −0.851653
\(160\) 0 0
\(161\) 3.44318 0.271361
\(162\) 0 0
\(163\) 14.0902i 1.10363i −0.833966 0.551816i \(-0.813935\pi\)
0.833966 0.551816i \(-0.186065\pi\)
\(164\) 0 0
\(165\) 1.59711 1.56500i 0.124335 0.121835i
\(166\) 0 0
\(167\) 2.58892i 0.200337i −0.994971 0.100168i \(-0.968062\pi\)
0.994971 0.100168i \(-0.0319381\pi\)
\(168\) 0 0
\(169\) 12.9849 0.998838
\(170\) 0 0
\(171\) −7.00100 −0.535380
\(172\) 0 0
\(173\) 14.3432i 1.09050i −0.838275 0.545248i \(-0.816436\pi\)
0.838275 0.545248i \(-0.183564\pi\)
\(174\) 0 0
\(175\) −4.99897 0.101546i −0.377887 0.00767618i
\(176\) 0 0
\(177\) 12.8744i 0.967698i
\(178\) 0 0
\(179\) 20.2055 1.51023 0.755114 0.655593i \(-0.227581\pi\)
0.755114 + 0.655593i \(0.227581\pi\)
\(180\) 0 0
\(181\) 20.1269 1.49602 0.748012 0.663685i \(-0.231008\pi\)
0.748012 + 0.663685i \(0.231008\pi\)
\(182\) 0 0
\(183\) 5.10051i 0.377040i
\(184\) 0 0
\(185\) −5.51960 + 5.40862i −0.405809 + 0.397649i
\(186\) 0 0
\(187\) 0.802598i 0.0586917i
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −15.3725 −1.11232 −0.556159 0.831076i \(-0.687725\pi\)
−0.556159 + 0.831076i \(0.687725\pi\)
\(192\) 0 0
\(193\) 2.39480i 0.172382i −0.996279 0.0861909i \(-0.972530\pi\)
0.996279 0.0861909i \(-0.0274695\pi\)
\(194\) 0 0
\(195\) 0.192323 + 0.196269i 0.0137725 + 0.0140551i
\(196\) 0 0
\(197\) 15.6451i 1.11467i 0.830289 + 0.557334i \(0.188176\pi\)
−0.830289 + 0.557334i \(0.811824\pi\)
\(198\) 0 0
\(199\) 6.17533 0.437757 0.218879 0.975752i \(-0.429760\pi\)
0.218879 + 0.975752i \(0.429760\pi\)
\(200\) 0 0
\(201\) 2.25594 0.159122
\(202\) 0 0
\(203\) 4.73924i 0.332630i
\(204\) 0 0
\(205\) 18.4517 + 18.8304i 1.28873 + 1.31517i
\(206\) 0 0
\(207\) 3.44318i 0.239318i
\(208\) 0 0
\(209\) 7.00100 0.484269
\(210\) 0 0
\(211\) 9.01682 0.620743 0.310372 0.950615i \(-0.399546\pi\)
0.310372 + 0.950615i \(0.399546\pi\)
\(212\) 0 0
\(213\) 8.41853i 0.576828i
\(214\) 0 0
\(215\) −10.4572 + 10.2469i −0.713172 + 0.698832i
\(216\) 0 0
\(217\) 1.99706i 0.135570i
\(218\) 0 0
\(219\) 5.45423 0.368563
\(220\) 0 0
\(221\) 0.0986312 0.00663465
\(222\) 0 0
\(223\) 15.7055i 1.05172i −0.850572 0.525859i \(-0.823744\pi\)
0.850572 0.525859i \(-0.176256\pi\)
\(224\) 0 0
\(225\) 0.101546 4.99897i 0.00676975 0.333265i
\(226\) 0 0
\(227\) 25.4782i 1.69105i −0.533938 0.845524i \(-0.679288\pi\)
0.533938 0.845524i \(-0.320712\pi\)
\(228\) 0 0
\(229\) −16.5750 −1.09531 −0.547655 0.836704i \(-0.684479\pi\)
−0.547655 + 0.836704i \(0.684479\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) 26.3986i 1.72943i −0.502260 0.864716i \(-0.667498\pi\)
0.502260 0.864716i \(-0.332502\pi\)
\(234\) 0 0
\(235\) 0.856827 0.839598i 0.0558932 0.0547693i
\(236\) 0 0
\(237\) 6.49664i 0.422002i
\(238\) 0 0
\(239\) 9.75552 0.631032 0.315516 0.948920i \(-0.397822\pi\)
0.315516 + 0.948920i \(0.397822\pi\)
\(240\) 0 0
\(241\) −22.4317 −1.44495 −0.722477 0.691395i \(-0.756996\pi\)
−0.722477 + 0.691395i \(0.756996\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 1.56500 + 1.59711i 0.0999842 + 0.102036i
\(246\) 0 0
\(247\) 0.860353i 0.0547429i
\(248\) 0 0
\(249\) −5.67053 −0.359355
\(250\) 0 0
\(251\) −23.1380 −1.46045 −0.730227 0.683204i \(-0.760586\pi\)
−0.730227 + 0.683204i \(0.760586\pi\)
\(252\) 0 0
\(253\) 3.44318i 0.216471i
\(254\) 0 0
\(255\) −1.25607 1.28184i −0.0786579 0.0802719i
\(256\) 0 0
\(257\) 18.4826i 1.15291i −0.817128 0.576456i \(-0.804435\pi\)
0.817128 0.576456i \(-0.195565\pi\)
\(258\) 0 0
\(259\) 3.45598 0.214744
\(260\) 0 0
\(261\) 4.73924 0.293352
\(262\) 0 0
\(263\) 3.40223i 0.209790i −0.994483 0.104895i \(-0.966549\pi\)
0.994483 0.104895i \(-0.0334507\pi\)
\(264\) 0 0
\(265\) 17.1513 16.8064i 1.05360 1.03241i
\(266\) 0 0
\(267\) 13.5387i 0.828553i
\(268\) 0 0
\(269\) −21.7258 −1.32465 −0.662323 0.749218i \(-0.730429\pi\)
−0.662323 + 0.749218i \(0.730429\pi\)
\(270\) 0 0
\(271\) −18.4200 −1.11893 −0.559466 0.828853i \(-0.688994\pi\)
−0.559466 + 0.828853i \(0.688994\pi\)
\(272\) 0 0
\(273\) 0.122890i 0.00743764i
\(274\) 0 0
\(275\) −0.101546 + 4.99897i −0.00612347 + 0.301449i
\(276\) 0 0
\(277\) 1.10740i 0.0665373i 0.999446 + 0.0332687i \(0.0105917\pi\)
−0.999446 + 0.0332687i \(0.989408\pi\)
\(278\) 0 0
\(279\) −1.99706 −0.119561
\(280\) 0 0
\(281\) 3.87370 0.231085 0.115543 0.993303i \(-0.463139\pi\)
0.115543 + 0.993303i \(0.463139\pi\)
\(282\) 0 0
\(283\) 11.1282i 0.661506i −0.943717 0.330753i \(-0.892697\pi\)
0.943717 0.330753i \(-0.107303\pi\)
\(284\) 0 0
\(285\) 11.1814 10.9566i 0.662329 0.649011i
\(286\) 0 0
\(287\) 11.7902i 0.695956i
\(288\) 0 0
\(289\) 16.3558 0.962108
\(290\) 0 0
\(291\) 7.67347 0.449827
\(292\) 0 0
\(293\) 27.3496i 1.59778i 0.601478 + 0.798889i \(0.294579\pi\)
−0.601478 + 0.798889i \(0.705421\pi\)
\(294\) 0 0
\(295\) 20.1484 + 20.5619i 1.17309 + 1.19716i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 0 0
\(299\) 0.423133 0.0244704
\(300\) 0 0
\(301\) 6.54753 0.377393
\(302\) 0 0
\(303\) 8.09255i 0.464905i
\(304\) 0 0
\(305\) −7.98229 8.14609i −0.457065 0.466444i
\(306\) 0 0
\(307\) 12.6281i 0.720724i −0.932812 0.360362i \(-0.882653\pi\)
0.932812 0.360362i \(-0.117347\pi\)
\(308\) 0 0
\(309\) 9.18812 0.522694
\(310\) 0 0
\(311\) −15.5412 −0.881259 −0.440630 0.897689i \(-0.645245\pi\)
−0.440630 + 0.897689i \(0.645245\pi\)
\(312\) 0 0
\(313\) 14.3797i 0.812790i 0.913698 + 0.406395i \(0.133214\pi\)
−0.913698 + 0.406395i \(0.866786\pi\)
\(314\) 0 0
\(315\) −1.59711 + 1.56500i −0.0899872 + 0.0881778i
\(316\) 0 0
\(317\) 1.38430i 0.0777501i 0.999244 + 0.0388750i \(0.0123774\pi\)
−0.999244 + 0.0388750i \(0.987623\pi\)
\(318\) 0 0
\(319\) −4.73924 −0.265347
\(320\) 0 0
\(321\) 14.0151 0.782246
\(322\) 0 0
\(323\) 5.61899i 0.312649i
\(324\) 0 0
\(325\) −0.614323 0.0124790i −0.0340765 0.000692212i
\(326\) 0 0
\(327\) 0.988199i 0.0546475i
\(328\) 0 0
\(329\) −0.536484 −0.0295773
\(330\) 0 0
\(331\) 9.30072 0.511214 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(332\) 0 0
\(333\) 3.45598i 0.189387i
\(334\) 0 0
\(335\) −3.60299 + 3.53055i −0.196852 + 0.192894i
\(336\) 0 0
\(337\) 13.0934i 0.713241i 0.934249 + 0.356620i \(0.116071\pi\)
−0.934249 + 0.356620i \(0.883929\pi\)
\(338\) 0 0
\(339\) 16.1437 0.876804
\(340\) 0 0
\(341\) 1.99706 0.108147
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −5.38858 5.49915i −0.290112 0.296065i
\(346\) 0 0
\(347\) 12.0664i 0.647756i 0.946099 + 0.323878i \(0.104987\pi\)
−0.946099 + 0.323878i \(0.895013\pi\)
\(348\) 0 0
\(349\) 27.1449 1.45303 0.726515 0.687150i \(-0.241139\pi\)
0.726515 + 0.687150i \(0.241139\pi\)
\(350\) 0 0
\(351\) 0.122890 0.00655938
\(352\) 0 0
\(353\) 20.6786i 1.10061i −0.834964 0.550305i \(-0.814511\pi\)
0.834964 0.550305i \(-0.185489\pi\)
\(354\) 0 0
\(355\) −13.1750 13.4454i −0.699257 0.713605i
\(356\) 0 0
\(357\) 0.802598i 0.0424780i
\(358\) 0 0
\(359\) 18.7309 0.988577 0.494288 0.869298i \(-0.335429\pi\)
0.494288 + 0.869298i \(0.335429\pi\)
\(360\) 0 0
\(361\) 30.0140 1.57968
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) −8.71103 + 8.53587i −0.455956 + 0.446788i
\(366\) 0 0
\(367\) 27.7381i 1.44792i 0.689843 + 0.723959i \(0.257680\pi\)
−0.689843 + 0.723959i \(0.742320\pi\)
\(368\) 0 0
\(369\) 11.7902 0.613776
\(370\) 0 0
\(371\) −10.7389 −0.557538
\(372\) 0 0
\(373\) 6.38615i 0.330662i 0.986238 + 0.165331i \(0.0528693\pi\)
−0.986238 + 0.165331i \(0.947131\pi\)
\(374\) 0 0
\(375\) 7.66121 + 8.14284i 0.395623 + 0.420495i
\(376\) 0 0
\(377\) 0.582406i 0.0299954i
\(378\) 0 0
\(379\) −0.108279 −0.00556191 −0.00278096 0.999996i \(-0.500885\pi\)
−0.00278096 + 0.999996i \(0.500885\pi\)
\(380\) 0 0
\(381\) −14.5957 −0.747760
\(382\) 0 0
\(383\) 18.8278i 0.962055i −0.876705 0.481028i \(-0.840264\pi\)
0.876705 0.481028i \(-0.159736\pi\)
\(384\) 0 0
\(385\) 1.59711 1.56500i 0.0813965 0.0797598i
\(386\) 0 0
\(387\) 6.54753i 0.332830i
\(388\) 0 0
\(389\) −9.94632 −0.504299 −0.252149 0.967688i \(-0.581137\pi\)
−0.252149 + 0.967688i \(0.581137\pi\)
\(390\) 0 0
\(391\) −2.76349 −0.139756
\(392\) 0 0
\(393\) 3.72330i 0.187816i
\(394\) 0 0
\(395\) −10.1672 10.3759i −0.511570 0.522067i
\(396\) 0 0
\(397\) 10.7285i 0.538446i 0.963078 + 0.269223i \(0.0867669\pi\)
−0.963078 + 0.269223i \(0.913233\pi\)
\(398\) 0 0
\(399\) −7.00100 −0.350488
\(400\) 0 0
\(401\) 35.0296 1.74930 0.874648 0.484758i \(-0.161092\pi\)
0.874648 + 0.484758i \(0.161092\pi\)
\(402\) 0 0
\(403\) 0.245419i 0.0122252i
\(404\) 0 0
\(405\) −1.56500 1.59711i −0.0777655 0.0793612i
\(406\) 0 0
\(407\) 3.45598i 0.171307i
\(408\) 0 0
\(409\) −11.9422 −0.590504 −0.295252 0.955419i \(-0.595404\pi\)
−0.295252 + 0.955419i \(0.595404\pi\)
\(410\) 0 0
\(411\) 0.484151 0.0238814
\(412\) 0 0
\(413\) 12.8744i 0.633507i
\(414\) 0 0
\(415\) 9.05649 8.87439i 0.444566 0.435627i
\(416\) 0 0
\(417\) 21.8921i 1.07206i
\(418\) 0 0
\(419\) −4.93827 −0.241250 −0.120625 0.992698i \(-0.538490\pi\)
−0.120625 + 0.992698i \(0.538490\pi\)
\(420\) 0 0
\(421\) −37.9293 −1.84856 −0.924280 0.381715i \(-0.875334\pi\)
−0.924280 + 0.381715i \(0.875334\pi\)
\(422\) 0 0
\(423\) 0.536484i 0.0260848i
\(424\) 0 0
\(425\) 4.01216 + 0.0815008i 0.194618 + 0.00395337i
\(426\) 0 0
\(427\) 5.10051i 0.246831i
\(428\) 0 0
\(429\) −0.122890 −0.00593318
\(430\) 0 0
\(431\) 11.4983 0.553852 0.276926 0.960891i \(-0.410684\pi\)
0.276926 + 0.960891i \(0.410684\pi\)
\(432\) 0 0
\(433\) 9.89698i 0.475618i −0.971312 0.237809i \(-0.923571\pi\)
0.971312 0.237809i \(-0.0764293\pi\)
\(434\) 0 0
\(435\) −7.56911 + 7.41692i −0.362911 + 0.355614i
\(436\) 0 0
\(437\) 24.1057i 1.15313i
\(438\) 0 0
\(439\) 34.0036 1.62290 0.811452 0.584420i \(-0.198678\pi\)
0.811452 + 0.584420i \(0.198678\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 14.7238i 0.699549i 0.936834 + 0.349775i \(0.113742\pi\)
−0.936834 + 0.349775i \(0.886258\pi\)
\(444\) 0 0
\(445\) −21.1880 21.6228i −1.00441 1.02502i
\(446\) 0 0
\(447\) 11.7443i 0.555485i
\(448\) 0 0
\(449\) 9.84873 0.464790 0.232395 0.972621i \(-0.425344\pi\)
0.232395 + 0.972621i \(0.425344\pi\)
\(450\) 0 0
\(451\) −11.7902 −0.555181
\(452\) 0 0
\(453\) 2.01138i 0.0945029i
\(454\) 0 0
\(455\) 0.192323 + 0.196269i 0.00901623 + 0.00920125i
\(456\) 0 0
\(457\) 1.05919i 0.0495467i −0.999693 0.0247733i \(-0.992114\pi\)
0.999693 0.0247733i \(-0.00788641\pi\)
\(458\) 0 0
\(459\) −0.802598 −0.0374620
\(460\) 0 0
\(461\) 34.6058 1.61175 0.805877 0.592084i \(-0.201694\pi\)
0.805877 + 0.592084i \(0.201694\pi\)
\(462\) 0 0
\(463\) 32.8173i 1.52515i 0.646901 + 0.762574i \(0.276065\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(464\) 0 0
\(465\) 3.18954 3.12541i 0.147911 0.144937i
\(466\) 0 0
\(467\) 24.9820i 1.15603i −0.816026 0.578015i \(-0.803828\pi\)
0.816026 0.578015i \(-0.196172\pi\)
\(468\) 0 0
\(469\) 2.25594 0.104170
\(470\) 0 0
\(471\) 23.1571 1.06702
\(472\) 0 0
\(473\) 6.54753i 0.301056i
\(474\) 0 0
\(475\) −0.710926 + 34.9978i −0.0326195 + 1.60581i
\(476\) 0 0
\(477\) 10.7389i 0.491702i
\(478\) 0 0
\(479\) −7.31361 −0.334167 −0.167084 0.985943i \(-0.553435\pi\)
−0.167084 + 0.985943i \(0.553435\pi\)
\(480\) 0 0
\(481\) 0.424706 0.0193649
\(482\) 0 0
\(483\) 3.44318i 0.156670i
\(484\) 0 0
\(485\) −12.2554 + 12.0090i −0.556489 + 0.545300i
\(486\) 0 0
\(487\) 15.4320i 0.699289i 0.936882 + 0.349645i \(0.113698\pi\)
−0.936882 + 0.349645i \(0.886302\pi\)
\(488\) 0 0
\(489\) 14.0902 0.637182
\(490\) 0 0
\(491\) −37.4234 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(492\) 0 0
\(493\) 3.80371i 0.171310i
\(494\) 0 0
\(495\) 1.56500 + 1.59711i 0.0703415 + 0.0717849i
\(496\) 0 0
\(497\) 8.41853i 0.377623i
\(498\) 0 0
\(499\) −10.8150 −0.484146 −0.242073 0.970258i \(-0.577827\pi\)
−0.242073 + 0.970258i \(0.577827\pi\)
\(500\) 0 0
\(501\) 2.58892 0.115664
\(502\) 0 0
\(503\) 20.3641i 0.907990i −0.891004 0.453995i \(-0.849998\pi\)
0.891004 0.453995i \(-0.150002\pi\)
\(504\) 0 0
\(505\) −12.6648 12.9247i −0.563578 0.575143i
\(506\) 0 0
\(507\) 12.9849i 0.576680i
\(508\) 0 0
\(509\) 14.4919 0.642342 0.321171 0.947021i \(-0.395924\pi\)
0.321171 + 0.947021i \(0.395924\pi\)
\(510\) 0 0
\(511\) 5.45423 0.241281
\(512\) 0 0
\(513\) 7.00100i 0.309102i
\(514\) 0 0
\(515\) −14.6745 + 14.3794i −0.646634 + 0.633632i
\(516\) 0 0
\(517\) 0.536484i 0.0235946i
\(518\) 0 0
\(519\) 14.3432 0.629598
\(520\) 0 0
\(521\) 3.21816 0.140990 0.0704951 0.997512i \(-0.477542\pi\)
0.0704951 + 0.997512i \(0.477542\pi\)
\(522\) 0 0
\(523\) 39.3973i 1.72272i 0.507991 + 0.861362i \(0.330388\pi\)
−0.507991 + 0.861362i \(0.669612\pi\)
\(524\) 0 0
\(525\) 0.101546 4.99897i 0.00443184 0.218173i
\(526\) 0 0
\(527\) 1.60284i 0.0698207i
\(528\) 0 0
\(529\) 11.1445 0.484543
\(530\) 0 0
\(531\) 12.8744 0.558701
\(532\) 0 0
\(533\) 1.44890i 0.0627590i
\(534\) 0 0
\(535\) −22.3837 + 21.9336i −0.967732 + 0.948274i
\(536\) 0 0
\(537\) 20.2055i 0.871931i
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −8.61874 −0.370549 −0.185274 0.982687i \(-0.559317\pi\)
−0.185274 + 0.982687i \(0.559317\pi\)
\(542\) 0 0
\(543\) 20.1269i 0.863730i
\(544\) 0 0
\(545\) 1.54653 + 1.57827i 0.0662461 + 0.0676055i
\(546\) 0 0
\(547\) 5.14806i 0.220115i −0.993925 0.110058i \(-0.964896\pi\)
0.993925 0.110058i \(-0.0351035\pi\)
\(548\) 0 0
\(549\) −5.10051 −0.217684
\(550\) 0 0
\(551\) −33.1795 −1.41349
\(552\) 0 0
\(553\) 6.49664i 0.276265i
\(554\) 0 0
\(555\) −5.40862 5.51960i −0.229583 0.234294i
\(556\) 0 0
\(557\) 25.2427i 1.06957i 0.844989 + 0.534784i \(0.179607\pi\)
−0.844989 + 0.534784i \(0.820393\pi\)
\(558\) 0 0
\(559\) 0.804626 0.0340321
\(560\) 0 0
\(561\) 0.802598 0.0338857
\(562\) 0 0
\(563\) 12.4908i 0.526426i 0.964738 + 0.263213i \(0.0847821\pi\)
−0.964738 + 0.263213i \(0.915218\pi\)
\(564\) 0 0
\(565\) −25.7833 + 25.2648i −1.08471 + 1.06290i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) −1.59550 −0.0668870 −0.0334435 0.999441i \(-0.510647\pi\)
−0.0334435 + 0.999441i \(0.510647\pi\)
\(570\) 0 0
\(571\) −5.82961 −0.243962 −0.121981 0.992532i \(-0.538925\pi\)
−0.121981 + 0.992532i \(0.538925\pi\)
\(572\) 0 0
\(573\) 15.3725i 0.642197i
\(574\) 0 0
\(575\) 17.2124 + 0.349642i 0.717805 + 0.0145811i
\(576\) 0 0
\(577\) 38.0049i 1.58217i −0.611709 0.791083i \(-0.709518\pi\)
0.611709 0.791083i \(-0.290482\pi\)
\(578\) 0 0
\(579\) 2.39480 0.0995247
\(580\) 0 0
\(581\) −5.67053 −0.235253
\(582\) 0 0
\(583\) 10.7389i 0.444761i
\(584\) 0 0
\(585\) −0.196269 + 0.192323i −0.00811474 + 0.00795157i
\(586\) 0 0
\(587\) 1.85723i 0.0766559i 0.999265 + 0.0383280i \(0.0122032\pi\)
−0.999265 + 0.0383280i \(0.987797\pi\)
\(588\) 0 0
\(589\) 13.9814 0.576095
\(590\) 0 0
\(591\) −15.6451 −0.643553
\(592\) 0 0
\(593\) 23.6721i 0.972096i −0.873932 0.486048i \(-0.838438\pi\)
0.873932 0.486048i \(-0.161562\pi\)
\(594\) 0 0
\(595\) −1.25607 1.28184i −0.0514937 0.0525503i
\(596\) 0 0
\(597\) 6.17533i 0.252739i
\(598\) 0 0
\(599\) 17.9997 0.735450 0.367725 0.929935i \(-0.380137\pi\)
0.367725 + 0.929935i \(0.380137\pi\)
\(600\) 0 0
\(601\) −18.8710 −0.769764 −0.384882 0.922966i \(-0.625758\pi\)
−0.384882 + 0.922966i \(0.625758\pi\)
\(602\) 0 0
\(603\) 2.25594i 0.0918689i
\(604\) 0 0
\(605\) −1.56500 1.59711i −0.0636263 0.0649319i
\(606\) 0 0
\(607\) 42.0340i 1.70611i −0.521823 0.853054i \(-0.674748\pi\)
0.521823 0.853054i \(-0.325252\pi\)
\(608\) 0 0
\(609\) 4.73924 0.192044
\(610\) 0 0
\(611\) −0.0659285 −0.00266718
\(612\) 0 0
\(613\) 22.3587i 0.903061i −0.892256 0.451530i \(-0.850878\pi\)
0.892256 0.451530i \(-0.149122\pi\)
\(614\) 0 0
\(615\) −18.8304 + 18.4517i −0.759314 + 0.744046i
\(616\) 0 0
\(617\) 15.3348i 0.617354i 0.951167 + 0.308677i \(0.0998862\pi\)
−0.951167 + 0.308677i \(0.900114\pi\)
\(618\) 0 0
\(619\) 2.53454 0.101872 0.0509358 0.998702i \(-0.483780\pi\)
0.0509358 + 0.998702i \(0.483780\pi\)
\(620\) 0 0
\(621\) −3.44318 −0.138170
\(622\) 0 0
\(623\) 13.5387i 0.542415i
\(624\) 0 0
\(625\) −24.9794 1.01525i −0.999175 0.0406101i
\(626\) 0 0
\(627\) 7.00100i 0.279593i
\(628\) 0 0
\(629\) −2.77376 −0.110597
\(630\) 0 0
\(631\) 16.5078 0.657166 0.328583 0.944475i \(-0.393429\pi\)
0.328583 + 0.944475i \(0.393429\pi\)
\(632\) 0 0
\(633\) 9.01682i 0.358386i
\(634\) 0 0
\(635\) 23.3110 22.8423i 0.925068 0.906468i
\(636\) 0 0
\(637\) 0.122890i 0.00486908i
\(638\) 0 0
\(639\) −8.41853 −0.333032
\(640\) 0 0
\(641\) −30.3269 −1.19784 −0.598921 0.800808i \(-0.704404\pi\)
−0.598921 + 0.800808i \(0.704404\pi\)
\(642\) 0 0
\(643\) 25.2134i 0.994318i 0.867660 + 0.497159i \(0.165623\pi\)
−0.867660 + 0.497159i \(0.834377\pi\)
\(644\) 0 0
\(645\) −10.2469 10.4572i −0.403471 0.411750i
\(646\) 0 0
\(647\) 14.8775i 0.584895i 0.956282 + 0.292447i \(0.0944696\pi\)
−0.956282 + 0.292447i \(0.905530\pi\)
\(648\) 0 0
\(649\) −12.8744 −0.505364
\(650\) 0 0
\(651\) −1.99706 −0.0782711
\(652\) 0 0
\(653\) 1.05315i 0.0412130i −0.999788 0.0206065i \(-0.993440\pi\)
0.999788 0.0206065i \(-0.00655971\pi\)
\(654\) 0 0
\(655\) 5.82697 + 5.94654i 0.227679 + 0.232351i
\(656\) 0 0
\(657\) 5.45423i 0.212790i
\(658\) 0 0
\(659\) −12.2198 −0.476015 −0.238008 0.971263i \(-0.576494\pi\)
−0.238008 + 0.971263i \(0.576494\pi\)
\(660\) 0 0
\(661\) 6.85187 0.266507 0.133253 0.991082i \(-0.457458\pi\)
0.133253 + 0.991082i \(0.457458\pi\)
\(662\) 0 0
\(663\) 0.0986312i 0.00383052i
\(664\) 0 0
\(665\) 11.1814 10.9566i 0.433596 0.424878i
\(666\) 0 0
\(667\) 16.3181i 0.631839i
\(668\) 0 0
\(669\) 15.7055 0.607210
\(670\) 0 0
\(671\) 5.10051 0.196903
\(672\) 0 0
\(673\) 3.15418i 0.121585i 0.998150 + 0.0607924i \(0.0193628\pi\)
−0.998150 + 0.0607924i \(0.980637\pi\)
\(674\) 0 0
\(675\) 4.99897 + 0.101546i 0.192410 + 0.00390852i
\(676\) 0 0
\(677\) 6.06029i 0.232916i −0.993196 0.116458i \(-0.962846\pi\)
0.993196 0.116458i \(-0.0371540\pi\)
\(678\) 0 0
\(679\) 7.67347 0.294481
\(680\) 0 0
\(681\) 25.4782 0.976327
\(682\) 0 0
\(683\) 9.16492i 0.350686i −0.984507 0.175343i \(-0.943897\pi\)
0.984507 0.175343i \(-0.0561034\pi\)
\(684\) 0 0
\(685\) −0.773244 + 0.757696i −0.0295441 + 0.0289501i
\(686\) 0 0
\(687\) 16.5750i 0.632377i
\(688\) 0 0
\(689\) −1.31971 −0.0502768
\(690\) 0 0
\(691\) −9.20569 −0.350201 −0.175100 0.984551i \(-0.556025\pi\)
−0.175100 + 0.984551i \(0.556025\pi\)
\(692\) 0 0
\(693\) 1.00000i 0.0379869i
\(694\) 0 0
\(695\) −34.2611 34.9642i −1.29960 1.32627i
\(696\) 0 0
\(697\) 9.46282i 0.358430i
\(698\) 0 0
\(699\) 26.3986 0.998489
\(700\) 0 0
\(701\) 45.6509 1.72421 0.862105 0.506731i \(-0.169146\pi\)
0.862105 + 0.506731i \(0.169146\pi\)
\(702\) 0 0
\(703\) 24.1953i 0.912545i
\(704\) 0 0
\(705\) 0.839598 + 0.856827i 0.0316211 + 0.0322700i
\(706\) 0 0
\(707\) 8.09255i 0.304352i
\(708\) 0 0
\(709\) 3.09014 0.116053 0.0580264 0.998315i \(-0.481519\pi\)
0.0580264 + 0.998315i \(0.481519\pi\)
\(710\) 0 0
\(711\) −6.49664 −0.243643
\(712\) 0 0
\(713\) 6.87625i 0.257518i
\(714\) 0 0
\(715\) 0.196269 0.192323i 0.00734005 0.00719247i
\(716\) 0 0
\(717\) 9.75552i 0.364327i
\(718\) 0 0
\(719\) −35.5698 −1.32653 −0.663265 0.748385i \(-0.730830\pi\)
−0.663265 + 0.748385i \(0.730830\pi\)
\(720\) 0 0
\(721\) 9.18812 0.342183
\(722\) 0 0
\(723\) 22.4317i 0.834244i
\(724\) 0 0
\(725\) 0.481253 23.6913i 0.0178733 0.879874i
\(726\) 0 0
\(727\) 10.9003i 0.404269i −0.979358 0.202134i \(-0.935212\pi\)
0.979358 0.202134i \(-0.0647878\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −5.25503 −0.194364
\(732\) 0 0
\(733\) 1.76168i 0.0650691i 0.999471 + 0.0325346i \(0.0103579\pi\)
−0.999471 + 0.0325346i \(0.989642\pi\)
\(734\) 0 0
\(735\) −1.59711 + 1.56500i −0.0589104 + 0.0577259i
\(736\) 0 0
\(737\) 2.25594i 0.0830986i
\(738\) 0 0
\(739\) −2.77789 −0.102186 −0.0510931 0.998694i \(-0.516271\pi\)
−0.0510931 + 0.998694i \(0.516271\pi\)
\(740\) 0 0
\(741\) −0.860353 −0.0316058
\(742\) 0 0
\(743\) 23.0358i 0.845103i −0.906339 0.422552i \(-0.861135\pi\)
0.906339 0.422552i \(-0.138865\pi\)
\(744\) 0 0
\(745\) −18.3798 18.7569i −0.673383 0.687201i
\(746\) 0 0
\(747\) 5.67053i 0.207474i
\(748\) 0 0
\(749\) 14.0151 0.512100
\(750\) 0 0
\(751\) −11.9544 −0.436221 −0.218110 0.975924i \(-0.569989\pi\)
−0.218110 + 0.975924i \(0.569989\pi\)
\(752\) 0 0
\(753\) 23.1380i 0.843194i
\(754\) 0 0
\(755\) 3.14781 + 3.21240i 0.114561 + 0.116911i
\(756\) 0 0
\(757\) 49.7628i 1.80866i 0.426834 + 0.904330i \(0.359629\pi\)
−0.426834 + 0.904330i \(0.640371\pi\)
\(758\) 0 0
\(759\) 3.44318 0.124980
\(760\) 0 0
\(761\) 4.32110 0.156640 0.0783198 0.996928i \(-0.475044\pi\)
0.0783198 + 0.996928i \(0.475044\pi\)
\(762\) 0 0
\(763\) 0.988199i 0.0357752i
\(764\) 0 0
\(765\) 1.28184 1.25607i 0.0463450 0.0454131i
\(766\) 0 0
\(767\) 1.58213i 0.0571275i
\(768\) 0 0
\(769\) −1.35621 −0.0489062 −0.0244531 0.999701i \(-0.507784\pi\)
−0.0244531 + 0.999701i \(0.507784\pi\)
\(770\) 0 0
\(771\) 18.4826 0.665634
\(772\) 0 0
\(773\) 30.8582i 1.10989i 0.831886 + 0.554947i \(0.187261\pi\)
−0.831886 + 0.554947i \(0.812739\pi\)
\(774\) 0 0
\(775\) −0.202794 + 9.98326i −0.00728459 + 0.358609i
\(776\) 0 0
\(777\) 3.45598i 0.123983i
\(778\) 0 0
\(779\) −82.5435 −2.95743
\(780\) 0 0
\(781\) 8.41853 0.301239
\(782\) 0 0
\(783\) 4.73924i 0.169367i
\(784\) 0 0
\(785\) −36.9845 + 36.2409i −1.32003 + 1.29349i
\(786\) 0 0
\(787\) 6.69991i 0.238826i 0.992845 + 0.119413i \(0.0381012\pi\)
−0.992845 + 0.119413i \(0.961899\pi\)
\(788\) 0 0
\(789\) 3.40223 0.121122
\(790\) 0 0
\(791\) 16.1437 0.574003
\(792\) 0 0
\(793\) 0.626801i 0.0222584i
\(794\) 0 0
\(795\) 16.8064 + 17.1513i 0.596063 + 0.608294i
\(796\) 0 0
\(797\) 45.7012i 1.61882i 0.587245 + 0.809409i \(0.300213\pi\)
−0.587245 + 0.809409i \(0.699787\pi\)
\(798\) 0 0
\(799\) 0.430581 0.0152329
\(800\) 0 0
\(801\) −13.5387 −0.478365
\(802\) 0 0
\(803\) 5.45423i 0.192476i
\(804\) 0 0
\(805\) −5.38858 5.49915i −0.189923 0.193820i
\(806\) 0 0
\(807\) 21.7258i 0.764785i
\(808\) 0 0
\(809\) 16.5972 0.583527 0.291763 0.956491i \(-0.405758\pi\)
0.291763 + 0.956491i \(0.405758\pi\)
\(810\) 0 0
\(811\) −35.9659 −1.26294 −0.631468 0.775402i \(-0.717547\pi\)
−0.631468 + 0.775402i \(0.717547\pi\)
\(812\) 0 0
\(813\) 18.4200i 0.646016i
\(814\) 0 0
\(815\) −22.5037 + 22.0512i −0.788270 + 0.772420i
\(816\) 0 0
\(817\) 45.8393i 1.60371i
\(818\) 0 0
\(819\) 0.122890 0.00429412
\(820\) 0 0
\(821\) −18.1886 −0.634786 −0.317393 0.948294i \(-0.602807\pi\)
−0.317393 + 0.948294i \(0.602807\pi\)
\(822\) 0 0
\(823\) 19.1199i 0.666479i 0.942842 + 0.333240i \(0.108142\pi\)
−0.942842 + 0.333240i \(0.891858\pi\)
\(824\) 0 0
\(825\) −4.99897 0.101546i −0.174042 0.00353539i
\(826\) 0 0
\(827\) 26.9412i 0.936838i 0.883507 + 0.468419i \(0.155176\pi\)
−0.883507 + 0.468419i \(0.844824\pi\)
\(828\) 0 0
\(829\) −19.7270 −0.685146 −0.342573 0.939491i \(-0.611298\pi\)
−0.342573 + 0.939491i \(0.611298\pi\)
\(830\) 0 0
\(831\) −1.10740 −0.0384153
\(832\) 0 0
\(833\) 0.802598i 0.0278084i
\(834\) 0 0
\(835\) −4.13480 + 4.05166i −0.143091 + 0.140214i
\(836\) 0 0
\(837\) 1.99706i 0.0690286i
\(838\) 0 0
\(839\) −26.7897 −0.924885 −0.462442 0.886649i \(-0.653027\pi\)
−0.462442 + 0.886649i \(0.653027\pi\)
\(840\) 0 0
\(841\) −6.53956 −0.225502
\(842\) 0 0
\(843\) 3.87370i 0.133417i
\(844\) 0 0
\(845\) −20.3214 20.7384i −0.699076 0.713421i
\(846\) 0 0
\(847\) 1.00000i 0.0343604i
\(848\) 0 0
\(849\) 11.1282 0.381920
\(850\) 0 0
\(851\) −11.8996 −0.407912
\(852\) 0 0
\(853\) 26.8042i 0.917759i −0.888498 0.458880i \(-0.848251\pi\)
0.888498 0.458880i \(-0.151749\pi\)
\(854\) 0 0
\(855\) 10.9566 + 11.1814i 0.374707 + 0.382396i
\(856\) 0 0
\(857\) 38.1053i 1.30165i −0.759227 0.650826i \(-0.774423\pi\)
0.759227 0.650826i \(-0.225577\pi\)
\(858\) 0 0
\(859\) −4.97911 −0.169885 −0.0849425 0.996386i \(-0.527071\pi\)
−0.0849425 + 0.996386i \(0.527071\pi\)
\(860\) 0 0
\(861\) 11.7902 0.401811
\(862\) 0 0
\(863\) 12.2098i 0.415627i −0.978169 0.207813i \(-0.933365\pi\)
0.978169 0.207813i \(-0.0666346\pi\)
\(864\) 0 0
\(865\) −22.9078 + 22.4472i −0.778887 + 0.763226i
\(866\) 0 0
\(867\) 16.3558i 0.555473i
\(868\) 0 0
\(869\) 6.49664 0.220383
\(870\) 0 0
\(871\) 0.277232 0.00939366
\(872\) 0 0
\(873\) 7.67347i 0.259708i
\(874\) 0 0
\(875\) 7.66121 + 8.14284i 0.258996 + 0.275278i
\(876\) 0 0
\(877\) 50.7466i 1.71359i −0.515656 0.856795i \(-0.672452\pi\)
0.515656 0.856795i \(-0.327548\pi\)
\(878\) 0 0
\(879\) −27.3496 −0.922478
\(880\) 0 0
\(881\) 27.4523 0.924892 0.462446 0.886647i \(-0.346972\pi\)
0.462446 + 0.886647i \(0.346972\pi\)
\(882\) 0 0
\(883\) 46.6300i 1.56923i 0.619986 + 0.784613i \(0.287138\pi\)
−0.619986 + 0.784613i \(0.712862\pi\)
\(884\) 0 0
\(885\) −20.5619 + 20.1484i −0.691180 + 0.677282i
\(886\) 0 0
\(887\) 35.7104i 1.19904i 0.800360 + 0.599519i \(0.204641\pi\)
−0.800360 + 0.599519i \(0.795359\pi\)
\(888\) 0 0
\(889\) −14.5957 −0.489524
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 3.75593i 0.125687i
\(894\) 0 0
\(895\) −31.6216 32.2705i −1.05699 1.07868i
\(896\) 0 0
\(897\) 0.423133i 0.0141280i
\(898\) 0 0
\(899\) −9.46457 −0.315661
\(900\) 0 0
\(901\) 8.61904 0.287142
\(902\) 0 0
\(903\) 6.54753i 0.217888i
\(904\) 0 0
\(905\) −31.4987 32.1450i −1.04705 1.06854i
\(906\) 0 0
\(907\) 46.5420i 1.54540i 0.634771 + 0.772700i \(0.281094\pi\)
−0.634771 + 0.772700i \(0.718906\pi\)
\(908\) 0 0
\(909\) −8.09255 −0.268413
\(910\) 0 0
\(911\) −12.3496 −0.409161 −0.204581 0.978850i \(-0.565583\pi\)
−0.204581 + 0.978850i \(0.565583\pi\)
\(912\) 0 0
\(913\) 5.67053i 0.187667i
\(914\) 0 0
\(915\) 8.14609 7.98229i 0.269301 0.263886i
\(916\) 0 0
\(917\) 3.72330i 0.122954i
\(918\) 0 0
\(919\) 12.8615 0.424262 0.212131 0.977241i \(-0.431960\pi\)
0.212131 + 0.977241i \(0.431960\pi\)
\(920\) 0 0
\(921\) 12.6281 0.416110
\(922\) 0 0
\(923\) 1.03455i 0.0340527i
\(924\) 0 0
\(925\) 17.2764 + 0.350942i 0.568043 + 0.0115389i
\(926\) 0 0
\(927\) 9.18812i 0.301777i
\(928\) 0 0
\(929\) 55.4391 1.81890 0.909448 0.415817i \(-0.136504\pi\)
0.909448 + 0.415817i \(0.136504\pi\)
\(930\) 0 0
\(931\) −7.00100 −0.229449
\(932\) 0 0
\(933\) 15.5412i 0.508795i
\(934\) 0 0
\(935\) −1.28184 + 1.25607i −0.0419206 + 0.0410777i
\(936\) 0 0
\(937\) 57.7967i 1.88813i −0.329753 0.944067i \(-0.606965\pi\)
0.329753 0.944067i \(-0.393035\pi\)
\(938\) 0 0
\(939\) −14.3797 −0.469264
\(940\) 0 0
\(941\) −45.0236 −1.46773 −0.733864 0.679296i \(-0.762285\pi\)
−0.733864 + 0.679296i \(0.762285\pi\)
\(942\) 0 0
\(943\) 40.5960i 1.32199i
\(944\) 0 0
\(945\) −1.56500 1.59711i −0.0509095 0.0519541i
\(946\) 0 0
\(947\) 22.3627i 0.726688i −0.931655 0.363344i \(-0.881635\pi\)
0.931655 0.363344i \(-0.118365\pi\)
\(948\) 0 0
\(949\) 0.670270 0.0217579
\(950\) 0 0
\(951\) −1.38430 −0.0448890
\(952\) 0 0
\(953\) 21.3671i 0.692147i −0.938207 0.346074i \(-0.887515\pi\)
0.938207 0.346074i \(-0.112485\pi\)
\(954\) 0 0
\(955\) 24.0580 + 24.5517i 0.778500 + 0.794474i
\(956\) 0 0
\(957\) 4.73924i 0.153198i
\(958\) 0 0
\(959\) 0.484151 0.0156340
\(960\) 0 0
\(961\) −27.0117 −0.871346
\(962\) 0 0
\(963\) 14.0151i 0.451630i
\(964\) 0 0
\(965\) −3.82478 + 3.74787i −0.123124 + 0.120648i
\(966\) 0 0
\(967\) 15.6000i 0.501661i −0.968031 0.250831i \(-0.919296\pi\)
0.968031 0.250831i \(-0.0807037\pi\)
\(968\) 0 0
\(969\) 5.61899 0.180508
\(970\) 0 0
\(971\) −44.8431 −1.43908 −0.719541 0.694450i \(-0.755648\pi\)
−0.719541 + 0.694450i \(0.755648\pi\)
\(972\) 0 0
\(973\) 21.8921i 0.701828i
\(974\) 0 0
\(975\) 0.0124790 0.614323i 0.000399649 0.0196741i
\(976\) 0 0
\(977\) 6.51379i 0.208395i 0.994557 + 0.104197i \(0.0332273\pi\)
−0.994557 + 0.104197i \(0.966773\pi\)
\(978\) 0 0
\(979\) 13.5387 0.432698
\(980\) 0 0
\(981\) 0.988199 0.0315508
\(982\) 0 0
\(983\) 36.7051i 1.17071i −0.810777 0.585355i \(-0.800955\pi\)
0.810777 0.585355i \(-0.199045\pi\)
\(984\) 0 0
\(985\) 24.9870 24.4846i 0.796152 0.780144i
\(986\) 0 0
\(987\) 0.536484i 0.0170765i
\(988\) 0 0
\(989\) −22.5443 −0.716869
\(990\) 0 0
\(991\) 28.3404 0.900262 0.450131 0.892962i \(-0.351377\pi\)
0.450131 + 0.892962i \(0.351377\pi\)
\(992\) 0 0
\(993\) 9.30072i 0.295149i
\(994\) 0 0
\(995\) −9.66439 9.86270i −0.306382 0.312669i
\(996\) 0 0
\(997\) 52.8494i 1.67376i −0.547388 0.836879i \(-0.684378\pi\)
0.547388 0.836879i \(-0.315622\pi\)
\(998\) 0 0
\(999\) −3.45598 −0.109342
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4620.2.h.e.1849.10 yes 14
5.4 even 2 inner 4620.2.h.e.1849.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4620.2.h.e.1849.3 14 5.4 even 2 inner
4620.2.h.e.1849.10 yes 14 1.1 even 1 trivial