Properties

Label 4608.2.k.bd
Level $4608$
Weight $2$
Character orbit 4608.k
Analytic conductor $36.795$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4608,2,Mod(1153,4608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4608, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4608.1153"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,0,0,0,0,-8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 512)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1 - 1) q^{5} - \beta_{3} q^{7} + (\beta_{7} - \beta_{6} + \beta_{3}) q^{11} + (\beta_{4} + \beta_{2} - 1) q^{13} + ( - \beta_{4} + \beta_1) q^{17} + ( - \beta_{7} - \beta_{5} + \beta_{3}) q^{19}+ \cdots + (\beta_{4} - \beta_1 + 8) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{13} - 8 q^{29} - 40 q^{37} - 8 q^{49} + 8 q^{53} - 40 q^{61} - 16 q^{65} + 64 q^{77} + 32 q^{85} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{16}^{4} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\zeta_{16}^{5} + 2\zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\zeta_{16}^{6} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{16}^{7} - \zeta_{16}^{5} + \zeta_{16}^{3} - \zeta_{16} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \zeta_{16}^{7} - \zeta_{16}^{5} + \zeta_{16}^{3} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -2\zeta_{16}^{7} + 2\zeta_{16} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{7} + \beta_{6} - \beta_{5} ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( \beta_{6} + \beta_{5} + \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( -\beta_{6} - \beta_{5} + \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -\beta_{7} + \beta_{6} - \beta_{5} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1153.1
−0.382683 0.923880i
0.382683 + 0.923880i
−0.923880 + 0.382683i
0.923880 0.382683i
0.382683 0.923880i
−0.382683 + 0.923880i
0.923880 + 0.382683i
−0.923880 0.382683i
0 0 0 −2.41421 + 2.41421i 0 1.53073i 0 0 0
1153.2 0 0 0 −2.41421 + 2.41421i 0 1.53073i 0 0 0
1153.3 0 0 0 0.414214 0.414214i 0 3.69552i 0 0 0
1153.4 0 0 0 0.414214 0.414214i 0 3.69552i 0 0 0
3457.1 0 0 0 −2.41421 2.41421i 0 1.53073i 0 0 0
3457.2 0 0 0 −2.41421 2.41421i 0 1.53073i 0 0 0
3457.3 0 0 0 0.414214 + 0.414214i 0 3.69552i 0 0 0
3457.4 0 0 0 0.414214 + 0.414214i 0 3.69552i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1153.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.k.bd 8
3.b odd 2 1 512.2.e.j yes 8
4.b odd 2 1 inner 4608.2.k.bd 8
8.b even 2 1 4608.2.k.bi 8
8.d odd 2 1 4608.2.k.bi 8
12.b even 2 1 512.2.e.j yes 8
16.e even 4 1 inner 4608.2.k.bd 8
16.e even 4 1 4608.2.k.bi 8
16.f odd 4 1 inner 4608.2.k.bd 8
16.f odd 4 1 4608.2.k.bi 8
24.f even 2 1 512.2.e.i 8
24.h odd 2 1 512.2.e.i 8
32.g even 8 1 9216.2.a.w 4
32.g even 8 1 9216.2.a.bp 4
32.h odd 8 1 9216.2.a.w 4
32.h odd 8 1 9216.2.a.bp 4
48.i odd 4 1 512.2.e.i 8
48.i odd 4 1 512.2.e.j yes 8
48.k even 4 1 512.2.e.i 8
48.k even 4 1 512.2.e.j yes 8
96.o even 8 1 1024.2.a.h 4
96.o even 8 1 1024.2.a.i 4
96.o even 8 2 1024.2.b.g 8
96.p odd 8 1 1024.2.a.h 4
96.p odd 8 1 1024.2.a.i 4
96.p odd 8 2 1024.2.b.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
512.2.e.i 8 24.f even 2 1
512.2.e.i 8 24.h odd 2 1
512.2.e.i 8 48.i odd 4 1
512.2.e.i 8 48.k even 4 1
512.2.e.j yes 8 3.b odd 2 1
512.2.e.j yes 8 12.b even 2 1
512.2.e.j yes 8 48.i odd 4 1
512.2.e.j yes 8 48.k even 4 1
1024.2.a.h 4 96.o even 8 1
1024.2.a.h 4 96.p odd 8 1
1024.2.a.i 4 96.o even 8 1
1024.2.a.i 4 96.p odd 8 1
1024.2.b.g 8 96.o even 8 2
1024.2.b.g 8 96.p odd 8 2
4608.2.k.bd 8 1.a even 1 1 trivial
4608.2.k.bd 8 4.b odd 2 1 inner
4608.2.k.bd 8 16.e even 4 1 inner
4608.2.k.bd 8 16.f odd 4 1 inner
4608.2.k.bi 8 8.b even 2 1
4608.2.k.bi 8 8.d odd 2 1
4608.2.k.bi 8 16.e even 4 1
4608.2.k.bi 8 16.f odd 4 1
9216.2.a.w 4 32.g even 8 1
9216.2.a.w 4 32.h odd 8 1
9216.2.a.bp 4 32.g even 8 1
9216.2.a.bp 4 32.h odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4608, [\chi])\):

\( T_{5}^{4} + 4T_{5}^{3} + 8T_{5}^{2} - 8T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 16T_{7}^{2} + 32 \) Copy content Toggle raw display
\( T_{11}^{8} + 816T_{11}^{4} + 153664 \) Copy content Toggle raw display
\( T_{13}^{4} + 4T_{13}^{3} + 8T_{13}^{2} - 8T_{13} + 4 \) Copy content Toggle raw display
\( T_{19}^{8} + 1584T_{19}^{4} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 4 T^{3} + 8 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 16 T^{2} + 32)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 816 T^{4} + 153664 \) Copy content Toggle raw display
$13$ \( (T^{4} + 4 T^{3} + 8 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$19$ \( T^{8} + 1584T^{4} + 64 \) Copy content Toggle raw display
$23$ \( (T^{4} + 80 T^{2} + 1568)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 4 T^{3} + \cdots + 1156)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 64 T^{2} + 512)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 20 T^{3} + \cdots + 2116)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} + 48T^{4} + 64 \) Copy content Toggle raw display
$47$ \( (T^{4} - 64 T^{2} + 512)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 4 T^{3} + \cdots + 1156)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 48T^{4} + 64 \) Copy content Toggle raw display
$61$ \( (T^{4} + 20 T^{3} + \cdots + 196)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 10032 T^{4} + 153664 \) Copy content Toggle raw display
$71$ \( (T^{4} + 208 T^{2} + 9248)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 152 T^{2} + 4624)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 256 T^{2} + 8192)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 35376 T^{4} + 5345344 \) Copy content Toggle raw display
$89$ \( (T^{4} + 24 T^{2} + 16)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 16 T + 56)^{4} \) Copy content Toggle raw display
show more
show less