Properties

Label 460.2.s
Level $460$
Weight $2$
Character orbit 460.s
Rep. character $\chi_{460}(9,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $120$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.s (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(460, [\chi])\).

Total New Old
Modular forms 780 120 660
Cusp forms 660 120 540
Eisenstein series 120 0 120

Trace form

\( 120q + 20q^{9} + O(q^{10}) \) \( 120q + 20q^{9} - 4q^{11} + 9q^{15} + 8q^{19} + 14q^{25} + 10q^{29} - 18q^{31} + 10q^{35} - 60q^{39} + 2q^{41} - 2q^{45} - 28q^{49} + 24q^{51} + 6q^{55} - 36q^{61} + 39q^{65} + 118q^{69} - 76q^{71} + 83q^{75} + 64q^{79} - 160q^{81} + 38q^{85} - 48q^{89} - 80q^{91} + 21q^{95} - 142q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(460, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
460.2.s.a \(120\) \(3.673\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(460, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(460, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)