Properties

Label 459.2.o.a.370.11
Level $459$
Weight $2$
Character 459.370
Analytic conductor $3.665$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(64,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 370.11
Character \(\chi\) \(=\) 459.370
Dual form 459.2.o.a.361.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15506 + 0.666877i) q^{2} +(-0.110551 - 0.191481i) q^{4} +(0.0545182 - 0.203465i) q^{5} +(-0.965572 - 3.60357i) q^{7} -2.96240i q^{8} +(0.198658 - 0.198658i) q^{10} +(-0.0436083 - 0.162748i) q^{11} +(0.706706 + 1.22405i) q^{13} +(1.28784 - 4.80627i) q^{14} +(1.75445 - 3.03880i) q^{16} +(4.12302 + 0.0270617i) q^{17} -5.28066i q^{19} +(-0.0449866 + 0.0120541i) q^{20} +(0.0581627 - 0.217066i) q^{22} +(-6.79301 - 1.82018i) q^{23} +(4.29170 + 2.47781i) q^{25} +1.88514i q^{26} +(-0.583267 + 0.583267i) q^{28} +(3.22202 - 0.863336i) q^{29} +(-1.82059 + 6.79453i) q^{31} +(-1.07802 + 0.622394i) q^{32} +(4.74430 + 2.78080i) q^{34} -0.785840 q^{35} +(6.83838 + 6.83838i) q^{37} +(3.52155 - 6.09950i) q^{38} +(-0.602745 - 0.161505i) q^{40} +(-3.60410 - 0.965717i) q^{41} +(5.92513 + 3.42088i) q^{43} +(-0.0263422 + 0.0263422i) q^{44} +(-6.63253 - 6.63253i) q^{46} +(-1.01890 + 1.76479i) q^{47} +(-5.99118 + 3.45901i) q^{49} +(3.30479 + 5.72407i) q^{50} +(0.156255 - 0.270641i) q^{52} -6.04183i q^{53} -0.0354910 q^{55} +(-10.6752 + 2.86041i) q^{56} +(4.29737 + 1.15148i) q^{58} +(-0.580968 + 0.335422i) q^{59} +(-0.801711 - 2.99203i) q^{61} +(-6.63401 + 6.63401i) q^{62} -8.67806 q^{64} +(0.287580 - 0.0770567i) q^{65} +(-2.21819 - 3.84202i) q^{67} +(-0.450623 - 0.792469i) q^{68} +(-0.907696 - 0.524058i) q^{70} +(5.52395 + 5.52395i) q^{71} +(-4.07769 - 4.07769i) q^{73} +(3.33841 + 12.4591i) q^{74} +(-1.01114 + 0.583784i) q^{76} +(-0.544367 + 0.314290i) q^{77} +(0.350417 + 1.30778i) q^{79} +(-0.522640 - 0.522640i) q^{80} +(-3.51896 - 3.51896i) q^{82} +(3.07278 + 1.77407i) q^{83} +(0.230286 - 0.837414i) q^{85} +(4.56261 + 7.90266i) q^{86} +(-0.482126 + 0.129185i) q^{88} +15.8264 q^{89} +(3.72857 - 3.72857i) q^{91} +(0.402447 + 1.50195i) q^{92} +(-2.35380 + 1.35897i) q^{94} +(-1.07443 - 0.287893i) q^{95} +(-8.66597 + 2.32204i) q^{97} -9.22692 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 24 q^{4} + 2 q^{5} - 2 q^{7} - 16 q^{10} - 4 q^{13} - 16 q^{16} + 8 q^{17} - 18 q^{20} - 4 q^{22} + 8 q^{23} + 10 q^{29} - 2 q^{31} + 20 q^{34} + 128 q^{35} - 8 q^{37} + 24 q^{38} - 20 q^{40} - 32 q^{41}+ \cdots - 208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15506 + 0.666877i 0.816754 + 0.471553i 0.849296 0.527917i \(-0.177027\pi\)
−0.0325421 + 0.999470i \(0.510360\pi\)
\(3\) 0 0
\(4\) −0.110551 0.191481i −0.0552757 0.0957403i
\(5\) 0.0545182 0.203465i 0.0243813 0.0909923i −0.952663 0.304028i \(-0.901668\pi\)
0.977044 + 0.213036i \(0.0683351\pi\)
\(6\) 0 0
\(7\) −0.965572 3.60357i −0.364952 1.36202i −0.867486 0.497462i \(-0.834265\pi\)
0.502534 0.864558i \(-0.332401\pi\)
\(8\) 2.96240i 1.04737i
\(9\) 0 0
\(10\) 0.198658 0.198658i 0.0628212 0.0628212i
\(11\) −0.0436083 0.162748i −0.0131484 0.0490704i 0.959040 0.283271i \(-0.0914195\pi\)
−0.972188 + 0.234200i \(0.924753\pi\)
\(12\) 0 0
\(13\) 0.706706 + 1.22405i 0.196005 + 0.339491i 0.947230 0.320556i \(-0.103870\pi\)
−0.751225 + 0.660047i \(0.770536\pi\)
\(14\) 1.28784 4.80627i 0.344188 1.28453i
\(15\) 0 0
\(16\) 1.75445 3.03880i 0.438614 0.759701i
\(17\) 4.12302 + 0.0270617i 0.999978 + 0.00656344i
\(18\) 0 0
\(19\) 5.28066i 1.21147i −0.795667 0.605734i \(-0.792880\pi\)
0.795667 0.605734i \(-0.207120\pi\)
\(20\) −0.0449866 + 0.0120541i −0.0100593 + 0.00269539i
\(21\) 0 0
\(22\) 0.0581627 0.217066i 0.0124003 0.0462786i
\(23\) −6.79301 1.82018i −1.41644 0.379534i −0.532221 0.846605i \(-0.678642\pi\)
−0.884220 + 0.467071i \(0.845309\pi\)
\(24\) 0 0
\(25\) 4.29170 + 2.47781i 0.858340 + 0.495563i
\(26\) 1.88514i 0.369707i
\(27\) 0 0
\(28\) −0.583267 + 0.583267i −0.110227 + 0.110227i
\(29\) 3.22202 0.863336i 0.598313 0.160318i 0.0530634 0.998591i \(-0.483101\pi\)
0.545250 + 0.838274i \(0.316435\pi\)
\(30\) 0 0
\(31\) −1.82059 + 6.79453i −0.326987 + 1.22033i 0.585311 + 0.810809i \(0.300972\pi\)
−0.912299 + 0.409525i \(0.865694\pi\)
\(32\) −1.07802 + 0.622394i −0.190568 + 0.110025i
\(33\) 0 0
\(34\) 4.74430 + 2.78080i 0.813641 + 0.476903i
\(35\) −0.785840 −0.132831
\(36\) 0 0
\(37\) 6.83838 + 6.83838i 1.12422 + 1.12422i 0.991099 + 0.133124i \(0.0425007\pi\)
0.133124 + 0.991099i \(0.457499\pi\)
\(38\) 3.52155 6.09950i 0.571271 0.989470i
\(39\) 0 0
\(40\) −0.602745 0.161505i −0.0953023 0.0255362i
\(41\) −3.60410 0.965717i −0.562867 0.150820i −0.0338436 0.999427i \(-0.510775\pi\)
−0.529023 + 0.848607i \(0.677441\pi\)
\(42\) 0 0
\(43\) 5.92513 + 3.42088i 0.903574 + 0.521679i 0.878358 0.478003i \(-0.158639\pi\)
0.0252162 + 0.999682i \(0.491973\pi\)
\(44\) −0.0263422 + 0.0263422i −0.00397123 + 0.00397123i
\(45\) 0 0
\(46\) −6.63253 6.63253i −0.977913 0.977913i
\(47\) −1.01890 + 1.76479i −0.148622 + 0.257421i −0.930719 0.365736i \(-0.880817\pi\)
0.782096 + 0.623158i \(0.214151\pi\)
\(48\) 0 0
\(49\) −5.99118 + 3.45901i −0.855882 + 0.494144i
\(50\) 3.30479 + 5.72407i 0.467368 + 0.809506i
\(51\) 0 0
\(52\) 0.156255 0.270641i 0.0216686 0.0375311i
\(53\) 6.04183i 0.829909i −0.909842 0.414954i \(-0.863798\pi\)
0.909842 0.414954i \(-0.136202\pi\)
\(54\) 0 0
\(55\) −0.0354910 −0.00478560
\(56\) −10.6752 + 2.86041i −1.42654 + 0.382239i
\(57\) 0 0
\(58\) 4.29737 + 1.15148i 0.564273 + 0.151196i
\(59\) −0.580968 + 0.335422i −0.0756355 + 0.0436682i −0.537341 0.843365i \(-0.680571\pi\)
0.461705 + 0.887033i \(0.347238\pi\)
\(60\) 0 0
\(61\) −0.801711 2.99203i −0.102649 0.383090i 0.895419 0.445224i \(-0.146876\pi\)
−0.998068 + 0.0621342i \(0.980209\pi\)
\(62\) −6.63401 + 6.63401i −0.842520 + 0.842520i
\(63\) 0 0
\(64\) −8.67806 −1.08476
\(65\) 0.287580 0.0770567i 0.0356699 0.00955771i
\(66\) 0 0
\(67\) −2.21819 3.84202i −0.270995 0.469377i 0.698122 0.715979i \(-0.254019\pi\)
−0.969117 + 0.246602i \(0.920686\pi\)
\(68\) −0.450623 0.792469i −0.0546461 0.0961010i
\(69\) 0 0
\(70\) −0.907696 0.524058i −0.108490 0.0626370i
\(71\) 5.52395 + 5.52395i 0.655572 + 0.655572i 0.954329 0.298757i \(-0.0965721\pi\)
−0.298757 + 0.954329i \(0.596572\pi\)
\(72\) 0 0
\(73\) −4.07769 4.07769i −0.477257 0.477257i 0.426996 0.904253i \(-0.359572\pi\)
−0.904253 + 0.426996i \(0.859572\pi\)
\(74\) 3.33841 + 12.4591i 0.388083 + 1.44834i
\(75\) 0 0
\(76\) −1.01114 + 0.583784i −0.115986 + 0.0669647i
\(77\) −0.544367 + 0.314290i −0.0620364 + 0.0358167i
\(78\) 0 0
\(79\) 0.350417 + 1.30778i 0.0394250 + 0.147136i 0.982833 0.184499i \(-0.0590663\pi\)
−0.943408 + 0.331635i \(0.892400\pi\)
\(80\) −0.522640 0.522640i −0.0584329 0.0584329i
\(81\) 0 0
\(82\) −3.51896 3.51896i −0.388604 0.388604i
\(83\) 3.07278 + 1.77407i 0.337282 + 0.194730i 0.659069 0.752082i \(-0.270950\pi\)
−0.321788 + 0.946812i \(0.604284\pi\)
\(84\) 0 0
\(85\) 0.230286 0.837414i 0.0249780 0.0908303i
\(86\) 4.56261 + 7.90266i 0.491998 + 0.852166i
\(87\) 0 0
\(88\) −0.482126 + 0.129185i −0.0513948 + 0.0137712i
\(89\) 15.8264 1.67759 0.838797 0.544444i \(-0.183259\pi\)
0.838797 + 0.544444i \(0.183259\pi\)
\(90\) 0 0
\(91\) 3.72857 3.72857i 0.390860 0.390860i
\(92\) 0.402447 + 1.50195i 0.0419580 + 0.156589i
\(93\) 0 0
\(94\) −2.35380 + 1.35897i −0.242776 + 0.140167i
\(95\) −1.07443 0.287893i −0.110234 0.0295371i
\(96\) 0 0
\(97\) −8.66597 + 2.32204i −0.879895 + 0.235767i −0.670362 0.742034i \(-0.733861\pi\)
−0.209533 + 0.977801i \(0.567195\pi\)
\(98\) −9.22692 −0.932060
\(99\) 0 0
\(100\) 1.09570i 0.109570i
\(101\) −7.35059 + 12.7316i −0.731411 + 1.26684i 0.224870 + 0.974389i \(0.427804\pi\)
−0.956280 + 0.292452i \(0.905529\pi\)
\(102\) 0 0
\(103\) 7.74773 + 13.4195i 0.763406 + 1.32226i 0.941085 + 0.338170i \(0.109808\pi\)
−0.177679 + 0.984088i \(0.556859\pi\)
\(104\) 3.62613 2.09355i 0.355571 0.205289i
\(105\) 0 0
\(106\) 4.02915 6.97870i 0.391346 0.677831i
\(107\) −11.1012 11.1012i −1.07320 1.07320i −0.997101 0.0760947i \(-0.975755\pi\)
−0.0760947 0.997101i \(-0.524245\pi\)
\(108\) 0 0
\(109\) −10.4007 + 10.4007i −0.996204 + 0.996204i −0.999993 0.00378912i \(-0.998794\pi\)
0.00378912 + 0.999993i \(0.498794\pi\)
\(110\) −0.0409944 0.0236681i −0.00390866 0.00225667i
\(111\) 0 0
\(112\) −12.6446 3.38811i −1.19480 0.320146i
\(113\) 13.5285 + 3.62495i 1.27265 + 0.341006i 0.831047 0.556203i \(-0.187742\pi\)
0.441606 + 0.897209i \(0.354409\pi\)
\(114\) 0 0
\(115\) −0.740686 + 1.28291i −0.0690693 + 0.119632i
\(116\) −0.521510 0.521510i −0.0484210 0.0484210i
\(117\) 0 0
\(118\) −0.894740 −0.0823675
\(119\) −3.88355 14.8837i −0.356005 1.36439i
\(120\) 0 0
\(121\) 9.50169 5.48581i 0.863790 0.498710i
\(122\) 1.06929 3.99063i 0.0968085 0.361294i
\(123\) 0 0
\(124\) 1.50229 0.402537i 0.134910 0.0361489i
\(125\) 1.48286 1.48286i 0.132631 0.132631i
\(126\) 0 0
\(127\) 0.370683i 0.0328928i 0.999865 + 0.0164464i \(0.00523529\pi\)
−0.999865 + 0.0164464i \(0.994765\pi\)
\(128\) −7.86768 4.54240i −0.695411 0.401496i
\(129\) 0 0
\(130\) 0.383560 + 0.102775i 0.0336405 + 0.00901393i
\(131\) −0.674611 + 2.51768i −0.0589410 + 0.219971i −0.989114 0.147150i \(-0.952990\pi\)
0.930173 + 0.367121i \(0.119657\pi\)
\(132\) 0 0
\(133\) −19.0292 + 5.09886i −1.65004 + 0.442127i
\(134\) 5.91703i 0.511154i
\(135\) 0 0
\(136\) 0.0801678 12.2140i 0.00687433 1.04734i
\(137\) 5.56708 9.64246i 0.475628 0.823811i −0.523983 0.851729i \(-0.675554\pi\)
0.999610 + 0.0279179i \(0.00888769\pi\)
\(138\) 0 0
\(139\) 2.63093 9.81876i 0.223152 0.832816i −0.759984 0.649942i \(-0.774793\pi\)
0.983136 0.182874i \(-0.0585402\pi\)
\(140\) 0.0868757 + 0.150473i 0.00734234 + 0.0127173i
\(141\) 0 0
\(142\) 2.69672 + 10.0643i 0.226304 + 0.844578i
\(143\) 0.168394 0.168394i 0.0140818 0.0140818i
\(144\) 0 0
\(145\) 0.702634i 0.0583506i
\(146\) −1.99068 7.42931i −0.164750 0.614854i
\(147\) 0 0
\(148\) 0.553425 2.06541i 0.0454912 0.169776i
\(149\) 7.83470 + 13.5701i 0.641843 + 1.11171i 0.985021 + 0.172435i \(0.0551634\pi\)
−0.343178 + 0.939271i \(0.611503\pi\)
\(150\) 0 0
\(151\) −0.491938 0.284020i −0.0400333 0.0231132i 0.479850 0.877351i \(-0.340691\pi\)
−0.519883 + 0.854237i \(0.674024\pi\)
\(152\) −15.6435 −1.26885
\(153\) 0 0
\(154\) −0.838372 −0.0675579
\(155\) 1.28319 + 0.740852i 0.103069 + 0.0595067i
\(156\) 0 0
\(157\) 4.92247 + 8.52597i 0.392856 + 0.680447i 0.992825 0.119577i \(-0.0381537\pi\)
−0.599969 + 0.800023i \(0.704820\pi\)
\(158\) −0.467370 + 1.74425i −0.0371820 + 0.138765i
\(159\) 0 0
\(160\) 0.0678636 + 0.253271i 0.00536509 + 0.0200228i
\(161\) 26.2366i 2.06773i
\(162\) 0 0
\(163\) 6.29369 6.29369i 0.492960 0.492960i −0.416278 0.909237i \(-0.636666\pi\)
0.909237 + 0.416278i \(0.136666\pi\)
\(164\) 0.213523 + 0.796877i 0.0166733 + 0.0622257i
\(165\) 0 0
\(166\) 2.36617 + 4.09833i 0.183651 + 0.318092i
\(167\) 1.96230 7.32340i 0.151847 0.566701i −0.847508 0.530783i \(-0.821898\pi\)
0.999355 0.0359181i \(-0.0114355\pi\)
\(168\) 0 0
\(169\) 5.50113 9.52824i 0.423164 0.732942i
\(170\) 0.824446 0.813694i 0.0632322 0.0624075i
\(171\) 0 0
\(172\) 1.51273i 0.115345i
\(173\) 3.48458 0.933690i 0.264928 0.0709872i −0.123910 0.992293i \(-0.539543\pi\)
0.388838 + 0.921306i \(0.372877\pi\)
\(174\) 0 0
\(175\) 4.78502 17.8579i 0.361713 1.34993i
\(176\) −0.571069 0.153017i −0.0430459 0.0115341i
\(177\) 0 0
\(178\) 18.2805 + 10.5543i 1.37018 + 0.791075i
\(179\) 5.94978i 0.444708i 0.974966 + 0.222354i \(0.0713740\pi\)
−0.974966 + 0.222354i \(0.928626\pi\)
\(180\) 0 0
\(181\) −10.2138 + 10.2138i −0.759183 + 0.759183i −0.976174 0.216991i \(-0.930376\pi\)
0.216991 + 0.976174i \(0.430376\pi\)
\(182\) 6.79323 1.82024i 0.503548 0.134925i
\(183\) 0 0
\(184\) −5.39211 + 20.1236i −0.397512 + 1.48353i
\(185\) 1.76419 1.01855i 0.129706 0.0748856i
\(186\) 0 0
\(187\) −0.175393 0.672194i −0.0128260 0.0491557i
\(188\) 0.450564 0.0328608
\(189\) 0 0
\(190\) −1.04905 1.04905i −0.0761058 0.0761058i
\(191\) 3.81360 6.60535i 0.275942 0.477946i −0.694430 0.719560i \(-0.744343\pi\)
0.970372 + 0.241614i \(0.0776767\pi\)
\(192\) 0 0
\(193\) −0.507121 0.135883i −0.0365034 0.00978105i 0.240521 0.970644i \(-0.422682\pi\)
−0.277025 + 0.960863i \(0.589348\pi\)
\(194\) −11.5583 3.09703i −0.829835 0.222353i
\(195\) 0 0
\(196\) 1.32466 + 0.764796i 0.0946189 + 0.0546283i
\(197\) 13.4803 13.4803i 0.960430 0.960430i −0.0388165 0.999246i \(-0.512359\pi\)
0.999246 + 0.0388165i \(0.0123588\pi\)
\(198\) 0 0
\(199\) 15.0652 + 15.0652i 1.06795 + 1.06795i 0.997517 + 0.0704282i \(0.0224366\pi\)
0.0704282 + 0.997517i \(0.477563\pi\)
\(200\) 7.34029 12.7137i 0.519037 0.898998i
\(201\) 0 0
\(202\) −16.9808 + 9.80387i −1.19476 + 0.689798i
\(203\) −6.22218 10.7771i −0.436711 0.756406i
\(204\) 0 0
\(205\) −0.392979 + 0.680660i −0.0274468 + 0.0475393i
\(206\) 20.6671i 1.43995i
\(207\) 0 0
\(208\) 4.95953 0.343882
\(209\) −0.859419 + 0.230281i −0.0594472 + 0.0159288i
\(210\) 0 0
\(211\) −26.2576 7.03571i −1.80765 0.484358i −0.812519 0.582934i \(-0.801905\pi\)
−0.995130 + 0.0985760i \(0.968571\pi\)
\(212\) −1.15689 + 0.667932i −0.0794557 + 0.0458737i
\(213\) 0 0
\(214\) −5.41948 20.2258i −0.370468 1.38260i
\(215\) 1.01906 1.01906i 0.0694991 0.0694991i
\(216\) 0 0
\(217\) 26.2424 1.78145
\(218\) −18.9494 + 5.07748i −1.28342 + 0.343890i
\(219\) 0 0
\(220\) 0.00392358 + 0.00679583i 0.000264527 + 0.000458175i
\(221\) 2.88064 + 5.06591i 0.193773 + 0.340770i
\(222\) 0 0
\(223\) 18.2255 + 10.5225i 1.22047 + 0.704638i 0.965018 0.262183i \(-0.0844425\pi\)
0.255452 + 0.966822i \(0.417776\pi\)
\(224\) 3.28374 + 3.28374i 0.219404 + 0.219404i
\(225\) 0 0
\(226\) 13.2089 + 13.2089i 0.878641 + 0.878641i
\(227\) 3.71004 + 13.8461i 0.246244 + 0.918995i 0.972754 + 0.231839i \(0.0744743\pi\)
−0.726510 + 0.687156i \(0.758859\pi\)
\(228\) 0 0
\(229\) 20.1226 11.6178i 1.32974 0.767723i 0.344477 0.938795i \(-0.388056\pi\)
0.985259 + 0.171072i \(0.0547229\pi\)
\(230\) −1.71108 + 0.987892i −0.112825 + 0.0651397i
\(231\) 0 0
\(232\) −2.55755 9.54491i −0.167911 0.626654i
\(233\) −17.8322 17.8322i −1.16823 1.16823i −0.982625 0.185602i \(-0.940576\pi\)
−0.185602 0.982625i \(-0.559424\pi\)
\(234\) 0 0
\(235\) 0.303524 + 0.303524i 0.0197997 + 0.0197997i
\(236\) 0.128453 + 0.0741627i 0.00836161 + 0.00482758i
\(237\) 0 0
\(238\) 5.43983 19.7815i 0.352612 1.28224i
\(239\) −12.6575 21.9234i −0.818746 1.41811i −0.906607 0.421977i \(-0.861336\pi\)
0.0878604 0.996133i \(-0.471997\pi\)
\(240\) 0 0
\(241\) −27.5291 + 7.37641i −1.77331 + 0.475156i −0.989337 0.145642i \(-0.953475\pi\)
−0.783970 + 0.620798i \(0.786809\pi\)
\(242\) 14.6334 0.940672
\(243\) 0 0
\(244\) −0.484285 + 0.484285i −0.0310032 + 0.0310032i
\(245\) 0.377158 + 1.40757i 0.0240957 + 0.0899265i
\(246\) 0 0
\(247\) 6.46380 3.73188i 0.411282 0.237454i
\(248\) 20.1281 + 5.39332i 1.27814 + 0.342476i
\(249\) 0 0
\(250\) 2.70168 0.723912i 0.170869 0.0457842i
\(251\) −22.9319 −1.44745 −0.723723 0.690090i \(-0.757571\pi\)
−0.723723 + 0.690090i \(0.757571\pi\)
\(252\) 0 0
\(253\) 1.18493i 0.0744956i
\(254\) −0.247200 + 0.428163i −0.0155107 + 0.0268653i
\(255\) 0 0
\(256\) 2.61961 + 4.53730i 0.163726 + 0.283581i
\(257\) −7.44836 + 4.30031i −0.464616 + 0.268246i −0.713983 0.700163i \(-0.753111\pi\)
0.249367 + 0.968409i \(0.419777\pi\)
\(258\) 0 0
\(259\) 18.0396 31.2455i 1.12093 1.94150i
\(260\) −0.0465472 0.0465472i −0.00288673 0.00288673i
\(261\) 0 0
\(262\) −2.45820 + 2.45820i −0.151868 + 0.151868i
\(263\) 21.1728 + 12.2241i 1.30557 + 0.753770i 0.981353 0.192213i \(-0.0615666\pi\)
0.324215 + 0.945983i \(0.394900\pi\)
\(264\) 0 0
\(265\) −1.22930 0.329390i −0.0755152 0.0202342i
\(266\) −25.3803 6.80062i −1.55616 0.416973i
\(267\) 0 0
\(268\) −0.490447 + 0.849480i −0.0299588 + 0.0518902i
\(269\) 7.74991 + 7.74991i 0.472521 + 0.472521i 0.902729 0.430209i \(-0.141560\pi\)
−0.430209 + 0.902729i \(0.641560\pi\)
\(270\) 0 0
\(271\) −9.92166 −0.602698 −0.301349 0.953514i \(-0.597437\pi\)
−0.301349 + 0.953514i \(0.597437\pi\)
\(272\) 7.31588 12.4816i 0.443590 0.756806i
\(273\) 0 0
\(274\) 12.8607 7.42511i 0.776941 0.448567i
\(275\) 0.216106 0.806520i 0.0130317 0.0486350i
\(276\) 0 0
\(277\) −23.2183 + 6.22133i −1.39505 + 0.373803i −0.876566 0.481282i \(-0.840171\pi\)
−0.518487 + 0.855086i \(0.673505\pi\)
\(278\) 9.58679 9.58679i 0.574978 0.574978i
\(279\) 0 0
\(280\) 2.32798i 0.139123i
\(281\) −6.00066 3.46448i −0.357969 0.206674i 0.310220 0.950665i \(-0.399597\pi\)
−0.668190 + 0.743991i \(0.732931\pi\)
\(282\) 0 0
\(283\) 10.1538 + 2.72072i 0.603584 + 0.161730i 0.547654 0.836705i \(-0.315521\pi\)
0.0559298 + 0.998435i \(0.482188\pi\)
\(284\) 0.447049 1.66841i 0.0265274 0.0990018i
\(285\) 0 0
\(286\) 0.306804 0.0822078i 0.0181417 0.00486105i
\(287\) 13.9201i 0.821677i
\(288\) 0 0
\(289\) 16.9985 + 0.223152i 0.999914 + 0.0131266i
\(290\) 0.468570 0.811588i 0.0275154 0.0476581i
\(291\) 0 0
\(292\) −0.330004 + 1.23159i −0.0193120 + 0.0720735i
\(293\) −0.926817 1.60529i −0.0541452 0.0937822i 0.837682 0.546158i \(-0.183910\pi\)
−0.891828 + 0.452375i \(0.850577\pi\)
\(294\) 0 0
\(295\) 0.0365732 + 0.136493i 0.00212938 + 0.00794694i
\(296\) 20.2580 20.2580i 1.17747 1.17747i
\(297\) 0 0
\(298\) 20.8991i 1.21065i
\(299\) −2.57267 9.60132i −0.148781 0.555259i
\(300\) 0 0
\(301\) 6.60621 24.6547i 0.380776 1.42107i
\(302\) −0.378813 0.656123i −0.0217982 0.0377556i
\(303\) 0 0
\(304\) −16.0469 9.26468i −0.920353 0.531366i
\(305\) −0.652480 −0.0373609
\(306\) 0 0
\(307\) 2.47808 0.141431 0.0707157 0.997497i \(-0.477472\pi\)
0.0707157 + 0.997497i \(0.477472\pi\)
\(308\) 0.120361 + 0.0694904i 0.00685820 + 0.00395959i
\(309\) 0 0
\(310\) 0.988113 + 1.71146i 0.0561211 + 0.0972045i
\(311\) −0.0785321 + 0.293086i −0.00445315 + 0.0166194i −0.968117 0.250500i \(-0.919405\pi\)
0.963664 + 0.267119i \(0.0860717\pi\)
\(312\) 0 0
\(313\) 2.04909 + 7.64730i 0.115821 + 0.432251i 0.999347 0.0361315i \(-0.0115035\pi\)
−0.883526 + 0.468383i \(0.844837\pi\)
\(314\) 13.1307i 0.741010i
\(315\) 0 0
\(316\) 0.211674 0.211674i 0.0119076 0.0119076i
\(317\) 3.88088 + 14.4836i 0.217972 + 0.813482i 0.985099 + 0.171987i \(0.0550187\pi\)
−0.767127 + 0.641495i \(0.778315\pi\)
\(318\) 0 0
\(319\) −0.281013 0.486729i −0.0157337 0.0272516i
\(320\) −0.473112 + 1.76568i −0.0264478 + 0.0987045i
\(321\) 0 0
\(322\) −17.4966 + 30.3049i −0.975045 + 1.68883i
\(323\) 0.142904 21.7723i 0.00795139 1.21144i
\(324\) 0 0
\(325\) 7.00435i 0.388531i
\(326\) 11.4667 3.07250i 0.635083 0.170170i
\(327\) 0 0
\(328\) −2.86084 + 10.6768i −0.157964 + 0.589528i
\(329\) 7.34337 + 1.96765i 0.404853 + 0.108480i
\(330\) 0 0
\(331\) −6.97954 4.02964i −0.383630 0.221489i 0.295766 0.955260i \(-0.404425\pi\)
−0.679397 + 0.733771i \(0.737758\pi\)
\(332\) 0.784504i 0.0430552i
\(333\) 0 0
\(334\) 7.15038 7.15038i 0.391251 0.391251i
\(335\) −0.902647 + 0.241864i −0.0493169 + 0.0132144i
\(336\) 0 0
\(337\) −1.08054 + 4.03263i −0.0588608 + 0.219671i −0.989091 0.147305i \(-0.952940\pi\)
0.930230 + 0.366976i \(0.119607\pi\)
\(338\) 12.7083 7.33715i 0.691242 0.399089i
\(339\) 0 0
\(340\) −0.185807 + 0.0484820i −0.0100768 + 0.00262930i
\(341\) 1.18519 0.0641817
\(342\) 0 0
\(343\) −0.216280 0.216280i −0.0116780 0.0116780i
\(344\) 10.1340 17.5526i 0.546389 0.946374i
\(345\) 0 0
\(346\) 4.64757 + 1.24531i 0.249855 + 0.0669484i
\(347\) −6.16352 1.65151i −0.330875 0.0886578i 0.0895570 0.995982i \(-0.471455\pi\)
−0.420432 + 0.907324i \(0.638122\pi\)
\(348\) 0 0
\(349\) −14.6553 8.46127i −0.784482 0.452921i 0.0535341 0.998566i \(-0.482951\pi\)
−0.838017 + 0.545645i \(0.816285\pi\)
\(350\) 17.4360 17.4360i 0.931996 0.931996i
\(351\) 0 0
\(352\) 0.148304 + 0.148304i 0.00790463 + 0.00790463i
\(353\) −10.6249 + 18.4029i −0.565507 + 0.979486i 0.431496 + 0.902115i \(0.357986\pi\)
−0.997002 + 0.0773711i \(0.975347\pi\)
\(354\) 0 0
\(355\) 1.42508 0.822773i 0.0756357 0.0436683i
\(356\) −1.74963 3.03045i −0.0927302 0.160613i
\(357\) 0 0
\(358\) −3.96777 + 6.87238i −0.209703 + 0.363217i
\(359\) 12.4405i 0.656585i −0.944576 0.328292i \(-0.893527\pi\)
0.944576 0.328292i \(-0.106473\pi\)
\(360\) 0 0
\(361\) −8.88541 −0.467653
\(362\) −18.6089 + 4.98623i −0.978060 + 0.262071i
\(363\) 0 0
\(364\) −1.12615 0.301750i −0.0590261 0.0158160i
\(365\) −1.05197 + 0.607358i −0.0550629 + 0.0317906i
\(366\) 0 0
\(367\) −0.575434 2.14755i −0.0300374 0.112101i 0.949279 0.314434i \(-0.101815\pi\)
−0.979317 + 0.202332i \(0.935148\pi\)
\(368\) −17.4492 + 17.4492i −0.909603 + 0.909603i
\(369\) 0 0
\(370\) 2.71700 0.141250
\(371\) −21.7721 + 5.83382i −1.13035 + 0.302877i
\(372\) 0 0
\(373\) 0.870398 + 1.50757i 0.0450675 + 0.0780592i 0.887679 0.460462i \(-0.152316\pi\)
−0.842612 + 0.538522i \(0.818983\pi\)
\(374\) 0.245680 0.893393i 0.0127038 0.0461962i
\(375\) 0 0
\(376\) 5.22803 + 3.01840i 0.269615 + 0.155662i
\(377\) 3.33378 + 3.33378i 0.171699 + 0.171699i
\(378\) 0 0
\(379\) −21.5308 21.5308i −1.10596 1.10596i −0.993676 0.112289i \(-0.964182\pi\)
−0.112289 0.993676i \(-0.535818\pi\)
\(380\) 0.0636538 + 0.237559i 0.00326537 + 0.0121865i
\(381\) 0 0
\(382\) 8.80991 5.08640i 0.450754 0.260243i
\(383\) 11.7895 6.80666i 0.602415 0.347804i −0.167576 0.985859i \(-0.553594\pi\)
0.769991 + 0.638055i \(0.220261\pi\)
\(384\) 0 0
\(385\) 0.0342691 + 0.127894i 0.00174652 + 0.00651809i
\(386\) −0.495140 0.495140i −0.0252020 0.0252020i
\(387\) 0 0
\(388\) 1.40266 + 1.40266i 0.0712092 + 0.0712092i
\(389\) −26.2082 15.1313i −1.32881 0.767187i −0.343692 0.939082i \(-0.611678\pi\)
−0.985115 + 0.171895i \(0.945011\pi\)
\(390\) 0 0
\(391\) −27.9584 7.68847i −1.41392 0.388823i
\(392\) 10.2470 + 17.7483i 0.517550 + 0.896423i
\(393\) 0 0
\(394\) 24.5603 6.58090i 1.23733 0.331541i
\(395\) 0.285190 0.0143495
\(396\) 0 0
\(397\) 3.67871 3.67871i 0.184629 0.184629i −0.608740 0.793370i \(-0.708325\pi\)
0.793370 + 0.608740i \(0.208325\pi\)
\(398\) 7.35465 + 27.4479i 0.368655 + 1.37584i
\(399\) 0 0
\(400\) 15.0592 8.69443i 0.752959 0.434721i
\(401\) −28.3899 7.60705i −1.41772 0.379878i −0.533048 0.846085i \(-0.678954\pi\)
−0.884676 + 0.466207i \(0.845620\pi\)
\(402\) 0 0
\(403\) −9.60347 + 2.57324i −0.478383 + 0.128182i
\(404\) 3.25047 0.161717
\(405\) 0 0
\(406\) 16.5977i 0.823730i
\(407\) 0.814725 1.41114i 0.0403844 0.0699478i
\(408\) 0 0
\(409\) −6.22602 10.7838i −0.307857 0.533224i 0.670036 0.742328i \(-0.266279\pi\)
−0.977893 + 0.209104i \(0.932945\pi\)
\(410\) −0.907832 + 0.524137i −0.0448346 + 0.0258853i
\(411\) 0 0
\(412\) 1.71304 2.96708i 0.0843955 0.146177i
\(413\) 1.76968 + 1.76968i 0.0870803 + 0.0870803i
\(414\) 0 0
\(415\) 0.528484 0.528484i 0.0259422 0.0259422i
\(416\) −1.52368 0.879699i −0.0747047 0.0431308i
\(417\) 0 0
\(418\) −1.14625 0.307137i −0.0560650 0.0150226i
\(419\) 22.6398 + 6.06633i 1.10603 + 0.296360i 0.765217 0.643772i \(-0.222632\pi\)
0.340812 + 0.940132i \(0.389298\pi\)
\(420\) 0 0
\(421\) −18.8404 + 32.6325i −0.918223 + 1.59041i −0.116110 + 0.993236i \(0.537043\pi\)
−0.802113 + 0.597172i \(0.796291\pi\)
\(422\) −25.6373 25.6373i −1.24800 1.24800i
\(423\) 0 0
\(424\) −17.8983 −0.869219
\(425\) 17.6277 + 10.3322i 0.855069 + 0.501186i
\(426\) 0 0
\(427\) −10.0079 + 5.77804i −0.484314 + 0.279619i
\(428\) −0.898413 + 3.35292i −0.0434264 + 0.162070i
\(429\) 0 0
\(430\) 1.85666 0.497490i 0.0895361 0.0239911i
\(431\) −7.01607 + 7.01607i −0.337952 + 0.337952i −0.855596 0.517644i \(-0.826809\pi\)
0.517644 + 0.855596i \(0.326809\pi\)
\(432\) 0 0
\(433\) 13.7702i 0.661756i 0.943674 + 0.330878i \(0.107345\pi\)
−0.943674 + 0.330878i \(0.892655\pi\)
\(434\) 30.3117 + 17.5005i 1.45501 + 0.840050i
\(435\) 0 0
\(436\) 3.14133 + 0.841718i 0.150443 + 0.0403110i
\(437\) −9.61177 + 35.8716i −0.459793 + 1.71597i
\(438\) 0 0
\(439\) −11.7336 + 3.14401i −0.560015 + 0.150056i −0.527713 0.849423i \(-0.676950\pi\)
−0.0323018 + 0.999478i \(0.510284\pi\)
\(440\) 0.105139i 0.00501229i
\(441\) 0 0
\(442\) −0.0510152 + 7.77247i −0.00242655 + 0.369699i
\(443\) −17.4660 + 30.2520i −0.829835 + 1.43732i 0.0683324 + 0.997663i \(0.478232\pi\)
−0.898167 + 0.439654i \(0.855101\pi\)
\(444\) 0 0
\(445\) 0.862827 3.22012i 0.0409019 0.152648i
\(446\) 14.0344 + 24.3083i 0.664549 + 1.15103i
\(447\) 0 0
\(448\) 8.37929 + 31.2719i 0.395884 + 1.47746i
\(449\) −4.84668 + 4.84668i −0.228729 + 0.228729i −0.812162 0.583433i \(-0.801709\pi\)
0.583433 + 0.812162i \(0.301709\pi\)
\(450\) 0 0
\(451\) 0.628675i 0.0296031i
\(452\) −0.801485 2.99118i −0.0376987 0.140693i
\(453\) 0 0
\(454\) −4.94827 + 18.4672i −0.232234 + 0.866709i
\(455\) −0.555358 0.961908i −0.0260356 0.0450950i
\(456\) 0 0
\(457\) 17.7446 + 10.2448i 0.830056 + 0.479233i 0.853872 0.520483i \(-0.174248\pi\)
−0.0238158 + 0.999716i \(0.507582\pi\)
\(458\) 30.9904 1.44809
\(459\) 0 0
\(460\) 0.327535 0.0152714
\(461\) 11.3518 + 6.55396i 0.528706 + 0.305248i 0.740489 0.672068i \(-0.234594\pi\)
−0.211784 + 0.977317i \(0.567927\pi\)
\(462\) 0 0
\(463\) −8.92097 15.4516i −0.414593 0.718096i 0.580793 0.814051i \(-0.302743\pi\)
−0.995386 + 0.0959556i \(0.969409\pi\)
\(464\) 3.02937 11.3058i 0.140635 0.524857i
\(465\) 0 0
\(466\) −8.70547 32.4892i −0.403273 1.50503i
\(467\) 24.8641i 1.15058i 0.817951 + 0.575288i \(0.195110\pi\)
−0.817951 + 0.575288i \(0.804890\pi\)
\(468\) 0 0
\(469\) −11.7031 + 11.7031i −0.540400 + 0.540400i
\(470\) 0.148177 + 0.553003i 0.00683489 + 0.0255081i
\(471\) 0 0
\(472\) 0.993654 + 1.72106i 0.0457367 + 0.0792182i
\(473\) 0.298357 1.11348i 0.0137185 0.0511980i
\(474\) 0 0
\(475\) 13.0845 22.6630i 0.600358 1.03985i
\(476\) −2.42060 + 2.38904i −0.110948 + 0.109501i
\(477\) 0 0
\(478\) 33.7640i 1.54433i
\(479\) −24.1589 + 6.47337i −1.10385 + 0.295776i −0.764331 0.644824i \(-0.776931\pi\)
−0.339518 + 0.940599i \(0.610264\pi\)
\(480\) 0 0
\(481\) −3.53780 + 13.2032i −0.161310 + 0.602016i
\(482\) −36.7171 9.83831i −1.67242 0.448123i
\(483\) 0 0
\(484\) −2.10085 1.21293i −0.0954932 0.0551330i
\(485\) 1.88981i 0.0858120i
\(486\) 0 0
\(487\) −12.2325 + 12.2325i −0.554308 + 0.554308i −0.927681 0.373373i \(-0.878201\pi\)
0.373373 + 0.927681i \(0.378201\pi\)
\(488\) −8.86359 + 2.37499i −0.401236 + 0.107511i
\(489\) 0 0
\(490\) −0.503036 + 1.87735i −0.0227248 + 0.0848102i
\(491\) −5.79286 + 3.34451i −0.261428 + 0.150936i −0.624986 0.780636i \(-0.714895\pi\)
0.363558 + 0.931572i \(0.381562\pi\)
\(492\) 0 0
\(493\) 13.3078 3.47236i 0.599353 0.156387i
\(494\) 9.95480 0.447888
\(495\) 0 0
\(496\) 17.4531 + 17.4531i 0.783668 + 0.783668i
\(497\) 14.5721 25.2397i 0.653649 1.13215i
\(498\) 0 0
\(499\) −11.4893 3.07856i −0.514334 0.137815i −0.00768931 0.999970i \(-0.502448\pi\)
−0.506644 + 0.862155i \(0.669114\pi\)
\(500\) −0.447870 0.120006i −0.0200294 0.00536685i
\(501\) 0 0
\(502\) −26.4878 15.2927i −1.18221 0.682548i
\(503\) −5.14169 + 5.14169i −0.229257 + 0.229257i −0.812382 0.583125i \(-0.801830\pi\)
0.583125 + 0.812382i \(0.301830\pi\)
\(504\) 0 0
\(505\) 2.18969 + 2.18969i 0.0974399 + 0.0974399i
\(506\) −0.790199 + 1.36866i −0.0351286 + 0.0608446i
\(507\) 0 0
\(508\) 0.0709786 0.0409795i 0.00314916 0.00181817i
\(509\) 3.49778 + 6.05834i 0.155036 + 0.268531i 0.933072 0.359689i \(-0.117117\pi\)
−0.778036 + 0.628220i \(0.783784\pi\)
\(510\) 0 0
\(511\) −10.7569 + 18.6315i −0.475858 + 0.824210i
\(512\) 25.1574i 1.11181i
\(513\) 0 0
\(514\) −11.4711 −0.505969
\(515\) 3.15278 0.844785i 0.138928 0.0372257i
\(516\) 0 0
\(517\) 0.331649 + 0.0888652i 0.0145859 + 0.00390829i
\(518\) 41.6738 24.0604i 1.83104 1.05715i
\(519\) 0 0
\(520\) −0.228273 0.851927i −0.0100104 0.0373595i
\(521\) 5.20499 5.20499i 0.228035 0.228035i −0.583837 0.811871i \(-0.698449\pi\)
0.811871 + 0.583837i \(0.198449\pi\)
\(522\) 0 0
\(523\) −26.8971 −1.17613 −0.588065 0.808814i \(-0.700110\pi\)
−0.588065 + 0.808814i \(0.700110\pi\)
\(524\) 0.556666 0.149158i 0.0243181 0.00651601i
\(525\) 0 0
\(526\) 16.3039 + 28.2392i 0.710885 + 1.23129i
\(527\) −7.69019 + 27.9647i −0.334990 + 1.21816i
\(528\) 0 0
\(529\) 22.9134 + 13.2290i 0.996233 + 0.575175i
\(530\) −1.20026 1.20026i −0.0521358 0.0521358i
\(531\) 0 0
\(532\) 3.08004 + 3.08004i 0.133537 + 0.133537i
\(533\) −1.36496 5.09408i −0.0591228 0.220649i
\(534\) 0 0
\(535\) −2.86393 + 1.65349i −0.123818 + 0.0714866i
\(536\) −11.3816 + 6.57117i −0.491610 + 0.283831i
\(537\) 0 0
\(538\) 3.78341 + 14.1199i 0.163114 + 0.608751i
\(539\) 0.824212 + 0.824212i 0.0355013 + 0.0355013i
\(540\) 0 0
\(541\) −0.960273 0.960273i −0.0412854 0.0412854i 0.686163 0.727448i \(-0.259294\pi\)
−0.727448 + 0.686163i \(0.759294\pi\)
\(542\) −11.4602 6.61653i −0.492256 0.284204i
\(543\) 0 0
\(544\) −4.46153 + 2.53697i −0.191286 + 0.108772i
\(545\) 1.54914 + 2.68320i 0.0663581 + 0.114936i
\(546\) 0 0
\(547\) 24.5966 6.59064i 1.05168 0.281796i 0.308732 0.951149i \(-0.400096\pi\)
0.742944 + 0.669354i \(0.233429\pi\)
\(548\) −2.46179 −0.105163
\(549\) 0 0
\(550\) 0.787466 0.787466i 0.0335777 0.0335777i
\(551\) −4.55899 17.0144i −0.194219 0.724837i
\(552\) 0 0
\(553\) 4.37430 2.52550i 0.186014 0.107395i
\(554\) −30.9675 8.29771i −1.31568 0.352536i
\(555\) 0 0
\(556\) −2.17095 + 0.581705i −0.0920690 + 0.0246698i
\(557\) −25.8012 −1.09323 −0.546616 0.837384i \(-0.684084\pi\)
−0.546616 + 0.837384i \(0.684084\pi\)
\(558\) 0 0
\(559\) 9.67022i 0.409007i
\(560\) −1.37872 + 2.38801i −0.0582616 + 0.100912i
\(561\) 0 0
\(562\) −4.62077 8.00340i −0.194915 0.337603i
\(563\) 8.72945 5.03995i 0.367902 0.212409i −0.304639 0.952468i \(-0.598536\pi\)
0.672542 + 0.740059i \(0.265203\pi\)
\(564\) 0 0
\(565\) 1.47510 2.55495i 0.0620579 0.107487i
\(566\) 9.91397 + 9.91397i 0.416715 + 0.416715i
\(567\) 0 0
\(568\) 16.3642 16.3642i 0.686625 0.686625i
\(569\) −33.2481 19.1958i −1.39383 0.804730i −0.400096 0.916473i \(-0.631023\pi\)
−0.993737 + 0.111743i \(0.964357\pi\)
\(570\) 0 0
\(571\) −4.91094 1.31588i −0.205516 0.0550680i 0.154592 0.987978i \(-0.450594\pi\)
−0.360108 + 0.932910i \(0.617260\pi\)
\(572\) −0.0508603 0.0136280i −0.00212658 0.000569814i
\(573\) 0 0
\(574\) −9.28299 + 16.0786i −0.387464 + 0.671108i
\(575\) −24.6435 24.6435i −1.02771 1.02771i
\(576\) 0 0
\(577\) 15.5111 0.645734 0.322867 0.946444i \(-0.395353\pi\)
0.322867 + 0.946444i \(0.395353\pi\)
\(578\) 19.4856 + 11.5937i 0.810493 + 0.482233i
\(579\) 0 0
\(580\) −0.134541 + 0.0776772i −0.00558650 + 0.00322537i
\(581\) 3.42599 12.7860i 0.142134 0.530451i
\(582\) 0 0
\(583\) −0.983296 + 0.263473i −0.0407240 + 0.0109120i
\(584\) −12.0798 + 12.0798i −0.499864 + 0.499864i
\(585\) 0 0
\(586\) 2.47229i 0.102129i
\(587\) 19.4261 + 11.2157i 0.801801 + 0.462920i 0.844101 0.536185i \(-0.180135\pi\)
−0.0422994 + 0.999105i \(0.513468\pi\)
\(588\) 0 0
\(589\) 35.8796 + 9.61392i 1.47839 + 0.396135i
\(590\) −0.0487796 + 0.182048i −0.00200823 + 0.00749480i
\(591\) 0 0
\(592\) 32.7781 8.78287i 1.34717 0.360974i
\(593\) 29.6938i 1.21938i −0.792640 0.609690i \(-0.791294\pi\)
0.792640 0.609690i \(-0.208706\pi\)
\(594\) 0 0
\(595\) −3.24003 0.0212662i −0.132828 0.000871829i
\(596\) 1.73227 3.00038i 0.0709566 0.122900i
\(597\) 0 0
\(598\) 3.43130 12.8058i 0.140316 0.523668i
\(599\) −2.71859 4.70873i −0.111078 0.192393i 0.805127 0.593103i \(-0.202097\pi\)
−0.916205 + 0.400709i \(0.868764\pi\)
\(600\) 0 0
\(601\) 3.66085 + 13.6625i 0.149329 + 0.557304i 0.999524 + 0.0308368i \(0.00981721\pi\)
−0.850195 + 0.526468i \(0.823516\pi\)
\(602\) 24.0722 24.0722i 0.981111 0.981111i
\(603\) 0 0
\(604\) 0.125595i 0.00511040i
\(605\) −0.598153 2.23234i −0.0243184 0.0907574i
\(606\) 0 0
\(607\) 8.56899 31.9799i 0.347804 1.29802i −0.541497 0.840703i \(-0.682142\pi\)
0.889302 0.457321i \(-0.151191\pi\)
\(608\) 3.28665 + 5.69265i 0.133291 + 0.230867i
\(609\) 0 0
\(610\) −0.753657 0.435124i −0.0305147 0.0176177i
\(611\) −2.88026 −0.116523
\(612\) 0 0
\(613\) −0.832327 −0.0336174 −0.0168087 0.999859i \(-0.505351\pi\)
−0.0168087 + 0.999859i \(0.505351\pi\)
\(614\) 2.86234 + 1.65257i 0.115515 + 0.0666924i
\(615\) 0 0
\(616\) 0.931055 + 1.61263i 0.0375133 + 0.0649749i
\(617\) 11.1408 41.5778i 0.448510 1.67386i −0.257990 0.966148i \(-0.583060\pi\)
0.706500 0.707713i \(-0.250273\pi\)
\(618\) 0 0
\(619\) −8.25515 30.8086i −0.331803 1.23830i −0.907294 0.420496i \(-0.861856\pi\)
0.575492 0.817808i \(-0.304811\pi\)
\(620\) 0.327609i 0.0131571i
\(621\) 0 0
\(622\) −0.286162 + 0.286162i −0.0114740 + 0.0114740i
\(623\) −15.2815 57.0315i −0.612242 2.28492i
\(624\) 0 0
\(625\) 12.1682 + 21.0760i 0.486728 + 0.843038i
\(626\) −2.73298 + 10.1996i −0.109232 + 0.407659i
\(627\) 0 0
\(628\) 1.08837 1.88512i 0.0434308 0.0752243i
\(629\) 28.0097 + 28.3798i 1.11682 + 1.13158i
\(630\) 0 0
\(631\) 2.37358i 0.0944907i −0.998883 0.0472454i \(-0.984956\pi\)
0.998883 0.0472454i \(-0.0150443\pi\)
\(632\) 3.87416 1.03808i 0.154106 0.0412925i
\(633\) 0 0
\(634\) −5.17613 + 19.3176i −0.205570 + 0.767200i
\(635\) 0.0754209 + 0.0202090i 0.00299299 + 0.000801969i
\(636\) 0 0
\(637\) −8.46800 4.88900i −0.335514 0.193709i
\(638\) 0.749604i 0.0296771i
\(639\) 0 0
\(640\) −1.35315 + 1.35315i −0.0534880 + 0.0534880i
\(641\) 26.9829 7.23006i 1.06576 0.285570i 0.317011 0.948422i \(-0.397321\pi\)
0.748751 + 0.662852i \(0.230654\pi\)
\(642\) 0 0
\(643\) −4.39087 + 16.3869i −0.173159 + 0.646238i 0.823699 + 0.567027i \(0.191907\pi\)
−0.996858 + 0.0792105i \(0.974760\pi\)
\(644\) 5.02379 2.90049i 0.197965 0.114295i
\(645\) 0 0
\(646\) 14.6845 25.0531i 0.577753 0.985699i
\(647\) −6.19196 −0.243431 −0.121716 0.992565i \(-0.538840\pi\)
−0.121716 + 0.992565i \(0.538840\pi\)
\(648\) 0 0
\(649\) 0.0799243 + 0.0799243i 0.00313730 + 0.00313730i
\(650\) −4.67103 + 8.09047i −0.183213 + 0.317334i
\(651\) 0 0
\(652\) −1.90089 0.509343i −0.0744447 0.0199474i
\(653\) 22.9921 + 6.16071i 0.899749 + 0.241087i 0.678909 0.734223i \(-0.262453\pi\)
0.220841 + 0.975310i \(0.429120\pi\)
\(654\) 0 0
\(655\) 0.475481 + 0.274519i 0.0185786 + 0.0107264i
\(656\) −9.25786 + 9.25786i −0.361459 + 0.361459i
\(657\) 0 0
\(658\) 7.16988 + 7.16988i 0.279511 + 0.279511i
\(659\) 22.6425 39.2180i 0.882027 1.52772i 0.0329442 0.999457i \(-0.489512\pi\)
0.849083 0.528259i \(-0.177155\pi\)
\(660\) 0 0
\(661\) −32.5396 + 18.7867i −1.26564 + 0.730720i −0.974161 0.225856i \(-0.927482\pi\)
−0.291483 + 0.956576i \(0.594149\pi\)
\(662\) −5.37454 9.30898i −0.208888 0.361804i
\(663\) 0 0
\(664\) 5.25551 9.10281i 0.203953 0.353258i
\(665\) 4.14976i 0.160921i
\(666\) 0 0
\(667\) −23.4586 −0.908321
\(668\) −1.61922 + 0.433869i −0.0626496 + 0.0167869i
\(669\) 0 0
\(670\) −1.20391 0.322586i −0.0465110 0.0124626i
\(671\) −0.451986 + 0.260954i −0.0174487 + 0.0100740i
\(672\) 0 0
\(673\) −4.27274 15.9461i −0.164702 0.614677i −0.998078 0.0619701i \(-0.980262\pi\)
0.833376 0.552707i \(-0.186405\pi\)
\(674\) −3.93736 + 3.93736i −0.151661 + 0.151661i
\(675\) 0 0
\(676\) −2.43263 −0.0935627
\(677\) −2.07862 + 0.556966i −0.0798880 + 0.0214059i −0.298542 0.954397i \(-0.596500\pi\)
0.218654 + 0.975803i \(0.429834\pi\)
\(678\) 0 0
\(679\) 16.7352 + 28.9863i 0.642239 + 1.11239i
\(680\) −2.48076 0.682199i −0.0951327 0.0261611i
\(681\) 0 0
\(682\) 1.36897 + 0.790376i 0.0524206 + 0.0302651i
\(683\) 7.82243 + 7.82243i 0.299317 + 0.299317i 0.840746 0.541429i \(-0.182117\pi\)
−0.541429 + 0.840746i \(0.682117\pi\)
\(684\) 0 0
\(685\) −1.65839 1.65839i −0.0633640 0.0633640i
\(686\) −0.105585 0.394049i −0.00403126 0.0150449i
\(687\) 0 0
\(688\) 20.7907 12.0035i 0.792640 0.457631i
\(689\) 7.39550 4.26979i 0.281746 0.162666i
\(690\) 0 0
\(691\) −3.03050 11.3100i −0.115286 0.430252i 0.884023 0.467444i \(-0.154825\pi\)
−0.999308 + 0.0371926i \(0.988158\pi\)
\(692\) −0.564008 0.564008i −0.0214404 0.0214404i
\(693\) 0 0
\(694\) −6.01791 6.01791i −0.228437 0.228437i
\(695\) −1.85434 1.07060i −0.0703391 0.0406103i
\(696\) 0 0
\(697\) −14.8337 4.07920i −0.561865 0.154511i
\(698\) −11.2852 19.5466i −0.427153 0.739850i
\(699\) 0 0
\(700\) −3.94844 + 1.05798i −0.149237 + 0.0399879i
\(701\) −38.5387 −1.45559 −0.727793 0.685797i \(-0.759454\pi\)
−0.727793 + 0.685797i \(0.759454\pi\)
\(702\) 0 0
\(703\) 36.1112 36.1112i 1.36196 1.36196i
\(704\) 0.378435 + 1.41234i 0.0142628 + 0.0532295i
\(705\) 0 0
\(706\) −24.5449 + 14.1710i −0.923759 + 0.533333i
\(707\) 52.9766 + 14.1950i 1.99239 + 0.533860i
\(708\) 0 0
\(709\) −3.81483 + 1.02218i −0.143269 + 0.0383888i −0.329741 0.944072i \(-0.606961\pi\)
0.186472 + 0.982460i \(0.440295\pi\)
\(710\) 2.19475 0.0823676
\(711\) 0 0
\(712\) 46.8842i 1.75706i
\(713\) 24.7346 42.8415i 0.926317 1.60443i
\(714\) 0 0
\(715\) −0.0250817 0.0434428i −0.000938002 0.00162467i
\(716\) 1.13927 0.657757i 0.0425764 0.0245815i
\(717\) 0 0
\(718\) 8.29628 14.3696i 0.309614 0.536268i
\(719\) 15.6084 + 15.6084i 0.582096 + 0.582096i 0.935479 0.353383i \(-0.114969\pi\)
−0.353383 + 0.935479i \(0.614969\pi\)
\(720\) 0 0
\(721\) 40.8769 40.8769i 1.52233 1.52233i
\(722\) −10.2632 5.92547i −0.381957 0.220523i
\(723\) 0 0
\(724\) 3.08488 + 0.826592i 0.114649 + 0.0307200i
\(725\) 15.9671 + 4.27838i 0.593004 + 0.158895i
\(726\) 0 0
\(727\) 14.0561 24.3459i 0.521311 0.902938i −0.478381 0.878152i \(-0.658776\pi\)
0.999693 0.0247856i \(-0.00789032\pi\)
\(728\) −11.0455 11.0455i −0.409374 0.409374i
\(729\) 0 0
\(730\) −1.62013 −0.0599637
\(731\) 24.3368 + 14.2647i 0.900131 + 0.527598i
\(732\) 0 0
\(733\) −5.78305 + 3.33885i −0.213602 + 0.123323i −0.602984 0.797753i \(-0.706022\pi\)
0.389382 + 0.921076i \(0.372688\pi\)
\(734\) 0.767488 2.86430i 0.0283285 0.105723i
\(735\) 0 0
\(736\) 8.45586 2.26574i 0.311687 0.0835163i
\(737\) −0.528550 + 0.528550i −0.0194694 + 0.0194694i
\(738\) 0 0
\(739\) 5.62966i 0.207090i 0.994625 + 0.103545i \(0.0330186\pi\)
−0.994625 + 0.103545i \(0.966981\pi\)
\(740\) −0.390066 0.225205i −0.0143391 0.00827870i
\(741\) 0 0
\(742\) −29.0386 7.78088i −1.06604 0.285645i
\(743\) 2.63795 9.84496i 0.0967770 0.361177i −0.900506 0.434844i \(-0.856804\pi\)
0.997283 + 0.0736672i \(0.0234703\pi\)
\(744\) 0 0
\(745\) 3.18817 0.854268i 0.116806 0.0312980i
\(746\) 2.32179i 0.0850069i
\(747\) 0 0
\(748\) −0.109322 + 0.107896i −0.00399721 + 0.00394508i
\(749\) −29.2849 + 50.7230i −1.07005 + 1.85338i
\(750\) 0 0
\(751\) −4.31973 + 16.1215i −0.157629 + 0.588281i 0.841237 + 0.540667i \(0.181828\pi\)
−0.998866 + 0.0476133i \(0.984838\pi\)
\(752\) 3.57524 + 6.19249i 0.130376 + 0.225817i
\(753\) 0 0
\(754\) 1.62751 + 6.07396i 0.0592705 + 0.221200i
\(755\) −0.0846077 + 0.0846077i −0.00307919 + 0.00307919i
\(756\) 0 0
\(757\) 17.3458i 0.630446i −0.949018 0.315223i \(-0.897921\pi\)
0.949018 0.315223i \(-0.102079\pi\)
\(758\) −10.5111 39.2279i −0.381780 1.42482i
\(759\) 0 0
\(760\) −0.852854 + 3.18289i −0.0309362 + 0.115456i
\(761\) −3.20919 5.55848i −0.116333 0.201495i 0.801979 0.597353i \(-0.203781\pi\)
−0.918312 + 0.395858i \(0.870447\pi\)
\(762\) 0 0
\(763\) 47.5221 + 27.4369i 1.72042 + 0.993282i
\(764\) −1.68639 −0.0610116
\(765\) 0 0
\(766\) 18.1568 0.656032
\(767\) −0.821147 0.474089i −0.0296499 0.0171184i
\(768\) 0 0
\(769\) −14.8709 25.7572i −0.536258 0.928827i −0.999101 0.0423865i \(-0.986504\pi\)
0.462843 0.886440i \(-0.346829\pi\)
\(770\) −0.0457066 + 0.170579i −0.00164715 + 0.00614725i
\(771\) 0 0
\(772\) 0.0300440 + 0.112126i 0.00108131 + 0.00403550i
\(773\) 52.2434i 1.87906i 0.342461 + 0.939532i \(0.388740\pi\)
−0.342461 + 0.939532i \(0.611260\pi\)
\(774\) 0 0
\(775\) −24.6490 + 24.6490i −0.885419 + 0.885419i
\(776\) 6.87881 + 25.6721i 0.246935 + 0.921574i
\(777\) 0 0
\(778\) −20.1814 34.9552i −0.723539 1.25321i
\(779\) −5.09963 + 19.0321i −0.182713 + 0.681895i
\(780\) 0 0
\(781\) 0.658123 1.13990i 0.0235495 0.0407889i
\(782\) −27.1665 27.5255i −0.971473 0.984310i
\(783\) 0 0
\(784\) 24.2747i 0.866953i
\(785\) 2.00310 0.536729i 0.0714937 0.0191567i
\(786\) 0 0
\(787\) −10.8164 + 40.3675i −0.385564 + 1.43895i 0.451711 + 0.892164i \(0.350814\pi\)
−0.837275 + 0.546781i \(0.815853\pi\)
\(788\) −4.07147 1.09095i −0.145040 0.0388634i
\(789\) 0 0
\(790\) 0.329413 + 0.190187i 0.0117200 + 0.00676654i
\(791\) 52.2509i 1.85783i
\(792\) 0 0
\(793\) 3.09582 3.09582i 0.109936 0.109936i
\(794\) 6.70240 1.79590i 0.237859 0.0637342i
\(795\) 0 0
\(796\) 1.21922 4.55018i 0.0432140 0.161277i
\(797\) −9.12386 + 5.26766i −0.323184 + 0.186590i −0.652811 0.757521i \(-0.726410\pi\)
0.329627 + 0.944111i \(0.393077\pi\)
\(798\) 0 0
\(799\) −4.24871 + 7.24869i −0.150309 + 0.256440i
\(800\) −6.16871 −0.218097
\(801\) 0 0
\(802\) −27.7192 27.7192i −0.978799 0.978799i
\(803\) −0.485816 + 0.841458i −0.0171441 + 0.0296944i
\(804\) 0 0
\(805\) 5.33822 + 1.43037i 0.188148 + 0.0504140i
\(806\) −12.8087 3.43207i −0.451166 0.120890i
\(807\) 0 0
\(808\) 37.7161 + 21.7754i 1.32685 + 0.766056i
\(809\) 6.93423 6.93423i 0.243795 0.243795i −0.574623 0.818418i \(-0.694851\pi\)
0.818418 + 0.574623i \(0.194851\pi\)
\(810\) 0 0
\(811\) 16.3558 + 16.3558i 0.574330 + 0.574330i 0.933335 0.359006i \(-0.116884\pi\)
−0.359006 + 0.933335i \(0.616884\pi\)
\(812\) −1.37574 + 2.38285i −0.0482790 + 0.0836217i
\(813\) 0 0
\(814\) 1.88212 1.08664i 0.0659682 0.0380868i
\(815\) −0.937423 1.62366i −0.0328365 0.0568745i
\(816\) 0 0
\(817\) 18.0645 31.2886i 0.631997 1.09465i
\(818\) 16.6080i 0.580683i
\(819\) 0 0
\(820\) 0.173777 0.00606857
\(821\) −3.91441 + 1.04886i −0.136614 + 0.0366056i −0.326478 0.945205i \(-0.605862\pi\)
0.189864 + 0.981810i \(0.439195\pi\)
\(822\) 0 0
\(823\) 37.2278 + 9.97516i 1.29768 + 0.347712i 0.840572 0.541700i \(-0.182219\pi\)
0.457107 + 0.889412i \(0.348886\pi\)
\(824\) 39.7538 22.9519i 1.38489 0.799567i
\(825\) 0 0
\(826\) 0.863936 + 3.22425i 0.0300602 + 0.112186i
\(827\) 9.84615 9.84615i 0.342384 0.342384i −0.514879 0.857263i \(-0.672163\pi\)
0.857263 + 0.514879i \(0.172163\pi\)
\(828\) 0 0
\(829\) −3.18743 −0.110704 −0.0553519 0.998467i \(-0.517628\pi\)
−0.0553519 + 0.998467i \(0.517628\pi\)
\(830\) 0.962866 0.257999i 0.0334216 0.00895528i
\(831\) 0 0
\(832\) −6.13283 10.6224i −0.212618 0.368265i
\(833\) −24.7953 + 14.0994i −0.859107 + 0.488516i
\(834\) 0 0
\(835\) −1.38307 0.798517i −0.0478632 0.0276338i
\(836\) 0.139104 + 0.139104i 0.00481102 + 0.00481102i
\(837\) 0 0
\(838\) 22.1050 + 22.1050i 0.763604 + 0.763604i
\(839\) 9.75283 + 36.3981i 0.336705 + 1.25660i 0.902009 + 0.431718i \(0.142092\pi\)
−0.565304 + 0.824883i \(0.691241\pi\)
\(840\) 0 0
\(841\) −15.4787 + 8.93663i −0.533748 + 0.308160i
\(842\) −43.5236 + 25.1284i −1.49992 + 0.865981i
\(843\) 0 0
\(844\) 1.55561 + 5.80563i 0.0535464 + 0.199838i
\(845\) −1.63875 1.63875i −0.0563747 0.0563747i
\(846\) 0 0
\(847\) −28.9430 28.9430i −0.994494 0.994494i
\(848\) −18.3599 10.6001i −0.630482 0.364009i
\(849\) 0 0
\(850\) 13.4708 + 23.6899i 0.462045 + 0.812556i
\(851\) −34.0061 58.9003i −1.16571 2.01908i
\(852\) 0 0
\(853\) −35.5719 + 9.53147i −1.21796 + 0.326351i −0.809880 0.586595i \(-0.800468\pi\)
−0.408079 + 0.912946i \(0.633801\pi\)
\(854\) −15.4130 −0.527420
\(855\) 0 0
\(856\) −32.8863 + 32.8863i −1.12403 + 1.12403i
\(857\) 5.30869 + 19.8123i 0.181341 + 0.676775i 0.995384 + 0.0959705i \(0.0305954\pi\)
−0.814043 + 0.580805i \(0.802738\pi\)
\(858\) 0 0
\(859\) 9.51344 5.49259i 0.324594 0.187405i −0.328844 0.944384i \(-0.606659\pi\)
0.653439 + 0.756979i \(0.273326\pi\)
\(860\) −0.307787 0.0824714i −0.0104955 0.00281225i
\(861\) 0 0
\(862\) −12.7829 + 3.42516i −0.435386 + 0.116661i
\(863\) 20.0046 0.680966 0.340483 0.940251i \(-0.389409\pi\)
0.340483 + 0.940251i \(0.389409\pi\)
\(864\) 0 0
\(865\) 0.759893i 0.0258371i
\(866\) −9.18305 + 15.9055i −0.312053 + 0.540491i
\(867\) 0 0
\(868\) −2.90114 5.02492i −0.0984710 0.170557i
\(869\) 0.197557 0.114060i 0.00670166 0.00386921i
\(870\) 0 0
\(871\) 3.13521 5.43035i 0.106233 0.184000i
\(872\) 30.8110 + 30.8110i 1.04339 + 1.04339i
\(873\) 0 0
\(874\) −35.0241 + 35.0241i −1.18471 + 1.18471i
\(875\) −6.77538 3.91177i −0.229050 0.132242i
\(876\) 0 0
\(877\) 37.6541 + 10.0894i 1.27149 + 0.340694i 0.830601 0.556868i \(-0.187997\pi\)
0.440887 + 0.897563i \(0.354664\pi\)
\(878\) −15.6498 4.19334i −0.528153 0.141518i
\(879\) 0 0
\(880\) −0.0622673 + 0.107850i −0.00209903 + 0.00363563i
\(881\) 31.2239 + 31.2239i 1.05196 + 1.05196i 0.998574 + 0.0533851i \(0.0170011\pi\)
0.0533851 + 0.998574i \(0.482999\pi\)
\(882\) 0 0
\(883\) 20.6430 0.694694 0.347347 0.937737i \(-0.387083\pi\)
0.347347 + 0.937737i \(0.387083\pi\)
\(884\) 0.651564 1.11163i 0.0219145 0.0373881i
\(885\) 0 0
\(886\) −40.3487 + 23.2953i −1.35554 + 0.782622i
\(887\) −10.0495 + 37.5051i −0.337428 + 1.25930i 0.563785 + 0.825922i \(0.309345\pi\)
−0.901213 + 0.433377i \(0.857322\pi\)
\(888\) 0 0
\(889\) 1.33578 0.357921i 0.0448006 0.0120043i
\(890\) 3.14404 3.14404i 0.105388 0.105388i
\(891\) 0 0
\(892\) 4.65310i 0.155797i
\(893\) 9.31927 + 5.38049i 0.311858 + 0.180051i
\(894\) 0 0
\(895\) 1.21057 + 0.324372i 0.0404650 + 0.0108426i
\(896\) −8.77204 + 32.7377i −0.293053 + 1.09369i
\(897\) 0 0
\(898\) −8.83037 + 2.36609i −0.294673 + 0.0789574i
\(899\) 23.4639i 0.782564i
\(900\) 0 0
\(901\) 0.163502 24.9105i 0.00544705 0.829891i
\(902\) −0.419249 + 0.726160i −0.0139595 + 0.0241785i
\(903\) 0 0
\(904\) 10.7386 40.0768i 0.357159 1.33294i
\(905\) 1.52131 + 2.63498i 0.0505699 + 0.0875896i
\(906\) 0 0
\(907\) −2.56868 9.58646i −0.0852917 0.318313i 0.910078 0.414438i \(-0.136022\pi\)
−0.995369 + 0.0961250i \(0.969355\pi\)
\(908\) 2.24110 2.24110i 0.0743735 0.0743735i
\(909\) 0 0
\(910\) 1.48142i 0.0491086i
\(911\) 3.42063 + 12.7660i 0.113331 + 0.422956i 0.999157 0.0410619i \(-0.0130741\pi\)
−0.885826 + 0.464018i \(0.846407\pi\)
\(912\) 0 0
\(913\) 0.154728 0.577454i 0.00512076 0.0191109i
\(914\) 13.6641 + 23.6669i 0.451968 + 0.782831i
\(915\) 0 0
\(916\) −4.44915 2.56872i −0.147004 0.0848728i
\(917\) 9.72402 0.321115
\(918\) 0 0
\(919\) −18.4170 −0.607522 −0.303761 0.952748i \(-0.598242\pi\)
−0.303761 + 0.952748i \(0.598242\pi\)
\(920\) 3.80048 + 2.19421i 0.125298 + 0.0723410i
\(921\) 0 0
\(922\) 8.74137 + 15.1405i 0.287882 + 0.498625i
\(923\) −2.85778 + 10.6654i −0.0940651 + 0.351056i
\(924\) 0 0
\(925\) 12.4040 + 46.2925i 0.407843 + 1.52209i
\(926\) 23.7968i 0.782010i
\(927\) 0 0
\(928\) −2.93605 + 2.93605i −0.0963807 + 0.0963807i
\(929\) −7.54349 28.1527i −0.247494 0.923660i −0.972113 0.234511i \(-0.924651\pi\)
0.724620 0.689149i \(-0.242016\pi\)
\(930\) 0 0
\(931\) 18.2659 + 31.6374i 0.598639 + 1.03687i
\(932\) −1.44315 + 5.38590i −0.0472718 + 0.176421i
\(933\) 0 0
\(934\) −16.5813 + 28.7197i −0.542557 + 0.939737i
\(935\) −0.146330 0.000960448i −0.00478550 3.14100e-5i
\(936\) 0 0
\(937\) 42.0254i 1.37291i 0.727173 + 0.686455i \(0.240834\pi\)
−0.727173 + 0.686455i \(0.759166\pi\)
\(938\) −21.3224 + 5.71332i −0.696201 + 0.186547i
\(939\) 0 0
\(940\) 0.0245640 0.0916740i 0.000801189 0.00299008i
\(941\) 5.30484 + 1.42143i 0.172933 + 0.0463372i 0.344246 0.938879i \(-0.388134\pi\)
−0.171314 + 0.985217i \(0.554801\pi\)
\(942\) 0 0
\(943\) 22.7249 + 13.1203i 0.740026 + 0.427254i
\(944\) 2.35393i 0.0766139i
\(945\) 0 0
\(946\) 1.08718 1.08718i 0.0353472 0.0353472i
\(947\) 33.0702 8.86114i 1.07464 0.287948i 0.322241 0.946658i \(-0.395564\pi\)
0.752398 + 0.658709i \(0.228897\pi\)
\(948\) 0 0
\(949\) 2.10957 7.87302i 0.0684796 0.255569i
\(950\) 30.2269 17.4515i 0.980690 0.566201i
\(951\) 0 0
\(952\) −44.0915 + 11.5046i −1.42901 + 0.372868i
\(953\) 34.1762 1.10707 0.553537 0.832824i \(-0.313278\pi\)
0.553537 + 0.832824i \(0.313278\pi\)
\(954\) 0 0
\(955\) −1.13605 1.13605i −0.0367616 0.0367616i
\(956\) −2.79861 + 4.84733i −0.0905135 + 0.156774i
\(957\) 0 0
\(958\) −32.2221 8.63387i −1.04105 0.278948i
\(959\) −40.1227 10.7508i −1.29563 0.347162i
\(960\) 0 0
\(961\) −16.0043 9.24010i −0.516268 0.298068i
\(962\) −12.8913 + 12.8913i −0.415633 + 0.415633i
\(963\) 0 0
\(964\) 4.45582 + 4.45582i 0.143512 + 0.143512i
\(965\) −0.0552947 + 0.0957733i −0.00178000 + 0.00308305i
\(966\) 0 0
\(967\) 30.6398 17.6899i 0.985309 0.568868i 0.0814401 0.996678i \(-0.474048\pi\)
0.903869 + 0.427810i \(0.140715\pi\)
\(968\) −16.2512 28.1478i −0.522332 0.904706i
\(969\) 0 0
\(970\) −1.26027 + 2.18285i −0.0404649 + 0.0700872i
\(971\) 44.6796i 1.43384i 0.697157 + 0.716919i \(0.254448\pi\)
−0.697157 + 0.716919i \(0.745552\pi\)
\(972\) 0 0
\(973\) −37.9229 −1.21575
\(974\) −22.2869 + 5.97176i −0.714118 + 0.191347i
\(975\) 0 0
\(976\) −10.4988 2.81313i −0.336057 0.0900462i
\(977\) −5.43870 + 3.14004i −0.173999 + 0.100459i −0.584470 0.811415i \(-0.698698\pi\)
0.410471 + 0.911874i \(0.365364\pi\)
\(978\) 0 0
\(979\) −0.690162 2.57572i −0.0220577 0.0823203i
\(980\) 0.227827 0.227827i 0.00727768 0.00727768i
\(981\) 0 0
\(982\) −8.92150 −0.284697
\(983\) −21.6274 + 5.79503i −0.689806 + 0.184833i −0.586660 0.809833i \(-0.699557\pi\)
−0.103146 + 0.994666i \(0.532891\pi\)
\(984\) 0 0
\(985\) −2.00784 3.47768i −0.0639751 0.110808i
\(986\) 17.6870 + 4.86386i 0.563268 + 0.154897i
\(987\) 0 0
\(988\) −1.42916 0.825128i −0.0454677 0.0262508i
\(989\) −34.0229 34.0229i −1.08186 1.08186i
\(990\) 0 0
\(991\) 6.63161 + 6.63161i 0.210660 + 0.210660i 0.804548 0.593888i \(-0.202408\pi\)
−0.593888 + 0.804548i \(0.702408\pi\)
\(992\) −2.26625 8.45775i −0.0719534 0.268534i
\(993\) 0 0
\(994\) 33.6635 19.4356i 1.06774 0.616461i
\(995\) 3.88657 2.24391i 0.123213 0.0711368i
\(996\) 0 0
\(997\) 7.85176 + 29.3031i 0.248668 + 0.928040i 0.971504 + 0.237021i \(0.0761711\pi\)
−0.722837 + 0.691019i \(0.757162\pi\)
\(998\) −11.2179 11.2179i −0.355097 0.355097i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.o.a.370.11 64
3.2 odd 2 153.2.n.a.115.6 yes 64
9.4 even 3 inner 459.2.o.a.64.6 64
9.5 odd 6 153.2.n.a.13.11 yes 64
17.4 even 4 inner 459.2.o.a.208.6 64
51.38 odd 4 153.2.n.a.106.11 yes 64
153.4 even 12 inner 459.2.o.a.361.11 64
153.140 odd 12 153.2.n.a.4.6 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.n.a.4.6 64 153.140 odd 12
153.2.n.a.13.11 yes 64 9.5 odd 6
153.2.n.a.106.11 yes 64 51.38 odd 4
153.2.n.a.115.6 yes 64 3.2 odd 2
459.2.o.a.64.6 64 9.4 even 3 inner
459.2.o.a.208.6 64 17.4 even 4 inner
459.2.o.a.361.11 64 153.4 even 12 inner
459.2.o.a.370.11 64 1.1 even 1 trivial