Properties

Label 45760.2.a.hc
Level $45760$
Weight $2$
Character orbit 45760.a
Self dual yes
Analytic conductor $365.395$
Dimension $18$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45760,2,Mod(1,45760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45760.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 45760 = 2^{6} \cdot 5 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45760.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,-6,0,-18,0,0,0,24,0,-18,0,-18,0,6,0,15,0,1,0,-6,0,0,0,18, 0,-24,0,-8,0,2,0,6,0,0,0,-21,0,6,0,11,0,-9,0,-24,0,7,0,40,0,0,0,-24,0, 18,0,26,0,-12,0,-14,0,-18,0,18,0,-7,0,-16,0,20,0,40,0,-6,0,0,0,-10,0,30, 0,-20,0,-15,0,-8,0,24,0,0,0,-6,0,-1,0,29,0,-24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(365.395439649\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 21 x^{16} + 178 x^{15} + 90 x^{14} - 2076 x^{13} + 947 x^{12} + 12120 x^{11} + \cdots + 128 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 18 q - 6 q^{3} - 18 q^{5} + 24 q^{9} - 18 q^{11} - 18 q^{13} + 6 q^{15} + 15 q^{17} + q^{19} - 6 q^{21} + 18 q^{25} - 24 q^{27} - 8 q^{29} + 2 q^{31} + 6 q^{33} - 21 q^{37} + 6 q^{39} + 11 q^{41} - 9 q^{43}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)
\(13\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.