Defining parameters
Level: | \( N \) | \(=\) | \( 45760 = 2^{6} \cdot 5 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 45760.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 188 \) | ||
Sturm bound: | \(16128\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(45760))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8112 | 960 | 7152 |
Cusp forms | 8017 | 960 | 7057 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(11\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(496\) | \(60\) | \(436\) | \(491\) | \(60\) | \(431\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(510\) | \(58\) | \(452\) | \(504\) | \(58\) | \(446\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(510\) | \(58\) | \(452\) | \(504\) | \(58\) | \(446\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(512\) | \(60\) | \(452\) | \(506\) | \(60\) | \(446\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(518\) | \(65\) | \(453\) | \(512\) | \(65\) | \(447\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(504\) | \(57\) | \(447\) | \(498\) | \(57\) | \(441\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(504\) | \(57\) | \(447\) | \(498\) | \(57\) | \(441\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(502\) | \(65\) | \(437\) | \(496\) | \(65\) | \(431\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(514\) | \(60\) | \(454\) | \(508\) | \(60\) | \(448\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(500\) | \(62\) | \(438\) | \(494\) | \(62\) | \(432\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(508\) | \(62\) | \(446\) | \(502\) | \(62\) | \(440\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(506\) | \(60\) | \(446\) | \(500\) | \(60\) | \(440\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(500\) | \(55\) | \(445\) | \(494\) | \(55\) | \(439\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(514\) | \(63\) | \(451\) | \(508\) | \(63\) | \(445\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(506\) | \(63\) | \(443\) | \(500\) | \(63\) | \(437\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(508\) | \(55\) | \(453\) | \(502\) | \(55\) | \(447\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(4032\) | \(468\) | \(3564\) | \(3985\) | \(468\) | \(3517\) | \(47\) | \(0\) | \(47\) | ||||||
Minus space | \(-\) | \(4080\) | \(492\) | \(3588\) | \(4032\) | \(492\) | \(3540\) | \(48\) | \(0\) | \(48\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(45760))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 11 | 13 | |||||||
45760.2.a.a | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-3\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-3q^{3}-q^{5}-q^{7}+6q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.b | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-3\) | \(-1\) | \(3\) | $-$ | $+$ | $-$ | $+$ | \(q-3q^{3}-q^{5}+3q^{7}+6q^{9}+q^{11}+\cdots\) | |
45760.2.a.c | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | \(q-2q^{3}-q^{5}-2q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.d | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(-2\) | $+$ | $+$ | $-$ | $-$ | \(q-2q^{3}-q^{5}-2q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.e | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | \(q-2q^{3}-q^{5}+q^{9}-q^{11}+q^{13}+2q^{15}+\cdots\) | |
45760.2.a.f | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(4\) | $+$ | $+$ | $-$ | $+$ | \(q-2q^{3}-q^{5}+4q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.g | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(4\) | $+$ | $+$ | $-$ | $-$ | \(q-2q^{3}-q^{5}+4q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.h | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | \(q-2q^{3}+q^{5}-4q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.i | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | \(q-2q^{3}+q^{5}-2q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.j | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | \(q-2q^{3}+q^{5}-2q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.k | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | \(q-2q^{3}+q^{5}-2q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.l | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(2\) | $+$ | $-$ | $+$ | $-$ | \(q-2q^{3}+q^{5}+2q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.m | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(4\) | $+$ | $-$ | $+$ | $+$ | \(q-2q^{3}+q^{5}+4q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.n | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(4\) | $-$ | $-$ | $-$ | $+$ | \(q-2q^{3}+q^{5}+4q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.o | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}-q^{7}-2q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.p | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-q^{5}-q^{7}-2q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.q | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-5\) | $-$ | $-$ | $+$ | $-$ | \(q-q^{3}+q^{5}-5q^{7}-2q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.r | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-5\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{3}+q^{5}-5q^{7}-2q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.s | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q-q^{3}+q^{5}-q^{7}-2q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.t | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}+q^{7}-2q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.u | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(3\) | $-$ | $-$ | $+$ | $+$ | \(q-q^{3}+q^{5}+3q^{7}-2q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.v | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{5}-4q^{7}-3q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.w | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{5}-3q^{9}-q^{11}-q^{13}-7q^{17}+\cdots\) | |
45760.2.a.x | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{5}-3q^{9}-q^{11}-q^{13}-3q^{17}+\cdots\) | |
45760.2.a.y | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{5}-3q^{9}-q^{11}-q^{13}+2q^{17}+\cdots\) | |
45760.2.a.z | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{5}-3q^{9}-q^{11}+q^{13}-2q^{17}+\cdots\) | |
45760.2.a.ba | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{5}-3q^{9}+q^{11}-q^{13}-7q^{17}+\cdots\) | |
45760.2.a.bb | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{5}-3q^{9}+q^{11}-q^{13}-3q^{17}+\cdots\) | |
45760.2.a.bc | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{5}-3q^{9}+q^{11}-q^{13}+2q^{17}+\cdots\) | |
45760.2.a.bd | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | \(q-q^{5}-3q^{9}+q^{11}+q^{13}-2q^{17}+\cdots\) | |
45760.2.a.be | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(4\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{5}+4q^{7}-3q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.bf | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{5}+q^{7}-2q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.bg | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q+q^{3}-q^{5}+q^{7}-2q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.bh | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-3\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}-3q^{7}-2q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.bi | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}+q^{5}-q^{7}-2q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.bj | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}+q^{7}-2q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.bk | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(5\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+q^{5}+5q^{7}-2q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.bl | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(5\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}+5q^{7}-2q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.bm | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | \(q+2q^{3}-q^{5}-4q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.bn | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | $-$ | \(q+2q^{3}-q^{5}-4q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.bo | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | \(q+2q^{3}-q^{5}+q^{9}+q^{11}+q^{13}-2q^{15}+\cdots\) | |
45760.2.a.bp | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(2\) | $-$ | $+$ | $+$ | $-$ | \(q+2q^{3}-q^{5}+2q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
45760.2.a.bq | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(2\) | $+$ | $+$ | $-$ | $+$ | \(q+2q^{3}-q^{5}+2q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.br | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | \(q+2q^{3}+q^{5}-4q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
45760.2.a.bs | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(-4\) | $-$ | $-$ | $-$ | $+$ | \(q+2q^{3}+q^{5}-4q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.bt | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | \(q+2q^{3}+q^{5}-2q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.bu | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(2\) | $+$ | $-$ | $-$ | $+$ | \(q+2q^{3}+q^{5}+2q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.bv | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | $+$ | \(q+2q^{3}+q^{5}+2q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
45760.2.a.bw | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | $-$ | \(q+2q^{3}+q^{5}+2q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.bx | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(4\) | $-$ | $-$ | $-$ | $-$ | \(q+2q^{3}+q^{5}+4q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.by | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(-3\) | $+$ | $+$ | $+$ | $+$ | \(q+3q^{3}-q^{5}-3q^{7}+6q^{9}-q^{11}+\cdots\) | |
45760.2.a.bz | $1$ | $365.395$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q+3q^{3}-q^{5}+q^{7}+6q^{9}+q^{11}+q^{13}+\cdots\) | |
45760.2.a.ca | $2$ | $365.395$ | \(\Q(\sqrt{97}) \) | None | \(0\) | \(-4\) | \(2\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.cb | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-3\) | \(2\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.cc | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-3\) | \(2\) | \(3\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.cd | $2$ | $365.395$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.ce | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(-2\) | \(2\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.cf | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(-2\) | \(6\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.cg | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(2\) | \(-6\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.ch | $2$ | $365.395$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.ci | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.cj | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(-2\) | \(-5\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.ck | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(-2\) | \(-3\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.cl | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.cm | $2$ | $365.395$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-1\) | \(-2\) | \(5\) | $+$ | $+$ | $-$ | $+$ | ||
45760.2.a.cn | $2$ | $365.395$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-1\) | \(2\) | \(-5\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.co | $2$ | $365.395$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(-1\) | \(2\) | \(1\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.cp | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(-4\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.cq | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.cr | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.cs | $2$ | $365.395$ | \(\Q(\sqrt{7}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $-$ | $+$ | $+$ | $+$ | ||
45760.2.a.ct | $2$ | $365.395$ | \(\Q(\sqrt{7}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $+$ | $+$ | $-$ | $+$ | ||
45760.2.a.cu | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(4\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.cv | $2$ | $365.395$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.cw | $2$ | $365.395$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.cx | $2$ | $365.395$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(1\) | \(-2\) | \(-5\) | $-$ | $+$ | $+$ | $+$ | ||
45760.2.a.cy | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.cz | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(-2\) | \(3\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.da | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(-2\) | \(5\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.db | $2$ | $365.395$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.dc | $2$ | $365.395$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(1\) | \(2\) | \(5\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.dd | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(-2\) | \(-6\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.de | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.df | $2$ | $365.395$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(-2\) | \(2\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.dg | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.dh | $2$ | $365.395$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(2\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.di | $2$ | $365.395$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(6\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.dj | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(3\) | \(2\) | \(-3\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.dk | $2$ | $365.395$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(3\) | \(2\) | \(1\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.dl | $2$ | $365.395$ | \(\Q(\sqrt{97}) \) | None | \(0\) | \(4\) | \(2\) | \(4\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.dm | $3$ | $365.395$ | 3.3.148.1 | None | \(0\) | \(-4\) | \(3\) | \(4\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.dn | $3$ | $365.395$ | 3.3.229.1 | None | \(0\) | \(-3\) | \(-3\) | \(1\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.do | $3$ | $365.395$ | 3.3.564.1 | None | \(0\) | \(-2\) | \(-3\) | \(-2\) | $+$ | $+$ | $-$ | $+$ | ||
45760.2.a.dp | $3$ | $365.395$ | 3.3.568.1 | None | \(0\) | \(-2\) | \(3\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.dq | $3$ | $365.395$ | 3.3.229.1 | None | \(0\) | \(-2\) | \(3\) | \(0\) | $+$ | $-$ | $+$ | $+$ | ||
45760.2.a.dr | $3$ | $365.395$ | 3.3.1708.1 | None | \(0\) | \(-2\) | \(3\) | \(4\) | $+$ | $-$ | $+$ | $+$ | ||
45760.2.a.ds | $3$ | $365.395$ | 3.3.148.1 | None | \(0\) | \(-2\) | \(3\) | \(6\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.dt | $3$ | $365.395$ | 3.3.316.1 | None | \(0\) | \(-1\) | \(-3\) | \(5\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.du | $3$ | $365.395$ | 3.3.229.1 | None | \(0\) | \(-1\) | \(3\) | \(-1\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.dv | $3$ | $365.395$ | 3.3.568.1 | None | \(0\) | \(-1\) | \(3\) | \(7\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.dw | $3$ | $365.395$ | 3.3.148.1 | None | \(0\) | \(0\) | \(3\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.dx | $3$ | $365.395$ | 3.3.148.1 | None | \(0\) | \(0\) | \(3\) | \(4\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.dy | $3$ | $365.395$ | 3.3.316.1 | None | \(0\) | \(1\) | \(-3\) | \(-5\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.dz | $3$ | $365.395$ | 3.3.568.1 | None | \(0\) | \(1\) | \(3\) | \(-7\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.ea | $3$ | $365.395$ | 3.3.229.1 | None | \(0\) | \(1\) | \(3\) | \(1\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.eb | $3$ | $365.395$ | 3.3.564.1 | None | \(0\) | \(2\) | \(-3\) | \(2\) | $-$ | $+$ | $+$ | $+$ | ||
45760.2.a.ec | $3$ | $365.395$ | 3.3.148.1 | None | \(0\) | \(2\) | \(3\) | \(-6\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.ed | $3$ | $365.395$ | 3.3.1708.1 | None | \(0\) | \(2\) | \(3\) | \(-4\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.ee | $3$ | $365.395$ | 3.3.229.1 | None | \(0\) | \(2\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.ef | $3$ | $365.395$ | 3.3.568.1 | None | \(0\) | \(2\) | \(3\) | \(2\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.eg | $3$ | $365.395$ | 3.3.229.1 | None | \(0\) | \(3\) | \(-3\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.eh | $3$ | $365.395$ | 3.3.148.1 | None | \(0\) | \(4\) | \(3\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | ||
45760.2.a.ei | $4$ | $365.395$ | 4.4.40864.1 | None | \(0\) | \(-4\) | \(-4\) | \(4\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.ej | $4$ | $365.395$ | 4.4.69272.1 | None | \(0\) | \(0\) | \(-4\) | \(0\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.ek | $4$ | $365.395$ | 4.4.69272.1 | None | \(0\) | \(0\) | \(-4\) | \(0\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.el | $4$ | $365.395$ | 4.4.170528.1 | None | \(0\) | \(0\) | \(4\) | \(0\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.em | $4$ | $365.395$ | 4.4.170528.1 | None | \(0\) | \(0\) | \(4\) | \(0\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.en | $4$ | $365.395$ | 4.4.40864.1 | None | \(0\) | \(4\) | \(-4\) | \(-4\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.eo | $5$ | $365.395$ | 5.5.2467004.1 | None | \(0\) | \(-3\) | \(5\) | \(1\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.ep | $5$ | $365.395$ | 5.5.16758916.1 | None | \(0\) | \(-1\) | \(-5\) | \(3\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.eq | $5$ | $365.395$ | 5.5.2677828.1 | None | \(0\) | \(-1\) | \(5\) | \(-5\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.er | $5$ | $365.395$ | 5.5.3696856.1 | None | \(0\) | \(-1\) | \(5\) | \(-1\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.es | $5$ | $365.395$ | 5.5.16758916.1 | None | \(0\) | \(1\) | \(-5\) | \(-3\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.et | $5$ | $365.395$ | 5.5.3696856.1 | None | \(0\) | \(1\) | \(5\) | \(1\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.eu | $5$ | $365.395$ | 5.5.2677828.1 | None | \(0\) | \(1\) | \(5\) | \(5\) | $+$ | $-$ | $+$ | $+$ | ||
45760.2.a.ev | $5$ | $365.395$ | 5.5.2467004.1 | None | \(0\) | \(3\) | \(5\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.ew | $6$ | $365.395$ | 6.6.37261816.1 | None | \(0\) | \(-4\) | \(6\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.ex | $6$ | $365.395$ | 6.6.573753220.1 | None | \(0\) | \(-3\) | \(6\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.ey | $6$ | $365.395$ | 6.6.3486377.1 | None | \(0\) | \(-2\) | \(6\) | \(8\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.ez | $6$ | $365.395$ | 6.6.98351993.1 | None | \(0\) | \(0\) | \(-6\) | \(0\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.fa | $6$ | $365.395$ | 6.6.98351993.1 | None | \(0\) | \(0\) | \(-6\) | \(0\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.fb | $6$ | $365.395$ | 6.6.3486377.1 | None | \(0\) | \(2\) | \(6\) | \(-8\) | $+$ | $-$ | $+$ | $+$ | ||
45760.2.a.fc | $6$ | $365.395$ | 6.6.573753220.1 | None | \(0\) | \(3\) | \(6\) | \(1\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.fd | $6$ | $365.395$ | 6.6.37261816.1 | None | \(0\) | \(4\) | \(6\) | \(2\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.fe | $7$ | $365.395$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-5\) | \(-7\) | \(7\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.ff | $7$ | $365.395$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-4\) | \(-7\) | \(6\) | $-$ | $+$ | $+$ | $+$ | ||
45760.2.a.fg | $7$ | $365.395$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-3\) | \(7\) | \(-5\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.fh | $7$ | $365.395$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(3\) | \(7\) | \(5\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.fi | $7$ | $365.395$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(4\) | \(-7\) | \(-6\) | $+$ | $+$ | $-$ | $+$ | ||
45760.2.a.fj | $7$ | $365.395$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(5\) | \(-7\) | \(-7\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.fk | $8$ | $365.395$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-1\) | \(8\) | \(1\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.fl | $8$ | $365.395$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-1\) | \(8\) | \(5\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.fm | $8$ | $365.395$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(-8\) | \(-2\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.fn | $8$ | $365.395$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(-8\) | \(2\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.fo | $8$ | $365.395$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(1\) | \(8\) | \(-5\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.fp | $8$ | $365.395$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(1\) | \(8\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.fq | $9$ | $365.395$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-5\) | \(-9\) | \(3\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.fr | $9$ | $365.395$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-4\) | \(-9\) | \(6\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.fs | $9$ | $365.395$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-2\) | \(-9\) | \(-4\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.ft | $9$ | $365.395$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(2\) | \(-9\) | \(4\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.fu | $9$ | $365.395$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(4\) | \(-9\) | \(-6\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.fv | $9$ | $365.395$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(5\) | \(-9\) | \(-3\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.fw | $10$ | $365.395$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-1\) | \(-10\) | \(3\) | $+$ | $+$ | $-$ | $+$ | ||
45760.2.a.fx | $10$ | $365.395$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-1\) | \(10\) | \(1\) | $+$ | $-$ | $+$ | $+$ | ||
45760.2.a.fy | $10$ | $365.395$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(1\) | \(-10\) | \(-3\) | $-$ | $+$ | $+$ | $+$ | ||
45760.2.a.fz | $10$ | $365.395$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(1\) | \(10\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.ga | $11$ | $365.395$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(0\) | \(-11\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.gb | $11$ | $365.395$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(0\) | \(-11\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
45760.2.a.gc | $12$ | $365.395$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-2\) | \(12\) | \(0\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.gd | $12$ | $365.395$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(2\) | \(12\) | \(0\) | $+$ | $-$ | $+$ | $+$ | ||
45760.2.a.ge | $13$ | $365.395$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(-5\) | \(13\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.gf | $13$ | $365.395$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(-4\) | \(13\) | \(-4\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.gg | $13$ | $365.395$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(4\) | \(13\) | \(4\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.gh | $13$ | $365.395$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(5\) | \(13\) | \(3\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.gi | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-5\) | \(-14\) | \(11\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.gj | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-4\) | \(-14\) | \(-4\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.gk | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-1\) | \(14\) | \(5\) | $-$ | $-$ | $-$ | $+$ | ||
45760.2.a.gl | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(0\) | \(14\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.gm | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(0\) | \(14\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.gn | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(1\) | \(14\) | \(-5\) | $-$ | $-$ | $+$ | $+$ | ||
45760.2.a.go | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(4\) | \(-14\) | \(4\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.gp | $14$ | $365.395$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(5\) | \(-14\) | \(-11\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.gq | $15$ | $365.395$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-9\) | \(-15\) | \(7\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.gr | $15$ | $365.395$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-3\) | \(15\) | \(-7\) | $-$ | $-$ | $-$ | $-$ | ||
45760.2.a.gs | $15$ | $365.395$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-2\) | \(-15\) | \(2\) | $+$ | $+$ | $+$ | $-$ | ||
45760.2.a.gt | $15$ | $365.395$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(2\) | \(-15\) | \(-2\) | $+$ | $+$ | $-$ | $-$ | ||
45760.2.a.gu | $15$ | $365.395$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(3\) | \(15\) | \(7\) | $-$ | $-$ | $+$ | $-$ | ||
45760.2.a.gv | $15$ | $365.395$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(9\) | \(-15\) | \(-7\) | $-$ | $+$ | $+$ | $+$ | ||
45760.2.a.gw | $16$ | $365.395$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-5\) | \(-16\) | \(5\) | $-$ | $+$ | $+$ | $-$ | ||
45760.2.a.gx | $16$ | $365.395$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-4\) | \(16\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
45760.2.a.gy | $16$ | $365.395$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-3\) | \(-16\) | \(9\) | $-$ | $+$ | $+$ | $+$ | ||
45760.2.a.gz | $16$ | $365.395$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(3\) | \(-16\) | \(-9\) | $-$ | $+$ | $-$ | $+$ | ||
45760.2.a.ha | $16$ | $365.395$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(4\) | \(16\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
45760.2.a.hb | $16$ | $365.395$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(5\) | \(-16\) | \(-5\) | $-$ | $+$ | $-$ | $-$ | ||
45760.2.a.hc | $18$ | $365.395$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-6\) | \(-18\) | \(0\) | $+$ | $+$ | $+$ | $+$ | ||
45760.2.a.hd | $18$ | $365.395$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(6\) | \(-18\) | \(0\) | $+$ | $+$ | $-$ | $+$ | ||
45760.2.a.he | $19$ | $365.395$ | \(\mathbb{Q}[x]/(x^{19} - \cdots)\) | None | \(0\) | \(0\) | \(19\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | ||
45760.2.a.hf | $19$ | $365.395$ | \(\mathbb{Q}[x]/(x^{19} - \cdots)\) | None | \(0\) | \(0\) | \(19\) | \(2\) | $+$ | $-$ | $+$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(45760))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(45760)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 28}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(286))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(572))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(704))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(715))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(832))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(880))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1040))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1144))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1430))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1760))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2080))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2288))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2860))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3520))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4576))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5720))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(9152))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11440))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(22880))\)\(^{\oplus 2}\)