gp:[N,k,chi] = [45570,2,Mod(1,45570)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45570.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45570, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,-1,-1,1,1,1,0,-1,1,-1,-4,-1,-2,0,-1,1,-2,-1,-4,1,0,4,4,1,1,
2,-1,0,-2,1,1,-1,4,2,0,1,-6,4,2,-1,-10,0,-4,-4,1,-4,-8,-1,0,-1,2,-2,-6,
1,-4,0,4,2,-8,-1,-10,-1,0,1,-2,-4,-12,-2,-4,0,0,-1,-14,6,-1,-4,0,-2,-8,
1,1,10,-4,0,-2,4,2,4,6,-1,0,4,-1,8,-4,1,6,0,-4,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
| \( p \) |
Sign
|
| \(2\) |
\( +1 \) |
| \(3\) |
\( +1 \) |
| \(5\) |
\( -1 \) |
| \(7\) |
\( -1 \) |
| \(31\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.