Defining parameters
Level: | \( N \) | \(=\) | \( 45570 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 45570.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 209 \) | ||
Sturm bound: | \(21504\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(45570))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10816 | 820 | 9996 |
Cusp forms | 10689 | 820 | 9869 |
Eisenstein series | 127 | 0 | 127 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(320\) | \(25\) | \(295\) | \(317\) | \(25\) | \(292\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(348\) | \(24\) | \(324\) | \(344\) | \(24\) | \(320\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(353\) | \(27\) | \(326\) | \(349\) | \(27\) | \(322\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(330\) | \(27\) | \(303\) | \(326\) | \(27\) | \(299\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(348\) | \(23\) | \(325\) | \(344\) | \(23\) | \(321\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(332\) | \(28\) | \(304\) | \(328\) | \(28\) | \(300\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(330\) | \(27\) | \(303\) | \(326\) | \(27\) | \(299\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(341\) | \(24\) | \(317\) | \(337\) | \(24\) | \(313\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(344\) | \(28\) | \(316\) | \(340\) | \(28\) | \(312\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(340\) | \(21\) | \(319\) | \(336\) | \(21\) | \(315\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(335\) | \(24\) | \(311\) | \(331\) | \(24\) | \(307\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(334\) | \(30\) | \(304\) | \(330\) | \(30\) | \(300\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(340\) | \(24\) | \(316\) | \(336\) | \(24\) | \(312\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(332\) | \(27\) | \(305\) | \(328\) | \(27\) | \(301\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(334\) | \(27\) | \(307\) | \(330\) | \(27\) | \(303\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(347\) | \(24\) | \(323\) | \(343\) | \(24\) | \(319\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(336\) | \(25\) | \(311\) | \(332\) | \(25\) | \(307\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(340\) | \(26\) | \(314\) | \(336\) | \(26\) | \(310\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(341\) | \(24\) | \(317\) | \(337\) | \(24\) | \(313\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(336\) | \(27\) | \(309\) | \(332\) | \(27\) | \(305\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(348\) | \(23\) | \(325\) | \(344\) | \(23\) | \(321\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(332\) | \(26\) | \(306\) | \(328\) | \(26\) | \(302\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(328\) | \(30\) | \(298\) | \(324\) | \(30\) | \(294\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(345\) | \(24\) | \(321\) | \(341\) | \(24\) | \(317\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(328\) | \(22\) | \(306\) | \(324\) | \(22\) | \(302\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(348\) | \(29\) | \(319\) | \(344\) | \(29\) | \(315\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(347\) | \(30\) | \(317\) | \(343\) | \(30\) | \(313\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(328\) | \(21\) | \(307\) | \(324\) | \(21\) | \(303\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(340\) | \(30\) | \(310\) | \(336\) | \(30\) | \(306\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(332\) | \(19\) | \(313\) | \(328\) | \(19\) | \(309\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(336\) | \(21\) | \(315\) | \(332\) | \(21\) | \(311\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(343\) | \(33\) | \(310\) | \(339\) | \(33\) | \(306\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(5372\) | \(380\) | \(4992\) | \(5309\) | \(380\) | \(4929\) | \(63\) | \(0\) | \(63\) | |||||||
Minus space | \(-\) | \(5444\) | \(440\) | \(5004\) | \(5380\) | \(440\) | \(4940\) | \(64\) | \(0\) | \(64\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(45570))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 7 | 31 | |||||||
45570.2.a.a | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.b | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.c | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.d | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.e | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.f | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.g | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.h | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.i | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.j | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.k | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.l | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.m | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.n | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.o | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.p | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.q | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.r | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.s | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.t | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{8}+\cdots\) | |
45570.2.a.u | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.v | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.w | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.x | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.y | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.z | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.ba | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bb | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bc | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bd | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.be | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bf | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bg | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bh | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bi | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bj | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bk | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bl | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bm | $1$ | $363.878$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\) | |
45570.2.a.bn | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bo | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bp | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bq | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.br | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bs | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bt | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bu | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bv | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bw | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bx | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.by | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.bz | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.ca | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cb | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cc | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cd | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.ce | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cf | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cg | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.ch | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.ci | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cj | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.ck | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cl | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cm | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) | |
45570.2.a.cn | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.co | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cp | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cq | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cr | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cs | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.ct | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cu | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cv | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cw | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cx | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cy | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.cz | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.da | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.db | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.dc | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.dd | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.de | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.df | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.dg | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.dh | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.di | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.dj | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.dk | $1$ | $363.878$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{8}+\cdots\) | |
45570.2.a.dl | $2$ | $363.878$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.dm | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
45570.2.a.dn | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.do | $2$ | $363.878$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(-2\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.dp | $2$ | $363.878$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(-2\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.dq | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.dr | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(2\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.ds | $2$ | $363.878$ | \(\Q(\sqrt{10}) \) | None | \(-2\) | \(2\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.dt | $2$ | $363.878$ | \(\Q(\sqrt{41}) \) | None | \(-2\) | \(2\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.du | $2$ | $363.878$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(2\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
45570.2.a.dv | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(2\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.dw | $2$ | $363.878$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(2\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.dx | $2$ | $363.878$ | \(\Q(\sqrt{6}) \) | None | \(-2\) | \(2\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.dy | $2$ | $363.878$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(-2\) | \(-2\) | \(0\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
45570.2.a.dz | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(-2\) | \(-2\) | \(0\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
45570.2.a.ea | $2$ | $363.878$ | \(\Q(\sqrt{33}) \) | None | \(2\) | \(-2\) | \(-2\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.eb | $2$ | $363.878$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(-2\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.ec | $2$ | $363.878$ | \(\Q(\sqrt{73}) \) | None | \(2\) | \(-2\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.ed | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(-2\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
45570.2.a.ee | $2$ | $363.878$ | \(\Q(\sqrt{65}) \) | None | \(2\) | \(-2\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.ef | $2$ | $363.878$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(2\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.eg | $2$ | $363.878$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(2\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.eh | $2$ | $363.878$ | \(\Q(\sqrt{6}) \) | None | \(2\) | \(2\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.ei | $2$ | $363.878$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(2\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.ej | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(2\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.ek | $2$ | $363.878$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(2\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.el | $2$ | $363.878$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(2\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
45570.2.a.em | $2$ | $363.878$ | \(\Q(\sqrt{41}) \) | None | \(2\) | \(2\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.en | $2$ | $363.878$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(2\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.eo | $3$ | $363.878$ | 3.3.8472.1 | None | \(-3\) | \(-3\) | \(-3\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
45570.2.a.ep | $3$ | $363.878$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(-3\) | \(3\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.eq | $3$ | $363.878$ | 3.3.404.1 | None | \(-3\) | \(-3\) | \(3\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.er | $3$ | $363.878$ | 3.3.3144.1 | None | \(-3\) | \(-3\) | \(3\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.es | $3$ | $363.878$ | 3.3.404.1 | None | \(-3\) | \(3\) | \(-3\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
45570.2.a.et | $3$ | $363.878$ | 3.3.316.1 | None | \(-3\) | \(3\) | \(3\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.eu | $3$ | $363.878$ | 3.3.229.1 | None | \(-3\) | \(3\) | \(3\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.ev | $3$ | $363.878$ | 3.3.404.1 | None | \(3\) | \(-3\) | \(-3\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.ew | $3$ | $363.878$ | 3.3.1944.1 | None | \(3\) | \(-3\) | \(-3\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.ex | $3$ | $363.878$ | 3.3.404.1 | None | \(3\) | \(-3\) | \(3\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.ey | $3$ | $363.878$ | 3.3.404.1 | None | \(3\) | \(3\) | \(-3\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
45570.2.a.ez | $3$ | $363.878$ | \(\Q(\zeta_{14})^+\) | None | \(3\) | \(3\) | \(-3\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.fa | $3$ | $363.878$ | 3.3.404.1 | None | \(3\) | \(3\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
45570.2.a.fb | $3$ | $363.878$ | 3.3.316.1 | None | \(3\) | \(3\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.fc | $4$ | $363.878$ | 4.4.98172.1 | None | \(-4\) | \(-4\) | \(4\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.fd | $4$ | $363.878$ | 4.4.71540.1 | None | \(-4\) | \(-4\) | \(4\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.fe | $4$ | $363.878$ | 4.4.71540.1 | None | \(-4\) | \(4\) | \(-4\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.ff | $4$ | $363.878$ | 4.4.11344.1 | None | \(4\) | \(-4\) | \(4\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.fg | $4$ | $363.878$ | 4.4.47032.1 | None | \(4\) | \(-4\) | \(4\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.fh | $4$ | $363.878$ | 4.4.54764.1 | None | \(4\) | \(-4\) | \(4\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.fi | $4$ | $363.878$ | \(\Q(\zeta_{16})^+\) | None | \(4\) | \(-4\) | \(4\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.fj | $4$ | $363.878$ | 4.4.4352.1 | None | \(4\) | \(-4\) | \(4\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.fk | $4$ | $363.878$ | 4.4.75348.1 | None | \(4\) | \(-4\) | \(4\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.fl | $4$ | $363.878$ | \(\Q(\sqrt{2}, \sqrt{11})\) | None | \(4\) | \(-4\) | \(4\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
45570.2.a.fm | $4$ | $363.878$ | 4.4.11344.1 | None | \(4\) | \(4\) | \(-4\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
45570.2.a.fn | $4$ | $363.878$ | \(\Q(\zeta_{16})^+\) | None | \(4\) | \(4\) | \(-4\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
45570.2.a.fo | $4$ | $363.878$ | 4.4.75348.1 | None | \(4\) | \(4\) | \(-4\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.fp | $4$ | $363.878$ | 4.4.4352.1 | None | \(4\) | \(4\) | \(-4\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
45570.2.a.fq | $4$ | $363.878$ | 4.4.11324.1 | None | \(4\) | \(4\) | \(-4\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.fr | $4$ | $363.878$ | \(\Q(\sqrt{2}, \sqrt{11})\) | None | \(4\) | \(4\) | \(-4\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
45570.2.a.fs | $4$ | $363.878$ | 4.4.85688.1 | None | \(4\) | \(4\) | \(4\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.ft | $5$ | $363.878$ | 5.5.22868128.1 | None | \(-5\) | \(-5\) | \(-5\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.fu | $5$ | $363.878$ | 5.5.5251392.1 | None | \(-5\) | \(-5\) | \(5\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.fv | $5$ | $363.878$ | 5.5.5251392.1 | None | \(-5\) | \(5\) | \(-5\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.fw | $5$ | $363.878$ | 5.5.1222393.1 | None | \(-5\) | \(5\) | \(5\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.fx | $5$ | $363.878$ | 5.5.2412624.1 | None | \(5\) | \(-5\) | \(-5\) | \(0\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
45570.2.a.fy | $5$ | $363.878$ | 5.5.3525148.1 | None | \(5\) | \(-5\) | \(-5\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
45570.2.a.fz | $5$ | $363.878$ | 5.5.6309860.1 | None | \(5\) | \(-5\) | \(5\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.ga | $5$ | $363.878$ | 5.5.6309860.1 | None | \(5\) | \(5\) | \(-5\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.gb | $5$ | $363.878$ | 5.5.2412624.1 | None | \(5\) | \(5\) | \(5\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.gc | $6$ | $363.878$ | 6.6.683964128.1 | None | \(-6\) | \(6\) | \(-6\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.gd | $6$ | $363.878$ | 6.6.31542512.1 | None | \(6\) | \(-6\) | \(-6\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.ge | $6$ | $363.878$ | 6.6.66701312.1 | None | \(6\) | \(-6\) | \(6\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.gf | $6$ | $363.878$ | 6.6.66701312.1 | None | \(6\) | \(6\) | \(-6\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
45570.2.a.gg | $6$ | $363.878$ | 6.6.31542512.1 | None | \(6\) | \(6\) | \(6\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.gh | $7$ | $363.878$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(-7\) | \(-7\) | \(-7\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
45570.2.a.gi | $7$ | $363.878$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(-7\) | \(7\) | \(7\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.gj | $7$ | $363.878$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(7\) | \(-7\) | \(-7\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
45570.2.a.gk | $7$ | $363.878$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(7\) | \(-7\) | \(7\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.gl | $7$ | $363.878$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(7\) | \(7\) | \(-7\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.gm | $7$ | $363.878$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(7\) | \(7\) | \(7\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
45570.2.a.gn | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(-8\) | \(-8\) | \(0\) | $+$ | $+$ | $+$ | $+$ | $+$ | ||
45570.2.a.go | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(-8\) | \(-8\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.gp | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(8\) | \(8\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.gq | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(8\) | \(8\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.gr | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(-8\) | \(-8\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.gs | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(-8\) | \(8\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.gt | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(8\) | \(-8\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
45570.2.a.gu | $8$ | $363.878$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(8\) | \(8\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
45570.2.a.gv | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(-9\) | \(9\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
45570.2.a.gw | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(-9\) | \(9\) | \(0\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.gx | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(9\) | \(-9\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
45570.2.a.gy | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(9\) | \(-9\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.gz | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(-9\) | \(-9\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
45570.2.a.ha | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(-9\) | \(9\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
45570.2.a.hb | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(9\) | \(-9\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
45570.2.a.hc | $9$ | $363.878$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(9\) | \(9\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.hd | $10$ | $363.878$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(-10\) | \(-10\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
45570.2.a.he | $10$ | $363.878$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(-10\) | \(-10\) | \(0\) | $+$ | $+$ | $+$ | $+$ | $-$ | ||
45570.2.a.hf | $10$ | $363.878$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(10\) | \(10\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $+$ | ||
45570.2.a.hg | $10$ | $363.878$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(10\) | \(10\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
45570.2.a.hh | $10$ | $363.878$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(10\) | \(-10\) | \(-10\) | \(0\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
45570.2.a.hi | $10$ | $363.878$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(10\) | \(10\) | \(10\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
45570.2.a.hj | $11$ | $363.878$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(-11\) | \(-11\) | \(-11\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
45570.2.a.hk | $11$ | $363.878$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(-11\) | \(-11\) | \(11\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
45570.2.a.hl | $11$ | $363.878$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(-11\) | \(11\) | \(-11\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
45570.2.a.hm | $11$ | $363.878$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(-11\) | \(11\) | \(11\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
45570.2.a.hn | $12$ | $363.878$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(-12\) | \(12\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
45570.2.a.ho | $12$ | $363.878$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(12\) | \(-12\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
45570.2.a.hp | $12$ | $363.878$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(-12\) | \(12\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
45570.2.a.hq | $12$ | $363.878$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(12\) | \(-12\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
45570.2.a.hr | $13$ | $363.878$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(13\) | \(-13\) | \(-13\) | \(0\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
45570.2.a.hs | $13$ | $363.878$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(13\) | \(13\) | \(13\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
45570.2.a.ht | $14$ | $363.878$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(-14\) | \(-14\) | \(-14\) | \(0\) | $+$ | $+$ | $+$ | $+$ | $-$ | ||
45570.2.a.hu | $14$ | $363.878$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(-14\) | \(14\) | \(14\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $+$ | ||
45570.2.a.hv | $16$ | $363.878$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-16\) | \(-16\) | \(-16\) | \(0\) | $+$ | $+$ | $+$ | $+$ | $+$ | ||
45570.2.a.hw | $16$ | $363.878$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-16\) | \(16\) | \(16\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
45570.2.a.hx | $18$ | $363.878$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-18\) | \(-18\) | \(18\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
45570.2.a.hy | $18$ | $363.878$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-18\) | \(18\) | \(-18\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
45570.2.a.hz | $18$ | $363.878$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(18\) | \(-18\) | \(-18\) | \(0\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
45570.2.a.ia | $18$ | $363.878$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(18\) | \(18\) | \(18\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(45570))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(45570)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(217))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(310))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(434))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(465))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(490))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(651))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(735))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(930))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1085))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1302))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1470))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1519))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2170))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3038))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4557))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6510))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7595))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(9114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15190))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(22785))\)\(^{\oplus 2}\)