Properties

Label 45570.2.a.fi
Level $45570$
Weight $2$
Character orbit 45570.a
Self dual yes
Analytic conductor $363.878$
Dimension $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45570,2,Mod(1,45570)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45570.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45570, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 45570 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45570.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-4,4,4,-4,0,4,4,4,0,-4,8,0,-4,4,0,4,0,4,0,0,-16,-4,4,8,-4, 0,0,-4,4,4,0,0,0,4,-8,0,-8,4,-8,0,24,0,4,-16,8,-4,0,4,0,8,32,-4,0,0,0, 0,8,-4,24,4,0,4,8,0,-32,0,16,0,0,4,8,-8,-4,0,0,-8,8,4,4,-8,-16,0,0,24, 0,0,24,4,0,-16,-4,8,0,-4,16,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(363.878282011\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} + 4 q^{5} - 4 q^{6} + 4 q^{8} + 4 q^{9} + 4 q^{10} - 4 q^{12} + 8 q^{13} - 4 q^{15} + 4 q^{16} + 4 q^{18} + 4 q^{20} - 16 q^{23} - 4 q^{24} + 4 q^{25} + 8 q^{26} - 4 q^{27}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)
\(31\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.