Properties

Label 45570.2.a.cx
Level 4557045570
Weight 22
Character orbit 45570.a
Self dual yes
Analytic conductor 363.878363.878
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45570,2,Mod(1,45570)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45570.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45570, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 45570=2357231 45570 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 31
Weight: k k == 2 2
Character orbit: [χ][\chi] == 45570.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,1,1,-1,1,0,1,1,-1,0,1,6,0,-1,1,-2,1,4,-1,0,0,-4,1,1,6,1, 0,4,-1,-1,1,0,-2,0,1,2,4,6,-1,-6,0,-2,0,-1,-4,-2,1,0,1,-2,6,0,1,0,0,4, 4,-6,-1,10,-1,0,1,-6,0,0,-2,-4,0,8,1,2,2,1,4,0,6,10,-1,1,-6,4,0,2,-2,4, 0,10,-1,0,-4,-1,-2,-4,1,12,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 363.878282011363.878282011
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+q2+q3+q4q5+q6+q8+q9q10+q12+6q13q15+q162q17+q18+4q19q204q23+q24+q25+6q26+q27++12q97+O(q100) q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} + q^{12} + 6 q^{13} - q^{15} + q^{16} - 2 q^{17} + q^{18} + 4 q^{19} - q^{20} - 4 q^{23} + q^{24} + q^{25} + 6 q^{26} + q^{27}+ \cdots + 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 +1 +1
77 1 -1
3131 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.