gp:[N,k,chi] = [45570,2,Mod(1,45570)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45570.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45570, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,1,1,-1,1,0,1,1,-1,-4,1,2,0,-1,1,6,1,-4,-1,0,-4,0,1,1,2,1,
0,6,-1,1,1,-4,6,0,1,-2,-4,2,-1,-10,0,-4,-4,-1,0,0,1,0,1,6,2,-2,1,4,0,-4,
6,-12,-1,-14,1,0,1,-2,-4,4,6,0,0,8,1,-2,-2,1,-4,0,2,8,-1,1,-10,-12,0,-6,
-4,6,-4,-2,-1,0,0,1,0,4,1,14,0,-4,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( -1 \) |
\(3\) |
\( -1 \) |
\(5\) |
\( +1 \) |
\(7\) |
\( -1 \) |
\(31\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.