Properties

Label 455.2.ce.a
Level $455$
Weight $2$
Character orbit 455.ce
Analytic conductor $3.633$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [455,2,Mod(162,455)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("455.162"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(455, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.63319329197\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{3} - \zeta_{12}^{2} + \zeta_{12}) q^{2} + (\zeta_{12}^{3} - \zeta_{12}^{2} - \zeta_{12}) q^{3} + ( - 4 \zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 2) q^{4} + ( - \zeta_{12}^{3} + 2) q^{5}+ \cdots + (\zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 4 q^{4} + 8 q^{5} - 8 q^{6} + 24 q^{8} + 2 q^{10} + 2 q^{11} + 8 q^{12} - 2 q^{15} - 16 q^{16} + 4 q^{17} - 2 q^{19} - 20 q^{20} - 4 q^{21} + 2 q^{22} + 12 q^{25} - 6 q^{26} + 16 q^{27}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/455\mathbb{Z}\right)^\times\).

\(n\) \(66\) \(92\) \(106\)
\(\chi(n)\) \(1\) \(\zeta_{12}^{3}\) \(\zeta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
162.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−1.36603 + 2.36603i 0.366025 + 1.36603i −2.73205 4.73205i 2.00000 1.00000i −3.73205 1.00000i −0.866025 + 0.500000i 9.46410 0.866025 0.500000i −0.366025 + 6.09808i
197.1 0.366025 + 0.633975i −1.36603 0.366025i 0.732051 1.26795i 2.00000 1.00000i −0.267949 1.00000i 0.866025 + 0.500000i 2.53590 −0.866025 0.500000i 1.36603 + 0.901924i
323.1 −1.36603 2.36603i 0.366025 1.36603i −2.73205 + 4.73205i 2.00000 + 1.00000i −3.73205 + 1.00000i −0.866025 0.500000i 9.46410 0.866025 + 0.500000i −0.366025 6.09808i
358.1 0.366025 0.633975i −1.36603 + 0.366025i 0.732051 + 1.26795i 2.00000 + 1.00000i −0.267949 + 1.00000i 0.866025 0.500000i 2.53590 −0.866025 + 0.500000i 1.36603 0.901924i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.o even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 455.2.ce.a 4
5.c odd 4 1 455.2.dt.a yes 4
13.f odd 12 1 455.2.dt.a yes 4
65.o even 12 1 inner 455.2.ce.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
455.2.ce.a 4 1.a even 1 1 trivial
455.2.ce.a 4 65.o even 12 1 inner
455.2.dt.a yes 4 5.c odd 4 1
455.2.dt.a yes 4 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 2T_{2}^{3} + 6T_{2}^{2} - 4T_{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(455, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} - 22T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$31$ \( T^{4} + 4 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$37$ \( T^{4} - 6 T^{3} + \cdots + 6084 \) Copy content Toggle raw display
$41$ \( T^{4} + 16 T^{3} + \cdots + 2704 \) Copy content Toggle raw display
$43$ \( T^{4} - 26 T^{3} + \cdots + 8836 \) Copy content Toggle raw display
$47$ \( T^{4} + 114T^{2} + 1521 \) Copy content Toggle raw display
$53$ \( T^{4} + 16 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$59$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$61$ \( T^{4} + 14 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$67$ \( T^{4} + 4 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$71$ \( T^{4} - 10 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$73$ \( (T^{2} - 16 T + 37)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 224T^{2} + 256 \) Copy content Toggle raw display
$83$ \( T^{4} + 294 T^{2} + 19881 \) Copy content Toggle raw display
$89$ \( T^{4} + 28 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$97$ \( T^{4} - 8 T^{3} + \cdots + 30976 \) Copy content Toggle raw display
show more
show less