Properties

Label 455.2.bq.a.36.8
Level $455$
Weight $2$
Character 455.36
Analytic conductor $3.633$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [455,2,Mod(36,455)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("455.36"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(455, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.bq (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.63319329197\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 24 x^{18} + 236 x^{16} + 1230 x^{14} + 3684 x^{12} + 6482 x^{10} + 6665 x^{8} + 3872 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.8
Root \(1.30628i\) of defining polynomial
Character \(\chi\) \(=\) 455.36
Dual form 455.2.bq.a.316.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13127 - 0.653140i) q^{2} +(0.992163 + 1.71848i) q^{3} +(-0.146816 + 0.254293i) q^{4} -1.00000i q^{5} +(2.24481 + 1.29604i) q^{6} +(0.866025 + 0.500000i) q^{7} +2.99613i q^{8} +(-0.468774 + 0.811941i) q^{9} +(-0.653140 - 1.13127i) q^{10} +(-0.173399 + 0.100112i) q^{11} -0.582663 q^{12} +(2.42512 + 2.66810i) q^{13} +1.30628 q^{14} +(1.71848 - 0.992163i) q^{15} +(1.66326 + 2.88085i) q^{16} +(-0.153965 + 0.266675i) q^{17} +1.22470i q^{18} +(-2.49854 - 1.44253i) q^{19} +(0.254293 + 0.146816i) q^{20} +1.98433i q^{21} +(-0.130774 + 0.226508i) q^{22} +(-0.0132078 - 0.0228766i) q^{23} +(-5.14877 + 2.97265i) q^{24} -1.00000 q^{25} +(4.48612 + 1.43440i) q^{26} +4.09258 q^{27} +(-0.254293 + 0.146816i) q^{28} +(-1.66879 - 2.89043i) q^{29} +(1.29604 - 2.24481i) q^{30} -4.36047i q^{31} +(-1.42625 - 0.823447i) q^{32} +(-0.344080 - 0.198655i) q^{33} +0.402243i q^{34} +(0.500000 - 0.866025i) q^{35} +(-0.137647 - 0.238412i) q^{36} +(-0.935201 + 0.539939i) q^{37} -3.76871 q^{38} +(-2.17895 + 6.81471i) q^{39} +2.99613 q^{40} +(4.14823 - 2.39498i) q^{41} +(1.29604 + 2.24481i) q^{42} +(-1.05264 + 1.82322i) q^{43} -0.0587923i q^{44} +(0.811941 + 0.468774i) q^{45} +(-0.0298832 - 0.0172531i) q^{46} -6.56495i q^{47} +(-3.30044 + 5.71654i) q^{48} +(0.500000 + 0.866025i) q^{49} +(-1.13127 + 0.653140i) q^{50} -0.611034 q^{51} +(-1.03453 + 0.224972i) q^{52} +1.77119 q^{53} +(4.62981 - 2.67302i) q^{54} +(0.100112 + 0.173399i) q^{55} +(-1.49806 + 2.59472i) q^{56} -5.72492i q^{57} +(-3.77572 - 2.17991i) q^{58} +(-6.07534 - 3.50760i) q^{59} +0.582663i q^{60} +(4.28889 - 7.42858i) q^{61} +(-2.84800 - 4.93288i) q^{62} +(-0.811941 + 0.468774i) q^{63} -8.80433 q^{64} +(2.66810 - 2.42512i) q^{65} -0.518997 q^{66} +(-4.69371 + 2.70992i) q^{67} +(-0.0452092 - 0.0783046i) q^{68} +(0.0262086 - 0.0453946i) q^{69} -1.30628i q^{70} +(-8.72896 - 5.03966i) q^{71} +(-2.43268 - 1.40451i) q^{72} -8.13440i q^{73} +(-0.705311 + 1.22163i) q^{74} +(-0.992163 - 1.71848i) q^{75} +(0.733654 - 0.423575i) q^{76} -0.200224 q^{77} +(1.98597 + 9.13245i) q^{78} +4.64412 q^{79} +(2.88085 - 1.66326i) q^{80} +(5.46682 + 9.46882i) q^{81} +(3.12852 - 5.41875i) q^{82} -11.0233i q^{83} +(-0.504601 - 0.291331i) q^{84} +(0.266675 + 0.153965i) q^{85} +2.75007i q^{86} +(3.31143 - 5.73556i) q^{87} +(-0.299948 - 0.519525i) q^{88} +(6.23057 - 3.59722i) q^{89} +1.22470 q^{90} +(0.766168 + 3.52321i) q^{91} +0.00775648 q^{92} +(7.49336 - 4.32630i) q^{93} +(-4.28783 - 7.42674i) q^{94} +(-1.44253 + 2.49854i) q^{95} -3.26797i q^{96} +(12.2870 + 7.09388i) q^{97} +(1.13127 + 0.653140i) q^{98} -0.187720i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} + 4 q^{4} + 18 q^{6} - 6 q^{11} - 8 q^{12} + 6 q^{15} - 10 q^{17} + 26 q^{22} + 2 q^{23} + 12 q^{24} - 20 q^{25} - 2 q^{26} - 44 q^{27} + 12 q^{29} - 8 q^{30} - 6 q^{32} - 18 q^{33} + 10 q^{35}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/455\mathbb{Z}\right)^\times\).

\(n\) \(66\) \(92\) \(106\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13127 0.653140i 0.799930 0.461840i −0.0435168 0.999053i \(-0.513856\pi\)
0.843447 + 0.537213i \(0.180523\pi\)
\(3\) 0.992163 + 1.71848i 0.572825 + 0.992163i 0.996274 + 0.0862427i \(0.0274861\pi\)
−0.423449 + 0.905920i \(0.639181\pi\)
\(4\) −0.146816 + 0.254293i −0.0734082 + 0.127147i
\(5\) 1.00000i 0.447214i
\(6\) 2.24481 + 1.29604i 0.916440 + 0.529107i
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 2.99613i 1.05929i
\(9\) −0.468774 + 0.811941i −0.156258 + 0.270647i
\(10\) −0.653140 1.13127i −0.206541 0.357739i
\(11\) −0.173399 + 0.100112i −0.0522818 + 0.0301849i −0.525913 0.850538i \(-0.676276\pi\)
0.473631 + 0.880723i \(0.342943\pi\)
\(12\) −0.582663 −0.168200
\(13\) 2.42512 + 2.66810i 0.672608 + 0.739999i
\(14\) 1.30628 0.349118
\(15\) 1.71848 0.992163i 0.443709 0.256175i
\(16\) 1.66326 + 2.88085i 0.415814 + 0.720212i
\(17\) −0.153965 + 0.266675i −0.0373420 + 0.0646783i −0.884092 0.467312i \(-0.845222\pi\)
0.846750 + 0.531990i \(0.178556\pi\)
\(18\) 1.22470i 0.288665i
\(19\) −2.49854 1.44253i −0.573205 0.330940i 0.185223 0.982696i \(-0.440699\pi\)
−0.758428 + 0.651756i \(0.774032\pi\)
\(20\) 0.254293 + 0.146816i 0.0568617 + 0.0328291i
\(21\) 1.98433i 0.433015i
\(22\) −0.130774 + 0.226508i −0.0278812 + 0.0482916i
\(23\) −0.0132078 0.0228766i −0.00275401 0.00477009i 0.864645 0.502383i \(-0.167543\pi\)
−0.867399 + 0.497613i \(0.834210\pi\)
\(24\) −5.14877 + 2.97265i −1.05099 + 0.606789i
\(25\) −1.00000 −0.200000
\(26\) 4.48612 + 1.43440i 0.879800 + 0.281310i
\(27\) 4.09258 0.787617
\(28\) −0.254293 + 0.146816i −0.0480569 + 0.0277457i
\(29\) −1.66879 2.89043i −0.309887 0.536740i 0.668450 0.743757i \(-0.266958\pi\)
−0.978337 + 0.207017i \(0.933625\pi\)
\(30\) 1.29604 2.24481i 0.236624 0.409845i
\(31\) 4.36047i 0.783164i −0.920143 0.391582i \(-0.871928\pi\)
0.920143 0.391582i \(-0.128072\pi\)
\(32\) −1.42625 0.823447i −0.252128 0.145566i
\(33\) −0.344080 0.198655i −0.0598966 0.0345813i
\(34\) 0.402243i 0.0689841i
\(35\) 0.500000 0.866025i 0.0845154 0.146385i
\(36\) −0.137647 0.238412i −0.0229412 0.0397354i
\(37\) −0.935201 + 0.539939i −0.153746 + 0.0887653i −0.574899 0.818224i \(-0.694959\pi\)
0.421153 + 0.906989i \(0.361625\pi\)
\(38\) −3.76871 −0.611365
\(39\) −2.17895 + 6.81471i −0.348912 + 1.09123i
\(40\) 2.99613 0.473729
\(41\) 4.14823 2.39498i 0.647845 0.374034i −0.139785 0.990182i \(-0.544641\pi\)
0.787630 + 0.616148i \(0.211308\pi\)
\(42\) 1.29604 + 2.24481i 0.199984 + 0.346382i
\(43\) −1.05264 + 1.82322i −0.160525 + 0.278038i −0.935057 0.354497i \(-0.884652\pi\)
0.774532 + 0.632535i \(0.217986\pi\)
\(44\) 0.0587923i 0.00886327i
\(45\) 0.811941 + 0.468774i 0.121037 + 0.0698807i
\(46\) −0.0298832 0.0172531i −0.00440604 0.00254383i
\(47\) 6.56495i 0.957596i −0.877925 0.478798i \(-0.841073\pi\)
0.877925 0.478798i \(-0.158927\pi\)
\(48\) −3.30044 + 5.71654i −0.476378 + 0.825111i
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −1.13127 + 0.653140i −0.159986 + 0.0923679i
\(51\) −0.611034 −0.0855618
\(52\) −1.03453 + 0.224972i −0.143463 + 0.0311980i
\(53\) 1.77119 0.243291 0.121646 0.992574i \(-0.461183\pi\)
0.121646 + 0.992574i \(0.461183\pi\)
\(54\) 4.62981 2.67302i 0.630038 0.363753i
\(55\) 0.100112 + 0.173399i 0.0134991 + 0.0233811i
\(56\) −1.49806 + 2.59472i −0.200187 + 0.346734i
\(57\) 5.72492i 0.758284i
\(58\) −3.77572 2.17991i −0.495776 0.286236i
\(59\) −6.07534 3.50760i −0.790942 0.456650i 0.0493522 0.998781i \(-0.484284\pi\)
−0.840294 + 0.542131i \(0.817618\pi\)
\(60\) 0.582663i 0.0752215i
\(61\) 4.28889 7.42858i 0.549137 0.951132i −0.449197 0.893433i \(-0.648290\pi\)
0.998334 0.0576999i \(-0.0183766\pi\)
\(62\) −2.84800 4.93288i −0.361696 0.626476i
\(63\) −0.811941 + 0.468774i −0.102295 + 0.0590600i
\(64\) −8.80433 −1.10054
\(65\) 2.66810 2.42512i 0.330937 0.300800i
\(66\) −0.518997 −0.0638841
\(67\) −4.69371 + 2.70992i −0.573428 + 0.331069i −0.758517 0.651653i \(-0.774076\pi\)
0.185089 + 0.982722i \(0.440743\pi\)
\(68\) −0.0452092 0.0783046i −0.00548242 0.00949583i
\(69\) 0.0262086 0.0453946i 0.00315514 0.00546486i
\(70\) 1.30628i 0.156130i
\(71\) −8.72896 5.03966i −1.03594 0.598098i −0.117257 0.993102i \(-0.537410\pi\)
−0.918680 + 0.395003i \(0.870743\pi\)
\(72\) −2.43268 1.40451i −0.286694 0.165523i
\(73\) 8.13440i 0.952060i −0.879429 0.476030i \(-0.842075\pi\)
0.879429 0.476030i \(-0.157925\pi\)
\(74\) −0.705311 + 1.22163i −0.0819907 + 0.142012i
\(75\) −0.992163 1.71848i −0.114565 0.198433i
\(76\) 0.733654 0.423575i 0.0841559 0.0485874i
\(77\) −0.200224 −0.0228176
\(78\) 1.98597 + 9.13245i 0.224867 + 1.03405i
\(79\) 4.64412 0.522505 0.261252 0.965271i \(-0.415865\pi\)
0.261252 + 0.965271i \(0.415865\pi\)
\(80\) 2.88085 1.66326i 0.322088 0.185958i
\(81\) 5.46682 + 9.46882i 0.607425 + 1.05209i
\(82\) 3.12852 5.41875i 0.345487 0.598401i
\(83\) 11.0233i 1.20996i −0.796240 0.604981i \(-0.793181\pi\)
0.796240 0.604981i \(-0.206819\pi\)
\(84\) −0.504601 0.291331i −0.0550565 0.0317869i
\(85\) 0.266675 + 0.153965i 0.0289250 + 0.0166999i
\(86\) 2.75007i 0.296548i
\(87\) 3.31143 5.73556i 0.355022 0.614917i
\(88\) −0.299948 0.519525i −0.0319746 0.0553816i
\(89\) 6.23057 3.59722i 0.660439 0.381305i −0.132005 0.991249i \(-0.542142\pi\)
0.792444 + 0.609944i \(0.208808\pi\)
\(90\) 1.22470 0.129095
\(91\) 0.766168 + 3.52321i 0.0803162 + 0.369332i
\(92\) 0.00775648 0.000808669
\(93\) 7.49336 4.32630i 0.777026 0.448616i
\(94\) −4.28783 7.42674i −0.442256 0.766010i
\(95\) −1.44253 + 2.49854i −0.148001 + 0.256345i
\(96\) 3.26797i 0.333536i
\(97\) 12.2870 + 7.09388i 1.24755 + 0.720274i 0.970621 0.240615i \(-0.0773493\pi\)
0.276931 + 0.960890i \(0.410683\pi\)
\(98\) 1.13127 + 0.653140i 0.114276 + 0.0659771i
\(99\) 0.187720i 0.0188665i
\(100\) 0.146816 0.254293i 0.0146816 0.0254293i
\(101\) −3.90663 6.76648i −0.388724 0.673290i 0.603554 0.797322i \(-0.293751\pi\)
−0.992278 + 0.124032i \(0.960417\pi\)
\(102\) −0.691245 + 0.399091i −0.0684435 + 0.0395159i
\(103\) −8.66126 −0.853419 −0.426710 0.904389i \(-0.640327\pi\)
−0.426710 + 0.904389i \(0.640327\pi\)
\(104\) −7.99397 + 7.26598i −0.783874 + 0.712488i
\(105\) 1.98433 0.193650
\(106\) 2.00369 1.15683i 0.194616 0.112362i
\(107\) 3.48460 + 6.03550i 0.336869 + 0.583474i 0.983842 0.179039i \(-0.0572988\pi\)
−0.646973 + 0.762513i \(0.723966\pi\)
\(108\) −0.600857 + 1.04071i −0.0578175 + 0.100143i
\(109\) 14.8633i 1.42364i 0.702361 + 0.711821i \(0.252129\pi\)
−0.702361 + 0.711821i \(0.747871\pi\)
\(110\) 0.226508 + 0.130774i 0.0215967 + 0.0124688i
\(111\) −1.85574 1.07141i −0.176139 0.101694i
\(112\) 3.32651i 0.314326i
\(113\) −2.66162 + 4.61006i −0.250384 + 0.433678i −0.963632 0.267234i \(-0.913890\pi\)
0.713247 + 0.700912i \(0.247224\pi\)
\(114\) −3.73917 6.47644i −0.350206 0.606574i
\(115\) −0.0228766 + 0.0132078i −0.00213325 + 0.00123163i
\(116\) 0.980025 0.0909930
\(117\) −3.30318 + 0.718319i −0.305379 + 0.0664086i
\(118\) −9.16381 −0.843597
\(119\) −0.266675 + 0.153965i −0.0244461 + 0.0141140i
\(120\) 2.97265 + 5.14877i 0.271364 + 0.470016i
\(121\) −5.47996 + 9.49156i −0.498178 + 0.862869i
\(122\) 11.2050i 1.01445i
\(123\) 8.23145 + 4.75243i 0.742204 + 0.428512i
\(124\) 1.10884 + 0.640188i 0.0995766 + 0.0574906i
\(125\) 1.00000i 0.0894427i
\(126\) −0.612350 + 1.06062i −0.0545525 + 0.0944877i
\(127\) −1.27491 2.20822i −0.113130 0.195948i 0.803900 0.594764i \(-0.202754\pi\)
−0.917031 + 0.398816i \(0.869421\pi\)
\(128\) −7.10759 + 4.10357i −0.628228 + 0.362708i
\(129\) −4.17755 −0.367812
\(130\) 1.43440 4.48612i 0.125805 0.393459i
\(131\) −7.01829 −0.613191 −0.306595 0.951840i \(-0.599190\pi\)
−0.306595 + 0.951840i \(0.599190\pi\)
\(132\) 0.101033 0.0583315i 0.00879381 0.00507711i
\(133\) −1.44253 2.49854i −0.125084 0.216651i
\(134\) −3.53991 + 6.13130i −0.305802 + 0.529664i
\(135\) 4.09258i 0.352233i
\(136\) −0.798993 0.461299i −0.0685131 0.0395561i
\(137\) −5.12500 2.95892i −0.437859 0.252798i 0.264830 0.964295i \(-0.414684\pi\)
−0.702689 + 0.711497i \(0.748017\pi\)
\(138\) 0.0684714i 0.00582867i
\(139\) −11.6509 + 20.1800i −0.988217 + 1.71164i −0.361553 + 0.932352i \(0.617753\pi\)
−0.626664 + 0.779290i \(0.715580\pi\)
\(140\) 0.146816 + 0.254293i 0.0124082 + 0.0214917i
\(141\) 11.2817 6.51350i 0.950092 0.548536i
\(142\) −13.1664 −1.10490
\(143\) −0.687623 0.219862i −0.0575019 0.0183858i
\(144\) −3.11877 −0.259897
\(145\) −2.89043 + 1.66879i −0.240038 + 0.138586i
\(146\) −5.31290 9.20222i −0.439699 0.761581i
\(147\) −0.992163 + 1.71848i −0.0818322 + 0.141738i
\(148\) 0.317087i 0.0260644i
\(149\) 4.06826 + 2.34881i 0.333285 + 0.192422i 0.657298 0.753630i \(-0.271699\pi\)
−0.324014 + 0.946052i \(0.605032\pi\)
\(150\) −2.24481 1.29604i −0.183288 0.105821i
\(151\) 15.0451i 1.22435i 0.790722 + 0.612175i \(0.209705\pi\)
−0.790722 + 0.612175i \(0.790295\pi\)
\(152\) 4.32202 7.48595i 0.350562 0.607191i
\(153\) −0.144350 0.250021i −0.0116700 0.0202130i
\(154\) −0.226508 + 0.130774i −0.0182525 + 0.0105381i
\(155\) −4.36047 −0.350241
\(156\) −1.41303 1.55460i −0.113133 0.124468i
\(157\) 13.8970 1.10910 0.554552 0.832149i \(-0.312890\pi\)
0.554552 + 0.832149i \(0.312890\pi\)
\(158\) 5.25376 3.03326i 0.417967 0.241313i
\(159\) 1.75731 + 3.04374i 0.139363 + 0.241384i
\(160\) −0.823447 + 1.42625i −0.0650992 + 0.112755i
\(161\) 0.0264156i 0.00208184i
\(162\) 12.3689 + 7.14120i 0.971795 + 0.561066i
\(163\) −19.8668 11.4701i −1.55608 0.898406i −0.997625 0.0688744i \(-0.978059\pi\)
−0.558460 0.829532i \(-0.688607\pi\)
\(164\) 1.40649i 0.109828i
\(165\) −0.198655 + 0.344080i −0.0154652 + 0.0267866i
\(166\) −7.19975 12.4703i −0.558809 0.967885i
\(167\) 14.3031 8.25787i 1.10680 0.639014i 0.168804 0.985650i \(-0.446009\pi\)
0.938000 + 0.346636i \(0.112676\pi\)
\(168\) −5.94529 −0.458689
\(169\) −1.23754 + 12.9410i −0.0951958 + 0.995459i
\(170\) 0.402243 0.0308506
\(171\) 2.34250 1.35245i 0.179136 0.103424i
\(172\) −0.309088 0.535357i −0.0235678 0.0408206i
\(173\) −9.23532 + 15.9960i −0.702149 + 1.21616i 0.265562 + 0.964094i \(0.414442\pi\)
−0.967711 + 0.252063i \(0.918891\pi\)
\(174\) 8.65131i 0.655854i
\(175\) −0.866025 0.500000i −0.0654654 0.0377964i
\(176\) −0.576814 0.333024i −0.0434790 0.0251026i
\(177\) 13.9204i 1.04632i
\(178\) 4.69898 8.13887i 0.352203 0.610034i
\(179\) 4.01478 + 6.95381i 0.300079 + 0.519752i 0.976154 0.217081i \(-0.0696536\pi\)
−0.676075 + 0.736833i \(0.736320\pi\)
\(180\) −0.238412 + 0.137647i −0.0177702 + 0.0102596i
\(181\) −0.349155 −0.0259525 −0.0129763 0.999916i \(-0.504131\pi\)
−0.0129763 + 0.999916i \(0.504131\pi\)
\(182\) 3.16789 + 3.48529i 0.234820 + 0.258347i
\(183\) 17.0211 1.25824
\(184\) 0.0685411 0.0395722i 0.00505292 0.00291730i
\(185\) 0.539939 + 0.935201i 0.0396971 + 0.0687573i
\(186\) 5.65135 9.78843i 0.414377 0.717723i
\(187\) 0.0616550i 0.00450866i
\(188\) 1.66942 + 0.963842i 0.121755 + 0.0702954i
\(189\) 3.54427 + 2.04629i 0.257808 + 0.148846i
\(190\) 3.76871i 0.273411i
\(191\) −3.15923 + 5.47195i −0.228594 + 0.395937i −0.957392 0.288793i \(-0.906746\pi\)
0.728798 + 0.684729i \(0.240080\pi\)
\(192\) −8.73533 15.1300i −0.630418 1.09192i
\(193\) 16.3998 9.46842i 1.18048 0.681552i 0.224356 0.974507i \(-0.427972\pi\)
0.956126 + 0.292956i \(0.0946388\pi\)
\(194\) 18.5332 1.33061
\(195\) 6.81471 + 2.17895i 0.488012 + 0.156038i
\(196\) −0.293633 −0.0209738
\(197\) 13.1568 7.59606i 0.937380 0.541197i 0.0482419 0.998836i \(-0.484638\pi\)
0.889138 + 0.457639i \(0.151305\pi\)
\(198\) −0.122607 0.212362i −0.00871331 0.0150919i
\(199\) −10.7673 + 18.6495i −0.763275 + 1.32203i 0.177879 + 0.984052i \(0.443076\pi\)
−0.941154 + 0.337978i \(0.890257\pi\)
\(200\) 2.99613i 0.211858i
\(201\) −9.31385 5.37735i −0.656948 0.379289i
\(202\) −8.83892 5.10315i −0.621904 0.359057i
\(203\) 3.33759i 0.234253i
\(204\) 0.0897098 0.155382i 0.00628094 0.0108789i
\(205\) −2.39498 4.14823i −0.167273 0.289725i
\(206\) −9.79824 + 5.65702i −0.682676 + 0.394143i
\(207\) 0.0247659 0.00172135
\(208\) −3.65279 + 11.4242i −0.253275 + 0.792122i
\(209\) 0.577660 0.0399576
\(210\) 2.24481 1.29604i 0.154907 0.0894354i
\(211\) 2.52901 + 4.38037i 0.174104 + 0.301557i 0.939851 0.341585i \(-0.110964\pi\)
−0.765747 + 0.643142i \(0.777630\pi\)
\(212\) −0.260039 + 0.450401i −0.0178596 + 0.0309337i
\(213\) 20.0007i 1.37042i
\(214\) 7.88405 + 4.55186i 0.538943 + 0.311159i
\(215\) 1.82322 + 1.05264i 0.124343 + 0.0717892i
\(216\) 12.2619i 0.834315i
\(217\) 2.18024 3.77628i 0.148004 0.256350i
\(218\) 9.70779 + 16.8144i 0.657495 + 1.13881i
\(219\) 13.9788 8.07065i 0.944598 0.545364i
\(220\) −0.0587923 −0.00396377
\(221\) −1.08490 + 0.235926i −0.0729784 + 0.0158701i
\(222\) −2.79913 −0.187866
\(223\) 8.97504 5.18174i 0.601013 0.346995i −0.168427 0.985714i \(-0.553869\pi\)
0.769440 + 0.638719i \(0.220535\pi\)
\(224\) −0.823447 1.42625i −0.0550189 0.0952955i
\(225\) 0.468774 0.811941i 0.0312516 0.0541294i
\(226\) 6.95365i 0.462550i
\(227\) 25.5240 + 14.7363i 1.69408 + 0.978080i 0.951156 + 0.308710i \(0.0998971\pi\)
0.742929 + 0.669371i \(0.233436\pi\)
\(228\) 1.45581 + 0.840511i 0.0964133 + 0.0556642i
\(229\) 4.96959i 0.328400i −0.986427 0.164200i \(-0.947496\pi\)
0.986427 0.164200i \(-0.0525042\pi\)
\(230\) −0.0172531 + 0.0298832i −0.00113763 + 0.00197044i
\(231\) −0.198655 0.344080i −0.0130705 0.0226388i
\(232\) 8.66011 4.99992i 0.568564 0.328261i
\(233\) 0.263094 0.0172359 0.00861793 0.999963i \(-0.497257\pi\)
0.00861793 + 0.999963i \(0.497257\pi\)
\(234\) −3.26763 + 2.97005i −0.213611 + 0.194158i
\(235\) −6.56495 −0.428250
\(236\) 1.78392 1.02995i 0.116123 0.0670438i
\(237\) 4.60773 + 7.98081i 0.299304 + 0.518410i
\(238\) −0.201122 + 0.348353i −0.0130368 + 0.0225804i
\(239\) 12.6088i 0.815597i 0.913072 + 0.407798i \(0.133703\pi\)
−0.913072 + 0.407798i \(0.866297\pi\)
\(240\) 5.71654 + 3.30044i 0.369001 + 0.213043i
\(241\) −12.9526 7.47817i −0.834348 0.481711i 0.0209909 0.999780i \(-0.493318\pi\)
−0.855339 + 0.518069i \(0.826651\pi\)
\(242\) 14.3167i 0.920313i
\(243\) −4.70910 + 8.15639i −0.302089 + 0.523233i
\(244\) 1.25936 + 2.18127i 0.0806222 + 0.139642i
\(245\) 0.866025 0.500000i 0.0553283 0.0319438i
\(246\) 12.4160 0.791615
\(247\) −2.21045 10.1647i −0.140647 0.646764i
\(248\) 13.0645 0.829598
\(249\) 18.9432 10.9369i 1.20048 0.693097i
\(250\) 0.653140 + 1.13127i 0.0413082 + 0.0715479i
\(251\) −4.62292 + 8.00714i −0.291796 + 0.505406i −0.974235 0.225537i \(-0.927586\pi\)
0.682438 + 0.730943i \(0.260920\pi\)
\(252\) 0.275295i 0.0173419i
\(253\) 0.00458043 + 0.00264452i 0.000287969 + 0.000166259i
\(254\) −2.88455 1.66540i −0.180993 0.104496i
\(255\) 0.611034i 0.0382644i
\(256\) 3.44392 5.96505i 0.215245 0.372816i
\(257\) −9.15421 15.8556i −0.571024 0.989042i −0.996461 0.0840543i \(-0.973213\pi\)
0.425437 0.904988i \(-0.360120\pi\)
\(258\) −4.72594 + 2.72852i −0.294224 + 0.169870i
\(259\) −1.07988 −0.0671003
\(260\) 0.224972 + 1.03453i 0.0139522 + 0.0641587i
\(261\) 3.12915 0.193689
\(262\) −7.93959 + 4.58392i −0.490510 + 0.283196i
\(263\) −8.79491 15.2332i −0.542318 0.939322i −0.998770 0.0495740i \(-0.984214\pi\)
0.456453 0.889748i \(-0.349120\pi\)
\(264\) 0.595195 1.03091i 0.0366317 0.0634480i
\(265\) 1.77119i 0.108803i
\(266\) −3.26380 1.88435i −0.200116 0.115537i
\(267\) 12.3635 + 7.13806i 0.756632 + 0.436842i
\(268\) 1.59144i 0.0972126i
\(269\) 6.84686 11.8591i 0.417460 0.723063i −0.578223 0.815879i \(-0.696254\pi\)
0.995683 + 0.0928162i \(0.0295869\pi\)
\(270\) −2.67302 4.62981i −0.162675 0.281762i
\(271\) −8.20431 + 4.73676i −0.498376 + 0.287738i −0.728043 0.685532i \(-0.759570\pi\)
0.229666 + 0.973269i \(0.426236\pi\)
\(272\) −1.02433 −0.0621094
\(273\) −5.29438 + 4.81224i −0.320431 + 0.291250i
\(274\) −7.73036 −0.467008
\(275\) 0.173399 0.100112i 0.0104564 0.00603698i
\(276\) 0.00769569 + 0.0133293i 0.000463226 + 0.000802331i
\(277\) 1.90872 3.30601i 0.114684 0.198639i −0.802969 0.596020i \(-0.796748\pi\)
0.917653 + 0.397382i \(0.130081\pi\)
\(278\) 30.4387i 1.82559i
\(279\) 3.54044 + 2.04408i 0.211961 + 0.122376i
\(280\) 2.59472 + 1.49806i 0.155064 + 0.0895264i
\(281\) 1.93927i 0.115687i −0.998326 0.0578434i \(-0.981578\pi\)
0.998326 0.0578434i \(-0.0184224\pi\)
\(282\) 8.50845 14.7371i 0.506671 0.877580i
\(283\) −8.17027 14.1513i −0.485672 0.841209i 0.514192 0.857675i \(-0.328092\pi\)
−0.999864 + 0.0164662i \(0.994758\pi\)
\(284\) 2.56311 1.47981i 0.152092 0.0878106i
\(285\) −5.72492 −0.339115
\(286\) −0.921489 + 0.200390i −0.0544888 + 0.0118493i
\(287\) 4.78997 0.282743
\(288\) 1.33718 0.772021i 0.0787941 0.0454918i
\(289\) 8.45259 + 14.6403i 0.497211 + 0.861195i
\(290\) −2.17991 + 3.77572i −0.128009 + 0.221718i
\(291\) 28.1531i 1.65037i
\(292\) 2.06852 + 1.19426i 0.121051 + 0.0698890i
\(293\) −15.4368 8.91246i −0.901829 0.520671i −0.0240360 0.999711i \(-0.507652\pi\)
−0.877793 + 0.479040i \(0.840985\pi\)
\(294\) 2.59208i 0.151173i
\(295\) −3.50760 + 6.07534i −0.204220 + 0.353720i
\(296\) −1.61772 2.80198i −0.0940283 0.162862i
\(297\) −0.709648 + 0.409716i −0.0411780 + 0.0237741i
\(298\) 6.13641 0.355472
\(299\) 0.0290065 0.0907183i 0.00167749 0.00524637i
\(300\) 0.582663 0.0336401
\(301\) −1.82322 + 1.05264i −0.105089 + 0.0606729i
\(302\) 9.82654 + 17.0201i 0.565454 + 0.979394i
\(303\) 7.75203 13.4269i 0.445342 0.771355i
\(304\) 9.59722i 0.550439i
\(305\) −7.42858 4.28889i −0.425359 0.245581i
\(306\) −0.326597 0.188561i −0.0186703 0.0107793i
\(307\) 23.8244i 1.35973i 0.733337 + 0.679865i \(0.237962\pi\)
−0.733337 + 0.679865i \(0.762038\pi\)
\(308\) 0.0293961 0.0509156i 0.00167500 0.00290119i
\(309\) −8.59338 14.8842i −0.488860 0.846731i
\(310\) −4.93288 + 2.84800i −0.280169 + 0.161755i
\(311\) 32.9085 1.86607 0.933036 0.359782i \(-0.117149\pi\)
0.933036 + 0.359782i \(0.117149\pi\)
\(312\) −20.4177 6.52842i −1.15593 0.369599i
\(313\) −16.1670 −0.913812 −0.456906 0.889515i \(-0.651042\pi\)
−0.456906 + 0.889515i \(0.651042\pi\)
\(314\) 15.7213 9.07670i 0.887205 0.512228i
\(315\) 0.468774 + 0.811941i 0.0264124 + 0.0457477i
\(316\) −0.681833 + 1.18097i −0.0383561 + 0.0664347i
\(317\) 28.7541i 1.61499i 0.589873 + 0.807496i \(0.299178\pi\)
−0.589873 + 0.807496i \(0.700822\pi\)
\(318\) 3.97598 + 2.29553i 0.222962 + 0.128727i
\(319\) 0.578734 + 0.334132i 0.0324029 + 0.0187078i
\(320\) 8.80433i 0.492177i
\(321\) −6.91457 + 11.9764i −0.385934 + 0.668457i
\(322\) −0.0172531 0.0298832i −0.000961476 0.00166533i
\(323\) 0.769377 0.444200i 0.0428093 0.0247159i
\(324\) −3.21048 −0.178360
\(325\) −2.42512 2.66810i −0.134522 0.148000i
\(326\) −29.9663 −1.65968
\(327\) −25.5422 + 14.7468i −1.41249 + 0.815499i
\(328\) 7.17567 + 12.4286i 0.396210 + 0.686256i
\(329\) 3.28248 5.68541i 0.180969 0.313447i
\(330\) 0.518997i 0.0285699i
\(331\) −29.4468 17.0011i −1.61855 0.934467i −0.987297 0.158887i \(-0.949210\pi\)
−0.631248 0.775581i \(-0.717457\pi\)
\(332\) 2.80315 + 1.61840i 0.153843 + 0.0888211i
\(333\) 1.01244i 0.0554812i
\(334\) 10.7871 18.6838i 0.590244 1.02233i
\(335\) 2.70992 + 4.69371i 0.148059 + 0.256445i
\(336\) −5.71654 + 3.30044i −0.311863 + 0.180054i
\(337\) −22.6372 −1.23312 −0.616562 0.787306i \(-0.711475\pi\)
−0.616562 + 0.787306i \(0.711475\pi\)
\(338\) 7.05226 + 15.4480i 0.383592 + 0.840262i
\(339\) −10.5630 −0.573706
\(340\) −0.0783046 + 0.0452092i −0.00424666 + 0.00245181i
\(341\) 0.436535 + 0.756101i 0.0236397 + 0.0409452i
\(342\) 1.76667 3.05997i 0.0955307 0.165464i
\(343\) 1.00000i 0.0539949i
\(344\) −5.46260 3.15383i −0.294523 0.170043i
\(345\) −0.0453946 0.0262086i −0.00244396 0.00141102i
\(346\) 24.1278i 1.29712i
\(347\) 1.51920 2.63133i 0.0815549 0.141257i −0.822363 0.568963i \(-0.807345\pi\)
0.903918 + 0.427706i \(0.140678\pi\)
\(348\) 0.972344 + 1.68415i 0.0521231 + 0.0902799i
\(349\) 15.0905 8.71249i 0.807775 0.466369i −0.0384078 0.999262i \(-0.512229\pi\)
0.846183 + 0.532893i \(0.178895\pi\)
\(350\) −1.30628 −0.0698236
\(351\) 9.92501 + 10.9194i 0.529758 + 0.582835i
\(352\) 0.329747 0.0175756
\(353\) 16.5735 9.56874i 0.882121 0.509293i 0.0107637 0.999942i \(-0.496574\pi\)
0.871357 + 0.490649i \(0.163240\pi\)
\(354\) −9.09199 15.7478i −0.483234 0.836986i
\(355\) −5.03966 + 8.72896i −0.267478 + 0.463285i
\(356\) 2.11252i 0.111963i
\(357\) −0.529171 0.305517i −0.0280067 0.0161697i
\(358\) 9.08362 + 5.24443i 0.480084 + 0.277177i
\(359\) 26.4594i 1.39648i −0.715866 0.698238i \(-0.753968\pi\)
0.715866 0.698238i \(-0.246032\pi\)
\(360\) −1.40451 + 2.43268i −0.0740240 + 0.128213i
\(361\) −5.33819 9.24601i −0.280957 0.486632i
\(362\) −0.394990 + 0.228047i −0.0207602 + 0.0119859i
\(363\) −21.7480 −1.14148
\(364\) −1.00841 0.322433i −0.0528553 0.0169001i
\(365\) −8.13440 −0.425774
\(366\) 19.2555 11.1172i 1.00650 0.581104i
\(367\) 15.6307 + 27.0732i 0.815917 + 1.41321i 0.908668 + 0.417520i \(0.137101\pi\)
−0.0927509 + 0.995689i \(0.529566\pi\)
\(368\) 0.0439359 0.0760992i 0.00229032 0.00396695i
\(369\) 4.49083i 0.233783i
\(370\) 1.22163 + 0.705311i 0.0635097 + 0.0366674i
\(371\) 1.53389 + 0.885593i 0.0796357 + 0.0459777i
\(372\) 2.54068i 0.131728i
\(373\) 4.56119 7.90022i 0.236170 0.409058i −0.723442 0.690385i \(-0.757441\pi\)
0.959612 + 0.281327i \(0.0907746\pi\)
\(374\) −0.0402693 0.0697485i −0.00208228 0.00360661i
\(375\) −1.71848 + 0.992163i −0.0887417 + 0.0512351i
\(376\) 19.6694 1.01437
\(377\) 3.66495 11.4622i 0.188754 0.590332i
\(378\) 5.34605 0.274971
\(379\) −29.1882 + 16.8518i −1.49930 + 0.865619i −1.00000 0.000812760i \(-0.999741\pi\)
−0.499296 + 0.866431i \(0.666408\pi\)
\(380\) −0.423575 0.733654i −0.0217290 0.0376357i
\(381\) 2.52985 4.38182i 0.129608 0.224487i
\(382\) 8.25369i 0.422295i
\(383\) 16.4956 + 9.52372i 0.842884 + 0.486639i 0.858243 0.513243i \(-0.171556\pi\)
−0.0153596 + 0.999882i \(0.504889\pi\)
\(384\) −14.1038 8.14282i −0.719730 0.415536i
\(385\) 0.200224i 0.0102044i
\(386\) 12.3684 21.4227i 0.629535 1.09039i
\(387\) −0.986897 1.70936i −0.0501668 0.0868914i
\(388\) −3.60785 + 2.08299i −0.183161 + 0.105748i
\(389\) 26.6480 1.35111 0.675554 0.737310i \(-0.263904\pi\)
0.675554 + 0.737310i \(0.263904\pi\)
\(390\) 9.13245 1.98597i 0.462440 0.100564i
\(391\) 0.00813416 0.000411362
\(392\) −2.59472 + 1.49806i −0.131053 + 0.0756636i
\(393\) −6.96328 12.0608i −0.351251 0.608385i
\(394\) 9.92258 17.1864i 0.499892 0.865839i
\(395\) 4.64412i 0.233671i
\(396\) 0.0477358 + 0.0275603i 0.00239882 + 0.00138496i
\(397\) −5.73061 3.30857i −0.287611 0.166052i 0.349253 0.937028i \(-0.386435\pi\)
−0.636864 + 0.770976i \(0.719769\pi\)
\(398\) 28.1303i 1.41004i
\(399\) 2.86246 4.95792i 0.143302 0.248207i
\(400\) −1.66326 2.88085i −0.0831629 0.144042i
\(401\) 0.278685 0.160899i 0.0139168 0.00803489i −0.493025 0.870015i \(-0.664109\pi\)
0.506942 + 0.861980i \(0.330776\pi\)
\(402\) −14.0487 −0.700684
\(403\) 11.6342 10.5747i 0.579540 0.526762i
\(404\) 2.29423 0.114142
\(405\) 9.46882 5.46682i 0.470509 0.271649i
\(406\) −2.17991 3.77572i −0.108187 0.187386i
\(407\) 0.108109 0.187250i 0.00535874 0.00928162i
\(408\) 1.83073i 0.0906349i
\(409\) −21.1346 12.2021i −1.04504 0.603353i −0.123782 0.992309i \(-0.539502\pi\)
−0.921256 + 0.388956i \(0.872836\pi\)
\(410\) −5.41875 3.12852i −0.267613 0.154507i
\(411\) 11.7429i 0.579236i
\(412\) 1.27161 2.20250i 0.0626480 0.108509i
\(413\) −3.50760 6.07534i −0.172598 0.298948i
\(414\) 0.0280169 0.0161756i 0.00137696 0.000794987i
\(415\) −11.0233 −0.541112
\(416\) −1.26180 5.80235i −0.0618647 0.284483i
\(417\) −46.2384 −2.26430
\(418\) 0.653490 0.377293i 0.0319632 0.0184540i
\(419\) −13.9559 24.1724i −0.681793 1.18090i −0.974433 0.224677i \(-0.927867\pi\)
0.292641 0.956222i \(-0.405466\pi\)
\(420\) −0.291331 + 0.504601i −0.0142155 + 0.0246220i
\(421\) 33.2765i 1.62180i 0.585186 + 0.810899i \(0.301021\pi\)
−0.585186 + 0.810899i \(0.698979\pi\)
\(422\) 5.72199 + 3.30359i 0.278542 + 0.160816i
\(423\) 5.33035 + 3.07748i 0.259170 + 0.149632i
\(424\) 5.30670i 0.257716i
\(425\) 0.153965 0.266675i 0.00746840 0.0129357i
\(426\) −13.0632 22.6262i −0.632916 1.09624i
\(427\) 7.42858 4.28889i 0.359494 0.207554i
\(428\) −2.04638 −0.0989156
\(429\) −0.304406 1.39980i −0.0146968 0.0675831i
\(430\) 2.75007 0.132620
\(431\) 8.50494 4.91033i 0.409669 0.236522i −0.280979 0.959714i \(-0.590659\pi\)
0.690647 + 0.723192i \(0.257326\pi\)
\(432\) 6.80701 + 11.7901i 0.327502 + 0.567251i
\(433\) −5.76123 + 9.97874i −0.276867 + 0.479548i −0.970604 0.240680i \(-0.922629\pi\)
0.693737 + 0.720228i \(0.255963\pi\)
\(434\) 5.69599i 0.273416i
\(435\) −5.73556 3.31143i −0.274999 0.158771i
\(436\) −3.77963 2.18217i −0.181011 0.104507i
\(437\) 0.0762108i 0.00364566i
\(438\) 10.5425 18.2602i 0.503742 0.872506i
\(439\) 4.83402 + 8.37277i 0.230715 + 0.399611i 0.958019 0.286705i \(-0.0925601\pi\)
−0.727303 + 0.686316i \(0.759227\pi\)
\(440\) −0.519525 + 0.299948i −0.0247674 + 0.0142995i
\(441\) −0.937548 −0.0446452
\(442\) −1.07323 + 0.975489i −0.0510481 + 0.0463993i
\(443\) 11.8698 0.563953 0.281977 0.959421i \(-0.409010\pi\)
0.281977 + 0.959421i \(0.409010\pi\)
\(444\) 0.544907 0.314602i 0.0258601 0.0149304i
\(445\) −3.59722 6.23057i −0.170525 0.295357i
\(446\) 6.76880 11.7239i 0.320512 0.555143i
\(447\) 9.32161i 0.440897i
\(448\) −7.62478 4.40217i −0.360237 0.207983i
\(449\) −28.4486 16.4248i −1.34257 0.775134i −0.355387 0.934719i \(-0.615651\pi\)
−0.987184 + 0.159585i \(0.948984\pi\)
\(450\) 1.22470i 0.0577329i
\(451\) −0.479533 + 0.830575i −0.0225803 + 0.0391103i
\(452\) −0.781539 1.35367i −0.0367605 0.0636711i
\(453\) −25.8546 + 14.9272i −1.21475 + 0.701339i
\(454\) 38.4994 1.80687
\(455\) 3.52321 0.766168i 0.165170 0.0359185i
\(456\) 17.1526 0.803243
\(457\) −25.8518 + 14.9256i −1.20930 + 0.698188i −0.962606 0.270906i \(-0.912677\pi\)
−0.246691 + 0.969094i \(0.579343\pi\)
\(458\) −3.24584 5.62195i −0.151668 0.262697i
\(459\) −0.630114 + 1.09139i −0.0294112 + 0.0509417i
\(460\) 0.00775648i 0.000361648i
\(461\) −10.0672 5.81233i −0.468878 0.270707i 0.246892 0.969043i \(-0.420591\pi\)
−0.715770 + 0.698336i \(0.753924\pi\)
\(462\) −0.449465 0.259499i −0.0209110 0.0120730i
\(463\) 41.2501i 1.91705i −0.285001 0.958527i \(-0.591994\pi\)
0.285001 0.958527i \(-0.408006\pi\)
\(464\) 5.55127 9.61507i 0.257711 0.446369i
\(465\) −4.32630 7.49336i −0.200627 0.347496i
\(466\) 0.297631 0.171837i 0.0137875 0.00796020i
\(467\) −14.8115 −0.685396 −0.342698 0.939446i \(-0.611341\pi\)
−0.342698 + 0.939446i \(0.611341\pi\)
\(468\) 0.302296 0.945437i 0.0139737 0.0437028i
\(469\) −5.41983 −0.250265
\(470\) −7.42674 + 4.28783i −0.342570 + 0.197783i
\(471\) 13.7881 + 23.8817i 0.635323 + 1.10041i
\(472\) 10.5092 18.2025i 0.483726 0.837837i
\(473\) 0.421526i 0.0193818i
\(474\) 10.4252 + 6.01898i 0.478844 + 0.276461i
\(475\) 2.49854 + 1.44253i 0.114641 + 0.0661880i
\(476\) 0.0904184i 0.00414432i
\(477\) −0.830286 + 1.43810i −0.0380162 + 0.0658460i
\(478\) 8.23532 + 14.2640i 0.376675 + 0.652420i
\(479\) −6.71433 + 3.87652i −0.306785 + 0.177123i −0.645487 0.763771i \(-0.723346\pi\)
0.338702 + 0.940894i \(0.390012\pi\)
\(480\) −3.26797 −0.149162
\(481\) −3.70859 1.18579i −0.169097 0.0540676i
\(482\) −19.5372 −0.889893
\(483\) 0.0453946 0.0262086i 0.00206552 0.00119253i
\(484\) −1.60909 2.78703i −0.0731406 0.126683i
\(485\) 7.09388 12.2870i 0.322116 0.557922i
\(486\) 12.3028i 0.558066i
\(487\) 4.07339 + 2.35177i 0.184583 + 0.106569i 0.589444 0.807809i \(-0.299347\pi\)
−0.404861 + 0.914378i \(0.632680\pi\)
\(488\) 22.2570 + 12.8501i 1.00753 + 0.581695i
\(489\) 45.5208i 2.05852i
\(490\) 0.653140 1.13127i 0.0295059 0.0511056i
\(491\) −11.6548 20.1867i −0.525975 0.911015i −0.999542 0.0302572i \(-0.990367\pi\)
0.473568 0.880757i \(-0.342966\pi\)
\(492\) −2.41702 + 1.39547i −0.108968 + 0.0629126i
\(493\) 1.02774 0.0462872
\(494\) −9.13959 10.0553i −0.411209 0.452409i
\(495\) −0.187720 −0.00843737
\(496\) 12.5618 7.25258i 0.564043 0.325651i
\(497\) −5.03966 8.72896i −0.226060 0.391547i
\(498\) 14.2866 24.7452i 0.640200 1.10886i
\(499\) 34.0556i 1.52454i 0.647262 + 0.762268i \(0.275914\pi\)
−0.647262 + 0.762268i \(0.724086\pi\)
\(500\) −0.254293 0.146816i −0.0113723 0.00656583i
\(501\) 28.3819 + 16.3863i 1.26801 + 0.732086i
\(502\) 12.0777i 0.539052i
\(503\) −20.2284 + 35.0367i −0.901941 + 1.56221i −0.0769693 + 0.997033i \(0.524524\pi\)
−0.824972 + 0.565174i \(0.808809\pi\)
\(504\) −1.40451 2.43268i −0.0625617 0.108360i
\(505\) −6.76648 + 3.90663i −0.301105 + 0.173843i
\(506\) 0.00690895 0.000307140
\(507\) −23.4666 + 10.7128i −1.04219 + 0.475774i
\(508\) 0.748713 0.0332188
\(509\) 19.7880 11.4246i 0.877089 0.506387i 0.00739142 0.999973i \(-0.497647\pi\)
0.869697 + 0.493585i \(0.164314\pi\)
\(510\) 0.399091 + 0.691245i 0.0176720 + 0.0306089i
\(511\) 4.06720 7.04460i 0.179922 0.311635i
\(512\) 25.4117i 1.12305i
\(513\) −10.2255 5.90368i −0.451466 0.260654i
\(514\) −20.7118 11.9580i −0.913558 0.527443i
\(515\) 8.66126i 0.381661i
\(516\) 0.613332 1.06232i 0.0270004 0.0467661i
\(517\) 0.657230 + 1.13836i 0.0289049 + 0.0500648i
\(518\) −1.22163 + 0.705311i −0.0536755 + 0.0309896i
\(519\) −36.6518 −1.60883
\(520\) 7.26598 + 7.99397i 0.318634 + 0.350559i
\(521\) −4.49400 −0.196886 −0.0984428 0.995143i \(-0.531386\pi\)
−0.0984428 + 0.995143i \(0.531386\pi\)
\(522\) 3.53992 2.04377i 0.154938 0.0894535i
\(523\) −4.19444 7.26498i −0.183410 0.317675i 0.759630 0.650356i \(-0.225380\pi\)
−0.943040 + 0.332681i \(0.892047\pi\)
\(524\) 1.03040 1.78470i 0.0450132 0.0779652i
\(525\) 1.98433i 0.0866031i
\(526\) −19.8989 11.4886i −0.867632 0.500928i
\(527\) 1.16283 + 0.671360i 0.0506537 + 0.0292449i
\(528\) 1.32166i 0.0575177i
\(529\) 11.4997 19.9180i 0.499985 0.865999i
\(530\) −1.15683 2.00369i −0.0502496 0.0870349i
\(531\) 5.69592 3.28854i 0.247182 0.142711i
\(532\) 0.847151 0.0367286
\(533\) 16.4500 + 5.25978i 0.712530 + 0.227826i
\(534\) 18.6486 0.807004
\(535\) 6.03550 3.48460i 0.260937 0.150652i
\(536\) −8.11925 14.0630i −0.350698 0.607427i
\(537\) −7.96664 + 13.7986i −0.343786 + 0.595454i
\(538\) 17.8878i 0.771199i
\(539\) −0.173399 0.100112i −0.00746882 0.00431213i
\(540\) 1.04071 + 0.600857i 0.0447852 + 0.0258568i
\(541\) 6.79688i 0.292221i −0.989268 0.146110i \(-0.953325\pi\)
0.989268 0.146110i \(-0.0466754\pi\)
\(542\) −6.18754 + 10.7171i −0.265777 + 0.460340i
\(543\) −0.346419 0.600015i −0.0148663 0.0257491i
\(544\) 0.439186 0.253564i 0.0188299 0.0108715i
\(545\) 14.8633 0.636672
\(546\) −2.84632 + 8.90192i −0.121811 + 0.380967i
\(547\) −26.2774 −1.12354 −0.561770 0.827294i \(-0.689879\pi\)
−0.561770 + 0.827294i \(0.689879\pi\)
\(548\) 1.50487 0.868837i 0.0642848 0.0371149i
\(549\) 4.02104 + 6.96465i 0.171614 + 0.297244i
\(550\) 0.130774 0.226508i 0.00557623 0.00965832i
\(551\) 9.62917i 0.410216i
\(552\) 0.136008 + 0.0785242i 0.00578888 + 0.00334221i
\(553\) 4.02193 + 2.32206i 0.171030 + 0.0987441i
\(554\) 4.98666i 0.211863i
\(555\) −1.07141 + 1.85574i −0.0454790 + 0.0787719i
\(556\) −3.42109 5.92549i −0.145086 0.251297i
\(557\) 10.5442 6.08769i 0.446772 0.257944i −0.259694 0.965691i \(-0.583622\pi\)
0.706466 + 0.707747i \(0.250288\pi\)
\(558\) 5.34027 0.226072
\(559\) −7.41731 + 1.61299i −0.313719 + 0.0682223i
\(560\) 3.32651 0.140571
\(561\) 0.105953 0.0611718i 0.00447332 0.00258267i
\(562\) −1.26661 2.19384i −0.0534288 0.0925414i
\(563\) −19.7326 + 34.1779i −0.831631 + 1.44043i 0.0651135 + 0.997878i \(0.479259\pi\)
−0.896744 + 0.442549i \(0.854074\pi\)
\(564\) 3.82515i 0.161068i
\(565\) 4.61006 + 2.66162i 0.193947 + 0.111975i
\(566\) −18.4856 10.6727i −0.777007 0.448605i
\(567\) 10.9336i 0.459170i
\(568\) 15.0995 26.1531i 0.633560 1.09736i
\(569\) 15.3717 + 26.6246i 0.644416 + 1.11616i 0.984436 + 0.175743i \(0.0562327\pi\)
−0.340020 + 0.940418i \(0.610434\pi\)
\(570\) −6.47644 + 3.73917i −0.271268 + 0.156617i
\(571\) 20.2688 0.848223 0.424112 0.905610i \(-0.360586\pi\)
0.424112 + 0.905610i \(0.360586\pi\)
\(572\) 0.156864 0.142579i 0.00655881 0.00596151i
\(573\) −12.5379 −0.523778
\(574\) 5.41875 3.12852i 0.226174 0.130582i
\(575\) 0.0132078 + 0.0228766i 0.000550803 + 0.000954019i
\(576\) 4.12724 7.14860i 0.171968 0.297858i
\(577\) 10.3943i 0.432721i 0.976314 + 0.216360i \(0.0694186\pi\)
−0.976314 + 0.216360i \(0.930581\pi\)
\(578\) 19.1243 + 11.0414i 0.795468 + 0.459264i
\(579\) 32.5425 + 18.7884i 1.35242 + 0.780820i
\(580\) 0.980025i 0.0406933i
\(581\) 5.51164 9.54644i 0.228661 0.396053i
\(582\) 18.3879 + 31.8488i 0.762204 + 1.32018i
\(583\) −0.307122 + 0.177317i −0.0127197 + 0.00734372i
\(584\) 24.3717 1.00851
\(585\) 0.718319 + 3.30318i 0.0296988 + 0.136570i
\(586\) −23.2843 −0.961867
\(587\) −20.0823 + 11.5945i −0.828884 + 0.478556i −0.853470 0.521141i \(-0.825506\pi\)
0.0245864 + 0.999698i \(0.492173\pi\)
\(588\) −0.291331 0.504601i −0.0120143 0.0208094i
\(589\) −6.29013 + 10.8948i −0.259180 + 0.448913i
\(590\) 9.16381i 0.377268i
\(591\) 26.1073 + 15.0730i 1.07391 + 0.620022i
\(592\) −3.11096 1.79611i −0.127860 0.0738198i
\(593\) 28.3307i 1.16340i −0.813403 0.581700i \(-0.802388\pi\)
0.813403 0.581700i \(-0.197612\pi\)
\(594\) −0.535203 + 0.927000i −0.0219597 + 0.0380353i
\(595\) 0.153965 + 0.266675i 0.00631195 + 0.0109326i
\(596\) −1.19457 + 0.689687i −0.0489316 + 0.0282507i
\(597\) −42.7317 −1.74889
\(598\) −0.0264375 0.121572i −0.00108111 0.00497146i
\(599\) −27.0557 −1.10547 −0.552733 0.833359i \(-0.686415\pi\)
−0.552733 + 0.833359i \(0.686415\pi\)
\(600\) 5.14877 2.97265i 0.210198 0.121358i
\(601\) 11.3577 + 19.6722i 0.463291 + 0.802444i 0.999123 0.0418811i \(-0.0133351\pi\)
−0.535831 + 0.844325i \(0.680002\pi\)
\(602\) −1.37504 + 2.38163i −0.0560423 + 0.0970682i
\(603\) 5.08135i 0.206929i
\(604\) −3.82586 2.20886i −0.155672 0.0898773i
\(605\) 9.49156 + 5.47996i 0.385887 + 0.222792i
\(606\) 20.2526i 0.822707i
\(607\) 19.6739 34.0762i 0.798539 1.38311i −0.122029 0.992527i \(-0.538940\pi\)
0.920568 0.390583i \(-0.127727\pi\)
\(608\) 2.37570 + 4.11484i 0.0963474 + 0.166879i
\(609\) 5.73556 3.31143i 0.232417 0.134186i
\(610\) −11.2050 −0.453677
\(611\) 17.5160 15.9208i 0.708620 0.644087i
\(612\) 0.0847716 0.00342669
\(613\) 2.54848 1.47136i 0.102932 0.0594278i −0.447650 0.894209i \(-0.647739\pi\)
0.550582 + 0.834781i \(0.314406\pi\)
\(614\) 15.5607 + 26.9519i 0.627978 + 1.08769i
\(615\) 4.75243 8.23145i 0.191636 0.331924i
\(616\) 0.599896i 0.0241705i
\(617\) −28.0390 16.1883i −1.12881 0.651718i −0.185174 0.982706i \(-0.559285\pi\)
−0.943635 + 0.330988i \(0.892618\pi\)
\(618\) −19.4429 11.2254i −0.782108 0.451550i
\(619\) 11.9661i 0.480957i 0.970655 + 0.240478i \(0.0773043\pi\)
−0.970655 + 0.240478i \(0.922696\pi\)
\(620\) 0.640188 1.10884i 0.0257106 0.0445320i
\(621\) −0.0540539 0.0936241i −0.00216911 0.00375700i
\(622\) 37.2285 21.4939i 1.49273 0.861826i
\(623\) 7.19444 0.288239
\(624\) −23.2563 + 5.05739i −0.930997 + 0.202458i
\(625\) 1.00000 0.0400000
\(626\) −18.2893 + 10.5593i −0.730986 + 0.422035i
\(627\) 0.573133 + 0.992695i 0.0228887 + 0.0396444i
\(628\) −2.04031 + 3.53392i −0.0814173 + 0.141019i
\(629\) 0.332527i 0.0132587i
\(630\) 1.06062 + 0.612350i 0.0422562 + 0.0243966i
\(631\) 4.67579 + 2.69957i 0.186140 + 0.107468i 0.590174 0.807276i \(-0.299059\pi\)
−0.404034 + 0.914744i \(0.632392\pi\)
\(632\) 13.9144i 0.553484i
\(633\) −5.01838 + 8.69209i −0.199463 + 0.345479i
\(634\) 18.7805 + 32.5287i 0.745867 + 1.29188i
\(635\) −2.20822 + 1.27491i −0.0876304 + 0.0505934i
\(636\) −1.03200 −0.0409217
\(637\) −1.09808 + 3.43427i −0.0435076 + 0.136071i
\(638\) 0.872941 0.0345600
\(639\) 8.18382 4.72493i 0.323747 0.186915i
\(640\) 4.10357 + 7.10759i 0.162208 + 0.280952i
\(641\) 9.66034 16.7322i 0.381560 0.660882i −0.609725 0.792613i \(-0.708720\pi\)
0.991285 + 0.131731i \(0.0420535\pi\)
\(642\) 18.0647i 0.712958i
\(643\) −3.89438 2.24842i −0.153579 0.0886691i 0.421241 0.906949i \(-0.361595\pi\)
−0.574820 + 0.818280i \(0.694928\pi\)
\(644\) 0.00671731 + 0.00387824i 0.000264699 + 0.000152824i
\(645\) 4.17755i 0.164491i
\(646\) 0.580250 1.00502i 0.0228296 0.0395420i
\(647\) 14.5332 + 25.1722i 0.571359 + 0.989622i 0.996427 + 0.0844607i \(0.0269168\pi\)
−0.425068 + 0.905161i \(0.639750\pi\)
\(648\) −28.3698 + 16.3793i −1.11447 + 0.643440i
\(649\) 1.40461 0.0551358
\(650\) −4.48612 1.43440i −0.175960 0.0562619i
\(651\) 8.65259 0.339122
\(652\) 5.83353 3.36799i 0.228459 0.131901i
\(653\) 13.0494 + 22.6022i 0.510662 + 0.884493i 0.999924 + 0.0123556i \(0.00393300\pi\)
−0.489262 + 0.872137i \(0.662734\pi\)
\(654\) −19.2634 + 33.3652i −0.753259 + 1.30468i
\(655\) 7.01829i 0.274227i
\(656\) 13.7992 + 7.96695i 0.538767 + 0.311057i
\(657\) 6.60465 + 3.81320i 0.257672 + 0.148767i
\(658\) 8.57566i 0.334314i
\(659\) −11.7239 + 20.3064i −0.456698 + 0.791024i −0.998784 0.0492992i \(-0.984301\pi\)
0.542086 + 0.840323i \(0.317635\pi\)
\(660\) −0.0583315 0.101033i −0.00227055 0.00393271i
\(661\) 14.5986 8.42848i 0.567818 0.327830i −0.188459 0.982081i \(-0.560349\pi\)
0.756277 + 0.654251i \(0.227016\pi\)
\(662\) −44.4165 −1.72630
\(663\) −1.48183 1.63030i −0.0575496 0.0633156i
\(664\) 33.0271 1.28170
\(665\) −2.49854 + 1.44253i −0.0968894 + 0.0559391i
\(666\) −0.661263 1.14534i −0.0256234 0.0443811i
\(667\) −0.0440821 + 0.0763525i −0.00170687 + 0.00295638i
\(668\) 4.84956i 0.187635i
\(669\) 17.8094 + 10.2823i 0.688551 + 0.397535i
\(670\) 6.13130 + 3.53991i 0.236873 + 0.136759i
\(671\) 1.71748i 0.0663025i
\(672\) 1.63399 2.83015i 0.0630324 0.109175i
\(673\) −8.57787 14.8573i −0.330653 0.572707i 0.651987 0.758230i \(-0.273935\pi\)
−0.982640 + 0.185523i \(0.940602\pi\)
\(674\) −25.6088 + 14.7852i −0.986413 + 0.569506i
\(675\) −4.09258 −0.157523
\(676\) −3.10911 2.21464i −0.119581 0.0851786i
\(677\) −21.4458 −0.824231 −0.412115 0.911132i \(-0.635210\pi\)
−0.412115 + 0.911132i \(0.635210\pi\)
\(678\) −11.9497 + 6.89915i −0.458925 + 0.264960i
\(679\) 7.09388 + 12.2870i 0.272238 + 0.471530i
\(680\) −0.461299 + 0.798993i −0.0176900 + 0.0306400i
\(681\) 58.4831i 2.24108i
\(682\) 0.987680 + 0.570237i 0.0378202 + 0.0218355i
\(683\) 19.1865 + 11.0773i 0.734150 + 0.423862i 0.819938 0.572452i \(-0.194008\pi\)
−0.0857885 + 0.996313i \(0.527341\pi\)
\(684\) 0.794245i 0.0303687i
\(685\) −2.95892 + 5.12500i −0.113055 + 0.195816i
\(686\) 0.653140 + 1.13127i 0.0249370 + 0.0431922i
\(687\) 8.54012 4.93064i 0.325826 0.188116i
\(688\) −7.00322 −0.266995
\(689\) 4.29535 + 4.72571i 0.163640 + 0.180035i
\(690\) −0.0684714 −0.00260666
\(691\) 1.44939 0.836806i 0.0551374 0.0318336i −0.472178 0.881503i \(-0.656532\pi\)
0.527315 + 0.849670i \(0.323199\pi\)
\(692\) −2.71179 4.69696i −0.103087 0.178552i
\(693\) 0.0938598 0.162570i 0.00356544 0.00617552i
\(694\) 3.96900i 0.150661i
\(695\) 20.1800 + 11.6509i 0.765469 + 0.441944i
\(696\) 17.1845 + 9.92146i 0.651376 + 0.376072i
\(697\) 1.47498i 0.0558687i
\(698\) 11.3810 19.7124i 0.430775 0.746125i
\(699\) 0.261032 + 0.452121i 0.00987313 + 0.0171008i
\(700\) 0.254293 0.146816i 0.00961139 0.00554914i
\(701\) 12.9755 0.490076 0.245038 0.969513i \(-0.421200\pi\)
0.245038 + 0.969513i \(0.421200\pi\)
\(702\) 18.3598 + 5.87040i 0.692945 + 0.221564i
\(703\) 3.11552 0.117504
\(704\) 1.52666 0.881419i 0.0575383 0.0332197i
\(705\) −6.51350 11.2817i −0.245313 0.424894i
\(706\) 12.4995 21.6497i 0.470423 0.814797i
\(707\) 7.81326i 0.293848i
\(708\) 3.53987 + 2.04375i 0.133037 + 0.0768087i
\(709\) 8.99203 + 5.19155i 0.337703 + 0.194973i 0.659256 0.751919i \(-0.270871\pi\)
−0.321553 + 0.946892i \(0.604205\pi\)
\(710\) 13.1664i 0.494127i
\(711\) −2.17704 + 3.77075i −0.0816455 + 0.141414i
\(712\) 10.7777 + 18.6676i 0.403912 + 0.699597i
\(713\) −0.0997526 + 0.0575922i −0.00373576 + 0.00215684i
\(714\) −0.798181 −0.0298712
\(715\) −0.219862 + 0.687623i −0.00822239 + 0.0257156i
\(716\) −2.35774 −0.0881130
\(717\) −21.6680 + 12.5100i −0.809205 + 0.467194i
\(718\) −17.2817 29.9328i −0.644948 1.11708i
\(719\) 8.73783 15.1344i 0.325866 0.564416i −0.655821 0.754916i \(-0.727678\pi\)
0.981687 + 0.190500i \(0.0610108\pi\)
\(720\) 3.11877i 0.116230i
\(721\) −7.50087 4.33063i −0.279347 0.161281i
\(722\) −12.0779 6.97317i −0.449492 0.259514i
\(723\) 29.6782i 1.10375i
\(724\) 0.0512617 0.0887879i 0.00190513 0.00329978i
\(725\) 1.66879 + 2.89043i 0.0619774 + 0.107348i
\(726\) −24.6029 + 14.2045i −0.913100 + 0.527179i
\(727\) 21.1273 0.783568 0.391784 0.920057i \(-0.371858\pi\)
0.391784 + 0.920057i \(0.371858\pi\)
\(728\) −10.5560 + 2.29554i −0.391230 + 0.0850782i
\(729\) 14.1122 0.522674
\(730\) −9.20222 + 5.31290i −0.340589 + 0.196639i
\(731\) −0.324138 0.561424i −0.0119887 0.0207650i
\(732\) −2.49898 + 4.32836i −0.0923649 + 0.159981i
\(733\) 29.9120i 1.10482i −0.833571 0.552412i \(-0.813708\pi\)
0.833571 0.552412i \(-0.186292\pi\)
\(734\) 35.3652 + 20.4181i 1.30535 + 0.753646i
\(735\) 1.71848 + 0.992163i 0.0633870 + 0.0365965i
\(736\) 0.0435037i 0.00160357i
\(737\) 0.542590 0.939793i 0.0199866 0.0346177i
\(738\) 2.93314 + 5.08034i 0.107970 + 0.187010i
\(739\) −10.3578 + 5.98008i −0.381018 + 0.219981i −0.678261 0.734821i \(-0.737266\pi\)
0.297243 + 0.954802i \(0.403933\pi\)
\(740\) −0.317087 −0.0116564
\(741\) 15.2747 13.8836i 0.561129 0.510028i
\(742\) 2.31367 0.0849373
\(743\) 35.5749 20.5392i 1.30512 0.753509i 0.323839 0.946112i \(-0.395026\pi\)
0.981277 + 0.192603i \(0.0616931\pi\)
\(744\) 12.9621 + 22.4511i 0.475215 + 0.823096i
\(745\) 2.34881 4.06826i 0.0860537 0.149049i
\(746\) 11.9164i 0.436290i
\(747\) 8.95025 + 5.16743i 0.327473 + 0.189066i
\(748\) 0.0156785 + 0.00905196i 0.000573261 + 0.000330972i
\(749\) 6.96919i 0.254649i
\(750\) −1.29604 + 2.24481i −0.0473248 + 0.0819689i
\(751\) 2.30782 + 3.99725i 0.0842134 + 0.145862i 0.905056 0.425293i \(-0.139829\pi\)
−0.820842 + 0.571155i \(0.806496\pi\)
\(752\) 18.9126 10.9192i 0.689672 0.398182i
\(753\) −18.3468 −0.668593
\(754\) −3.34036 15.3606i −0.121649 0.559398i
\(755\) 15.0451 0.547546
\(756\) −1.04071 + 0.600857i −0.0378504 + 0.0218530i
\(757\) 17.5848 + 30.4578i 0.639131 + 1.10701i 0.985624 + 0.168955i \(0.0540393\pi\)
−0.346492 + 0.938053i \(0.612627\pi\)
\(758\) −22.0132 + 38.1279i −0.799554 + 1.38487i
\(759\) 0.0104952i 0.000380950i
\(760\) −7.48595 4.32202i −0.271544 0.156776i
\(761\) 14.5863 + 8.42138i 0.528751 + 0.305275i 0.740508 0.672048i \(-0.234585\pi\)
−0.211757 + 0.977322i \(0.567918\pi\)
\(762\) 6.60937i 0.239432i
\(763\) −7.43163 + 12.8720i −0.269043 + 0.465996i
\(764\) −0.927654 1.60674i −0.0335614 0.0581300i
\(765\) −0.250021 + 0.144350i −0.00903953 + 0.00521897i
\(766\) 24.8813 0.898997
\(767\) −5.37482 24.7160i −0.194073 0.892443i
\(768\) 13.6677 0.493192
\(769\) 37.8459 21.8504i 1.36476 0.787944i 0.374506 0.927225i \(-0.377812\pi\)
0.990253 + 0.139281i \(0.0444790\pi\)
\(770\) 0.130774 + 0.226508i 0.00471278 + 0.00816277i
\(771\) 18.1649 31.4626i 0.654194 1.13310i
\(772\) 5.56047i 0.200126i
\(773\) 38.7169 + 22.3532i 1.39255 + 0.803990i 0.993597 0.112982i \(-0.0360401\pi\)
0.398954 + 0.916971i \(0.369373\pi\)
\(774\) −2.23290 1.28916i −0.0802598 0.0463380i
\(775\) 4.36047i 0.156633i
\(776\) −21.2542 + 36.8133i −0.762980 + 1.32152i
\(777\) −1.07141 1.85574i −0.0384368 0.0665744i
\(778\) 30.1461 17.4049i 1.08079 0.623995i
\(779\) −13.8194 −0.495131
\(780\) −1.55460 + 1.41303i −0.0556638 + 0.0505946i
\(781\) 2.01812 0.0722141
\(782\) 0.00920194 0.00531274i 0.000329061 0.000189983i
\(783\) −6.82966 11.8293i −0.244072 0.422746i
\(784\) −1.66326 + 2.88085i −0.0594020 + 0.102887i
\(785\) 13.8970i 0.496006i
\(786\) −15.7547 9.09600i −0.561953 0.324444i
\(787\) 36.4990 + 21.0727i 1.30105 + 0.751161i 0.980584 0.196099i \(-0.0628274\pi\)
0.320465 + 0.947260i \(0.396161\pi\)
\(788\) 4.46090i 0.158913i
\(789\) 17.4520 30.2277i 0.621307 1.07613i
\(790\) −3.03326 5.25376i −0.107919 0.186921i
\(791\) −4.61006 + 2.66162i −0.163915 + 0.0946364i
\(792\) 0.562432 0.0199851
\(793\) 30.2213 6.57202i 1.07319 0.233379i
\(794\) −8.64383 −0.306758
\(795\) 3.04374 1.75731i 0.107950 0.0623252i
\(796\) −3.16164 5.47611i −0.112061 0.194096i
\(797\) −12.7186 + 22.0292i −0.450514 + 0.780314i −0.998418 0.0562278i \(-0.982093\pi\)
0.547904 + 0.836541i \(0.315426\pi\)
\(798\) 7.47834i 0.264731i
\(799\) 1.75071 + 1.01077i 0.0619357 + 0.0357586i
\(800\) 1.42625 + 0.823447i 0.0504256 + 0.0291132i
\(801\) 6.74513i 0.238328i
\(802\) 0.210179 0.364040i 0.00742166 0.0128547i
\(803\) 0.814351 + 1.41050i 0.0287378 + 0.0497754i
\(804\) 2.73485 1.57897i 0.0964508 0.0556859i
\(805\) −0.0264156 −0.000931027
\(806\) 6.25467 19.5616i 0.220311 0.689028i
\(807\) 27.1728 0.956528
\(808\) 20.2732 11.7048i 0.713210 0.411772i
\(809\) −25.5196 44.2013i −0.897222 1.55403i −0.831030 0.556228i \(-0.812248\pi\)
−0.0661927 0.997807i \(-0.521085\pi\)
\(810\) 7.14120 12.3689i 0.250916 0.434600i
\(811\) 9.67358i 0.339685i 0.985471 + 0.169843i \(0.0543260\pi\)
−0.985471 + 0.169843i \(0.945674\pi\)
\(812\) 0.848726 + 0.490012i 0.0297844 + 0.0171961i
\(813\) −16.2800 9.39928i −0.570965 0.329647i
\(814\) 0.282440i 0.00989952i
\(815\) −11.4701 + 19.8668i −0.401779 + 0.695902i
\(816\) −1.01631 1.76029i −0.0355778 0.0616226i
\(817\) 5.26011 3.03693i 0.184028 0.106249i
\(818\) −31.8786 −1.11461
\(819\) −3.21979 1.02951i −0.112509 0.0359738i
\(820\) 1.40649 0.0491168
\(821\) −4.16223 + 2.40307i −0.145263 + 0.0838676i −0.570870 0.821041i \(-0.693394\pi\)
0.425607 + 0.904908i \(0.360061\pi\)
\(822\) −7.66978 13.2844i −0.267514 0.463348i
\(823\) −5.50917 + 9.54217i −0.192038 + 0.332619i −0.945925 0.324384i \(-0.894843\pi\)
0.753888 + 0.657003i \(0.228176\pi\)
\(824\) 25.9502i 0.904019i
\(825\) 0.344080 + 0.198655i 0.0119793 + 0.00691627i
\(826\) −7.93609 4.58191i −0.276132 0.159425i
\(827\) 18.7673i 0.652602i −0.945266 0.326301i \(-0.894198\pi\)
0.945266 0.326301i \(-0.105802\pi\)
\(828\) −0.00363604 + 0.00629780i −0.000126361 + 0.000218864i
\(829\) 15.8574 + 27.4659i 0.550752 + 0.953930i 0.998221 + 0.0596307i \(0.0189923\pi\)
−0.447469 + 0.894300i \(0.647674\pi\)
\(830\) −12.4703 + 7.19975i −0.432851 + 0.249907i
\(831\) 7.57506 0.262776
\(832\) −21.3516 23.4909i −0.740234 0.814399i
\(833\) −0.307930 −0.0106691
\(834\) −52.3082 + 30.2001i −1.81128 + 1.04574i
\(835\) −8.25787 14.3031i −0.285776 0.494978i
\(836\) −0.0848099 + 0.146895i −0.00293321 + 0.00508047i
\(837\) 17.8456i 0.616833i
\(838\) −31.5759 18.2304i −1.09077 0.629758i
\(839\) −29.3713 16.9575i −1.01401 0.585439i −0.101647 0.994821i \(-0.532411\pi\)
−0.912363 + 0.409382i \(0.865744\pi\)
\(840\) 5.94529i 0.205132i
\(841\) 8.93026 15.4677i 0.307940 0.533368i
\(842\) 21.7342 + 37.6448i 0.749011 + 1.29732i
\(843\) 3.33258 1.92407i 0.114780 0.0662684i
\(844\) −1.48520 −0.0511227
\(845\) 12.9410 + 1.23754i 0.445183 + 0.0425728i
\(846\) 8.04010 0.276424
\(847\) −9.49156 + 5.47996i −0.326134 + 0.188293i
\(848\) 2.94594 + 5.10252i 0.101164 + 0.175221i
\(849\) 16.2125 28.0808i 0.556411 0.963732i
\(850\) 0.402243i 0.0137968i
\(851\) 0.0247039 + 0.0142628i 0.000846838 + 0.000488922i
\(852\) 5.08604 + 2.93643i 0.174245 + 0.100600i
\(853\) 10.8950i 0.373038i 0.982451 + 0.186519i \(0.0597206\pi\)
−0.982451 + 0.186519i \(0.940279\pi\)
\(854\) 5.60250 9.70381i 0.191713 0.332057i
\(855\) −1.35245 2.34250i −0.0462527 0.0801120i
\(856\) −18.0831 + 10.4403i −0.618068 + 0.356842i
\(857\) 13.4585 0.459733 0.229867 0.973222i \(-0.426171\pi\)
0.229867 + 0.973222i \(0.426171\pi\)
\(858\) −1.25863 1.38474i −0.0429690 0.0472742i
\(859\) −35.8119 −1.22189 −0.610943 0.791674i \(-0.709210\pi\)
−0.610943 + 0.791674i \(0.709210\pi\)
\(860\) −0.535357 + 0.309088i −0.0182555 + 0.0105398i
\(861\) 4.75243 + 8.23145i 0.161962 + 0.280527i
\(862\) 6.41427 11.1098i 0.218471 0.378403i
\(863\) 9.26997i 0.315553i −0.987475 0.157777i \(-0.949567\pi\)
0.987475 0.157777i \(-0.0504326\pi\)
\(864\) −5.83704 3.37002i −0.198580 0.114650i
\(865\) 15.9960 + 9.23532i 0.543882 + 0.314010i
\(866\) 15.0516i 0.511473i
\(867\) −16.7727 + 29.0512i −0.569630 + 0.986629i
\(868\) 0.640188 + 1.10884i 0.0217294 + 0.0376364i
\(869\) −0.805286 + 0.464932i −0.0273175 + 0.0157717i
\(870\) −8.65131 −0.293307
\(871\) −18.6132 5.95142i −0.630683 0.201656i
\(872\) −44.5322 −1.50805
\(873\) −11.5196 + 6.65085i −0.389880 + 0.225097i
\(874\) 0.0497763 + 0.0862151i 0.00168371 + 0.00291627i
\(875\) −0.500000 + 0.866025i −0.0169031 + 0.0292770i
\(876\) 4.73961i 0.160137i
\(877\) −15.1207 8.72994i −0.510590 0.294789i 0.222486 0.974936i \(-0.428583\pi\)
−0.733076 + 0.680147i \(0.761916\pi\)
\(878\) 10.9372 + 6.31459i 0.369112 + 0.213107i
\(879\) 35.3704i 1.19302i
\(880\) −0.333024 + 0.576814i −0.0112262 + 0.0194444i
\(881\) −28.0193 48.5308i −0.943994 1.63505i −0.757753 0.652542i \(-0.773703\pi\)
−0.186241 0.982504i \(-0.559631\pi\)
\(882\) −1.06062 + 0.612350i −0.0357130 + 0.0206189i
\(883\) 45.1973 1.52101 0.760504 0.649333i \(-0.224952\pi\)
0.760504 + 0.649333i \(0.224952\pi\)
\(884\) 0.0992868 0.310521i 0.00333938 0.0104440i
\(885\) −13.9204 −0.467930
\(886\) 13.4280 7.75267i 0.451123 0.260456i
\(887\) −28.9137 50.0799i −0.970826 1.68152i −0.693073 0.720868i \(-0.743744\pi\)
−0.277753 0.960652i \(-0.589590\pi\)
\(888\) 3.21009 5.56004i 0.107724 0.186583i
\(889\) 2.54983i 0.0855185i
\(890\) −8.13887 4.69898i −0.272815 0.157510i
\(891\) −1.89588 1.09459i −0.0635145 0.0366701i
\(892\) 3.04306i 0.101889i
\(893\) −9.47017 + 16.4028i −0.316907 + 0.548899i
\(894\) 6.08831 + 10.5453i 0.203624 + 0.352687i
\(895\) 6.95381 4.01478i 0.232440 0.134199i
\(896\) −8.20714 −0.274181
\(897\) 0.184676 0.0401603i 0.00616616 0.00134091i
\(898\) −42.9108 −1.43195
\(899\) −12.6037 + 7.27672i −0.420355 + 0.242692i
\(900\) 0.137647 + 0.238412i 0.00458825 + 0.00794708i
\(901\) −0.272701 + 0.472332i −0.00908499 + 0.0157357i
\(902\) 1.25281i 0.0417140i
\(903\) −3.61786 2.08877i −0.120395 0.0695100i
\(904\) −13.8123 7.97456i −0.459391 0.265230i
\(905\) 0.349155i 0.0116063i
\(906\) −19.4990 + 33.7733i −0.647813 + 1.12204i
\(907\) 6.24816 + 10.8221i 0.207467 + 0.359343i 0.950916 0.309450i \(-0.100145\pi\)
−0.743449 + 0.668792i \(0.766811\pi\)
\(908\) −7.49467 + 4.32705i −0.248719 + 0.143598i
\(909\) 7.32531 0.242965
\(910\) 3.48529 3.16789i 0.115536 0.105015i
\(911\) 9.63299 0.319155 0.159578 0.987185i \(-0.448987\pi\)
0.159578 + 0.987185i \(0.448987\pi\)
\(912\) 16.4926 9.52201i 0.546125 0.315305i
\(913\) 1.10356 + 1.91143i 0.0365226 + 0.0632590i
\(914\) −19.4970 + 33.7697i −0.644902 + 1.11700i
\(915\) 17.0211i 0.562701i
\(916\) 1.26373 + 0.729617i 0.0417549 + 0.0241072i
\(917\) −6.07802 3.50914i −0.200714 0.115882i
\(918\) 1.64621i 0.0543330i
\(919\) −4.15538 + 7.19734i −0.137073 + 0.237418i −0.926388 0.376571i \(-0.877103\pi\)
0.789314 + 0.613990i \(0.210436\pi\)
\(920\) −0.0395722 0.0685411i −0.00130466 0.00225973i
\(921\) −40.9417 + 23.6377i −1.34907 + 0.778889i
\(922\) −15.1851 −0.500093
\(923\) −7.72246 35.5116i −0.254188 1.16888i
\(924\) 0.116663 0.00383793
\(925\) 0.935201 0.539939i 0.0307492 0.0177531i
\(926\) −26.9421 46.6651i −0.885372 1.53351i
\(927\) 4.06017 7.03243i 0.133354 0.230975i
\(928\) 5.49665i 0.180436i
\(929\) −18.9504 10.9410i −0.621742 0.358963i 0.155805 0.987788i \(-0.450203\pi\)
−0.777547 + 0.628825i \(0.783536\pi\)
\(930\) −9.78843 5.65135i −0.320975 0.185315i
\(931\) 2.88507i 0.0945543i
\(932\) −0.0386265 + 0.0669030i −0.00126525 + 0.00219148i
\(933\) 32.6506 + 56.5526i 1.06893 + 1.85145i
\(934\) −16.7559 + 9.67401i −0.548269 + 0.316543i
\(935\) −0.0616550 −0.00201633
\(936\) −2.15218 9.89673i −0.0703461 0.323485i
\(937\) 2.32476 0.0759467 0.0379733 0.999279i \(-0.487910\pi\)
0.0379733 + 0.999279i \(0.487910\pi\)
\(938\) −6.13130 + 3.53991i −0.200194 + 0.115582i
\(939\) −16.0403 27.7826i −0.523455 0.906651i
\(940\) 0.963842 1.66942i 0.0314371 0.0544506i
\(941\) 28.6362i 0.933514i −0.884386 0.466757i \(-0.845422\pi\)
0.884386 0.466757i \(-0.154578\pi\)
\(942\) 31.1962 + 18.0111i 1.01643 + 0.586834i
\(943\) −0.109578 0.0632649i −0.00356835 0.00206019i
\(944\) 23.3362i 0.759527i
\(945\) 2.04629 3.54427i 0.0665658 0.115295i
\(946\) −0.275315 0.476860i −0.00895127 0.0155041i
\(947\) 30.0572 17.3535i 0.976727 0.563913i 0.0754464 0.997150i \(-0.475962\pi\)
0.901280 + 0.433236i \(0.142629\pi\)
\(948\) −2.70596 −0.0878854
\(949\) 21.7034 19.7269i 0.704523 0.640364i
\(950\) 3.76871 0.122273
\(951\) −49.4133 + 28.5288i −1.60233 + 0.925109i
\(952\) −0.461299 0.798993i −0.0149508 0.0258955i
\(953\) −23.8877 + 41.3747i −0.773797 + 1.34026i 0.161671 + 0.986845i \(0.448312\pi\)
−0.935468 + 0.353412i \(0.885022\pi\)
\(954\) 2.16917i 0.0702296i
\(955\) 5.47195 + 3.15923i 0.177068 + 0.102230i
\(956\) −3.20634 1.85118i −0.103700 0.0598715i
\(957\) 1.32605i 0.0428653i
\(958\) −5.06382 + 8.77079i −0.163605 + 0.283371i
\(959\) −2.95892 5.12500i −0.0955486 0.165495i
\(960\) −15.1300 + 8.73533i −0.488320 + 0.281932i
\(961\) 11.9863 0.386655
\(962\) −4.96991 + 1.08077i −0.160236 + 0.0348455i
\(963\) −6.53395 −0.210554
\(964\) 3.80330 2.19583i 0.122496 0.0707231i
\(965\) −9.46842 16.3998i −0.304799 0.527928i
\(966\) 0.0342357 0.0592980i 0.00110152 0.00190788i
\(967\) 25.2911i 0.813307i −0.913583 0.406653i \(-0.866696\pi\)
0.913583 0.406653i \(-0.133304\pi\)
\(968\) −28.4379 16.4186i −0.914029 0.527715i
\(969\) 1.52669 + 0.881437i 0.0490445 + 0.0283158i
\(970\) 18.5332i 0.595065i
\(971\) −21.2696 + 36.8401i −0.682574 + 1.18225i 0.291618 + 0.956535i \(0.405806\pi\)
−0.974193 + 0.225719i \(0.927527\pi\)
\(972\) −1.38274 2.39498i −0.0443515 0.0768191i
\(973\) −20.1800 + 11.6509i −0.646940 + 0.373511i
\(974\) 6.14415 0.196871
\(975\) 2.17895 6.81471i 0.0697824 0.218245i
\(976\) 28.5341 0.913355
\(977\) 45.2112 26.1027i 1.44643 0.835098i 0.448166 0.893950i \(-0.352077\pi\)
0.998267 + 0.0588518i \(0.0187439\pi\)
\(978\) −29.7314 51.4963i −0.950706 1.64667i
\(979\) −0.720249 + 1.24751i −0.0230193 + 0.0398705i
\(980\) 0.293633i 0.00937975i
\(981\) −12.0681 6.96751i −0.385304 0.222456i
\(982\) −26.3695 15.2245i −0.841486 0.485832i
\(983\) 42.2567i 1.34778i 0.738833 + 0.673889i \(0.235377\pi\)
−0.738833 + 0.673889i \(0.764623\pi\)
\(984\) −14.2389 + 24.6624i −0.453919 + 0.786210i
\(985\) −7.59606 13.1568i −0.242030 0.419209i
\(986\) 1.16266 0.671261i 0.0370266 0.0213773i
\(987\) 13.0270 0.414654
\(988\) 2.90934 + 0.930241i 0.0925586 + 0.0295949i
\(989\) 0.0556120 0.00176836
\(990\) −0.212362 + 0.122607i −0.00674930 + 0.00389671i
\(991\) −2.53699 4.39419i −0.0805901 0.139586i 0.822913 0.568167i \(-0.192347\pi\)
−0.903504 + 0.428581i \(0.859014\pi\)
\(992\) −3.59062 + 6.21913i −0.114002 + 0.197458i
\(993\) 67.4716i 2.14115i
\(994\) −11.4025 6.58321i −0.361664 0.208807i
\(995\) 18.6495 + 10.7673i 0.591230 + 0.341347i
\(996\) 6.42286i 0.203516i
\(997\) 24.5510 42.5235i 0.777537 1.34673i −0.155821 0.987785i \(-0.549802\pi\)
0.933358 0.358948i \(-0.116864\pi\)
\(998\) 22.2430 + 38.5261i 0.704091 + 1.21952i
\(999\) −3.82738 + 2.20974i −0.121093 + 0.0699131i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 455.2.bq.a.36.8 20
13.2 odd 12 5915.2.a.be.1.8 10
13.4 even 6 inner 455.2.bq.a.316.8 yes 20
13.11 odd 12 5915.2.a.bf.1.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
455.2.bq.a.36.8 20 1.1 even 1 trivial
455.2.bq.a.316.8 yes 20 13.4 even 6 inner
5915.2.a.be.1.8 10 13.2 odd 12
5915.2.a.bf.1.3 10 13.11 odd 12