Properties

Label 455.2.a.e
Level $455$
Weight $2$
Character orbit 455.a
Self dual yes
Analytic conductor $3.633$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [455,2,Mod(1,455)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("455.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(455, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.63319329197\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.45853772.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 10x^{3} + 23x^{2} - 14x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{5} q^{3} + ( - \beta_{2} - \beta_1 + 1) q^{4} + q^{5} + (\beta_{5} + \beta_{4} + \beta_{2} + \cdots - 1) q^{6} + q^{7} + ( - \beta_{5} - \beta_{2} - \beta_1 + 1) q^{8} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{9}+ \cdots + (2 \beta_{5} + \beta_{4} + \beta_{3} + \cdots - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} + 6 q^{5} - 6 q^{6} + 6 q^{7} + 9 q^{8} + 8 q^{9} + 3 q^{10} - 2 q^{11} - 11 q^{12} + 6 q^{13} + 3 q^{14} + 3 q^{16} + 8 q^{17} + 16 q^{18} + 6 q^{19} + 9 q^{20} - 2 q^{22} + 4 q^{23}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 10x^{4} + 10x^{3} + 23x^{2} - 14x - 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{4} - 8\nu^{2} + 2\nu + 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - 9\nu^{3} + \nu^{2} + 14\nu + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + \nu^{3} + 9\nu^{2} - 8\nu - 12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 8\nu^{3} + 10\nu^{2} + 8\nu - 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + \nu^{4} - 9\nu^{3} - 8\nu^{2} + 16\nu + 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 3\beta_{4} - 2\beta_{3} - 4\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{5} - \beta_{4} + \beta_{3} + 9\beta_{2} + 9\beta _1 + 23 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10\beta_{5} + 20\beta_{4} - 11\beta_{3} - 29\beta_{2} - \beta _1 - 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.851902
2.43655
−2.73570
1.55061
−1.16074
1.76118
−2.01700 2.20599 2.06828 1.00000 −4.44947 1.00000 −0.137712 1.86638 −2.01700
1.2 −1.62413 −1.57457 0.637810 1.00000 2.55731 1.00000 2.21238 −0.520730 −1.62413
1.3 0.332820 −0.594815 −1.88923 1.00000 −0.197967 1.00000 −1.29442 −2.64619 0.332820
1.4 1.35280 2.76555 −0.169936 1.00000 3.74123 1.00000 −2.93549 4.64827 1.35280
1.5 2.28471 0.432805 3.21989 1.00000 0.988833 1.00000 2.78708 −2.81268 2.28471
1.6 2.67080 −3.23496 5.13320 1.00000 −8.63994 1.00000 8.36815 7.46495 2.67080
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 455.2.a.e 6
3.b odd 2 1 4095.2.a.bl 6
4.b odd 2 1 7280.2.a.ce 6
5.b even 2 1 2275.2.a.s 6
7.b odd 2 1 3185.2.a.r 6
13.b even 2 1 5915.2.a.u 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
455.2.a.e 6 1.a even 1 1 trivial
2275.2.a.s 6 5.b even 2 1
3185.2.a.r 6 7.b odd 2 1
4095.2.a.bl 6 3.b odd 2 1
5915.2.a.u 6 13.b even 2 1
7280.2.a.ce 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 3T_{2}^{5} - 6T_{2}^{4} + 20T_{2}^{3} + 6T_{2}^{2} - 31T_{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(455))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{6} - 13 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$5$ \( (T - 1)^{6} \) Copy content Toggle raw display
$7$ \( (T - 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 2 T^{5} + \cdots - 1152 \) Copy content Toggle raw display
$13$ \( (T - 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 8 T^{5} + \cdots + 9948 \) Copy content Toggle raw display
$19$ \( T^{6} - 6 T^{5} + \cdots + 8 \) Copy content Toggle raw display
$23$ \( T^{6} - 4 T^{5} + \cdots - 1152 \) Copy content Toggle raw display
$29$ \( T^{6} + 14 T^{5} + \cdots - 5004 \) Copy content Toggle raw display
$31$ \( T^{6} + 6 T^{5} + \cdots - 24536 \) Copy content Toggle raw display
$37$ \( T^{6} - 20 T^{5} + \cdots - 4564 \) Copy content Toggle raw display
$41$ \( T^{6} + 4 T^{5} + \cdots + 89748 \) Copy content Toggle raw display
$43$ \( T^{6} - 10 T^{5} + \cdots - 105856 \) Copy content Toggle raw display
$47$ \( T^{6} + 6 T^{5} + \cdots + 36864 \) Copy content Toggle raw display
$53$ \( T^{6} - 2 T^{5} + \cdots + 4032 \) Copy content Toggle raw display
$59$ \( T^{6} + 18 T^{5} + \cdots - 8856 \) Copy content Toggle raw display
$61$ \( T^{6} - 92 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$67$ \( T^{6} - 20 T^{5} + \cdots + 15472 \) Copy content Toggle raw display
$71$ \( T^{6} + 4 T^{5} + \cdots - 169344 \) Copy content Toggle raw display
$73$ \( T^{6} - 6 T^{5} + \cdots - 10432 \) Copy content Toggle raw display
$79$ \( T^{6} + 4 T^{5} + \cdots - 1545312 \) Copy content Toggle raw display
$83$ \( T^{6} + 6 T^{5} + \cdots + 2304 \) Copy content Toggle raw display
$89$ \( T^{6} + 12 T^{5} + \cdots - 692316 \) Copy content Toggle raw display
$97$ \( T^{6} - 26 T^{5} + \cdots + 152512 \) Copy content Toggle raw display
show more
show less