Properties

Label 45486.2.a.fg
Level $45486$
Weight $2$
Character orbit 45486.a
Self dual yes
Analytic conductor $363.208$
Dimension $6$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45486,2,Mod(1,45486)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45486.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45486, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 45486 = 2 \cdot 3^{2} \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45486.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,0,6,0,0,-6,6,0,0,3,0,3,-6,0,6,-6,0,0,0,0,3,15,0,0,3,0,-6, 6,0,-6,6,0,-6,0,0,0,0,0,0,-9,0,-9,3,0,15,-9,0,6,0,0,3,-21,0,-6,-6,0,6, -3,0,-12,-6,0,6,-24,0,-18,-6,0,0,0,0,-12,0,0,0,-3,0,3,0,0,-9,-36,0,-24, -9,0,3,9,0,-3,15,0,-9,0,0,33,6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(363.207538634\)
Dimension: \(6\)
Coefficient field: 6.6.17721261.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} - x^{3} + 36x^{2} - 27 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 6 q + 6 q^{2} + 6 q^{4} - 6 q^{7} + 6 q^{8} + 3 q^{11} + 3 q^{13} - 6 q^{14} + 6 q^{16} - 6 q^{17} + 3 q^{22} + 15 q^{23} + 3 q^{26} - 6 q^{28} + 6 q^{29} - 6 q^{31} + 6 q^{32} - 6 q^{34} - 9 q^{41} - 9 q^{43}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(19\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.