Defining parameters
| Level: | \( N \) | \(=\) | \( 45486 = 2 \cdot 3^{2} \cdot 7 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 45486.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 187 \) | ||
| Sturm bound: | \(18240\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(45486))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 9280 | 852 | 8428 |
| Cusp forms | 8961 | 852 | 8109 |
| Eisenstein series | 319 | 0 | 319 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(560\) | \(40\) | \(520\) | \(541\) | \(40\) | \(501\) | \(19\) | \(0\) | \(19\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(598\) | \(45\) | \(553\) | \(578\) | \(45\) | \(533\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(600\) | \(40\) | \(560\) | \(580\) | \(40\) | \(540\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(562\) | \(45\) | \(517\) | \(542\) | \(45\) | \(497\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(590\) | \(67\) | \(523\) | \(570\) | \(67\) | \(503\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(570\) | \(61\) | \(509\) | \(550\) | \(61\) | \(489\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(570\) | \(59\) | \(511\) | \(550\) | \(59\) | \(491\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(590\) | \(70\) | \(520\) | \(570\) | \(70\) | \(500\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(580\) | \(40\) | \(540\) | \(560\) | \(40\) | \(520\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(582\) | \(45\) | \(537\) | \(562\) | \(45\) | \(517\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(580\) | \(40\) | \(540\) | \(560\) | \(40\) | \(520\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(578\) | \(45\) | \(533\) | \(558\) | \(45\) | \(513\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(590\) | \(63\) | \(527\) | \(570\) | \(63\) | \(507\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(570\) | \(65\) | \(505\) | \(550\) | \(65\) | \(485\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(570\) | \(71\) | \(499\) | \(550\) | \(71\) | \(479\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(590\) | \(56\) | \(534\) | \(570\) | \(56\) | \(514\) | \(20\) | \(0\) | \(20\) | |||
| Plus space | \(+\) | \(4604\) | \(409\) | \(4195\) | \(4445\) | \(409\) | \(4036\) | \(159\) | \(0\) | \(159\) | ||||||
| Minus space | \(-\) | \(4676\) | \(443\) | \(4233\) | \(4516\) | \(443\) | \(4073\) | \(160\) | \(0\) | \(160\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(45486))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | 19 | |||||||
| 45486.2.a.a | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(-4\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}-4q^{5}+q^{7}-q^{8}+4q^{10}+\cdots\) | |
| 45486.2.a.b | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(-3\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}-3q^{5}+q^{7}-q^{8}+3q^{10}+\cdots\) | |
| 45486.2.a.c | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(-2\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}-2q^{5}-q^{7}-q^{8}+2q^{10}+\cdots\) | |
| 45486.2.a.d | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\) | |
| 45486.2.a.e | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
| 45486.2.a.f | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
| 45486.2.a.g | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
| 45486.2.a.h | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{7}-q^{8}-4q^{11}+2q^{13}+\cdots\) | |
| 45486.2.a.i | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{7}-q^{8}-2q^{11}+4q^{13}+\cdots\) | |
| 45486.2.a.j | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{7}-q^{8}+6q^{11}+2q^{13}+\cdots\) | |
| 45486.2.a.k | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{7}-q^{8}-6q^{11}+4q^{13}+\cdots\) | |
| 45486.2.a.l | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{7}-q^{8}-2q^{13}-q^{14}+\cdots\) | |
| 45486.2.a.m | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{7}-q^{8}+4q^{13}-q^{14}+\cdots\) | |
| 45486.2.a.n | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{7}-q^{8}+6q^{11}-2q^{13}+\cdots\) | |
| 45486.2.a.o | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
| 45486.2.a.p | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
| 45486.2.a.q | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
| 45486.2.a.r | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(2\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}+2q^{5}-q^{7}-q^{8}-2q^{10}+\cdots\) | |
| 45486.2.a.s | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(2\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\) | |
| 45486.2.a.t | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(3\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}+3q^{5}-q^{7}-q^{8}-3q^{10}+\cdots\) | |
| 45486.2.a.u | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(3\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+3q^{5}+q^{7}-q^{8}-3q^{10}+\cdots\) | |
| 45486.2.a.v | $1$ | $363.208$ | \(\Q\) | None | \(-1\) | \(0\) | \(4\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}+4q^{5}+q^{7}-q^{8}-4q^{10}+\cdots\) | |
| 45486.2.a.w | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(-4\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}-4q^{5}+q^{7}+q^{8}-4q^{10}+\cdots\) | |
| 45486.2.a.x | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(-3\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}-3q^{5}+q^{7}+q^{8}-3q^{10}+\cdots\) | |
| 45486.2.a.y | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(-2\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\) | |
| 45486.2.a.z | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\) | |
| 45486.2.a.ba | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+q^{7}+q^{8}-q^{10}+\cdots\) | |
| 45486.2.a.bb | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+q^{7}+q^{8}-q^{10}+\cdots\) | |
| 45486.2.a.bc | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+q^{7}+q^{8}-q^{10}+\cdots\) | |
| 45486.2.a.bd | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{7}+q^{8}-4q^{11}-2q^{13}+\cdots\) | |
| 45486.2.a.be | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{7}+q^{8}+6q^{11}-2q^{13}+\cdots\) | |
| 45486.2.a.bf | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{7}+q^{8}-6q^{11}-2q^{13}+\cdots\) | |
| 45486.2.a.bg | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{7}+q^{8}-2q^{13}+q^{14}+\cdots\) | |
| 45486.2.a.bh | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
| 45486.2.a.bi | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
| 45486.2.a.bj | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
| 45486.2.a.bk | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+2q^{5}-q^{7}+q^{8}+2q^{10}+\cdots\) | |
| 45486.2.a.bl | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+2q^{5}-q^{7}+q^{8}+2q^{10}+\cdots\) | |
| 45486.2.a.bm | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(3\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\) | |
| 45486.2.a.bn | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(3\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+3q^{5}+q^{7}+q^{8}+3q^{10}+\cdots\) | |
| 45486.2.a.bo | $1$ | $363.208$ | \(\Q\) | None | \(1\) | \(0\) | \(4\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+4q^{5}-q^{7}+q^{8}+4q^{10}+\cdots\) | |
| 45486.2.a.bp | $2$ | $363.208$ | \(\Q(\sqrt{73}) \) | None | \(-2\) | \(0\) | \(-6\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.bq | $2$ | $363.208$ | \(\Q(\sqrt{6}) \) | None | \(-2\) | \(0\) | \(-6\) | \(2\) | $+$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.br | $2$ | $363.208$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(-4\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.bs | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-4\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.bt | $2$ | $363.208$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(-4\) | \(2\) | $+$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.bu | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.bv | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.bw | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.bx | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-1\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.by | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-1\) | \(2\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.bz | $2$ | $363.208$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(0\) | \(0\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ca | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.cb | $2$ | $363.208$ | \(\Q(\sqrt{29}) \) | None | \(-2\) | \(0\) | \(1\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.cc | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(1\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.cd | $2$ | $363.208$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(1\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ce | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.cf | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.cg | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(2\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.ch | $2$ | $363.208$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(2\) | \(2\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.ci | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(3\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.cj | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(3\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.ck | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(3\) | \(2\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.cl | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(4\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.cm | $2$ | $363.208$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(4\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.cn | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(4\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.co | $2$ | $363.208$ | \(\Q(\sqrt{6}) \) | None | \(-2\) | \(0\) | \(6\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.cp | $2$ | $363.208$ | \(\Q(\sqrt{73}) \) | None | \(2\) | \(0\) | \(-6\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.cq | $2$ | $363.208$ | \(\Q(\sqrt{6}) \) | None | \(2\) | \(0\) | \(-6\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.cr | $2$ | $363.208$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(-4\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.cs | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-4\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ct | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.cu | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.cv | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.cw | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-1\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.cx | $2$ | $363.208$ | \(\Q(\sqrt{13}) \) | None | \(2\) | \(0\) | \(-1\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.cy | $2$ | $363.208$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.cz | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.da | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(1\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.db | $2$ | $363.208$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(1\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.dc | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(-2\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.dd | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(-2\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.de | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.df | $2$ | $363.208$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.dg | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(3\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.dh | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(3\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.di | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(3\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.dj | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(4\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.dk | $2$ | $363.208$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(4\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.dl | $2$ | $363.208$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(4\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.dm | $2$ | $363.208$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(4\) | \(2\) | $-$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.dn | $2$ | $363.208$ | \(\Q(\sqrt{6}) \) | None | \(2\) | \(0\) | \(6\) | \(2\) | $-$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.do | $3$ | $363.208$ | 3.3.4860.1 | None | \(-3\) | \(0\) | \(-3\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.dp | $3$ | $363.208$ | 3.3.1304.1 | None | \(-3\) | \(0\) | \(-3\) | \(3\) | $+$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.dq | $3$ | $363.208$ | 3.3.148.1 | None | \(-3\) | \(0\) | \(-2\) | \(3\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.dr | $3$ | $363.208$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(0\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.ds | $3$ | $363.208$ | 3.3.148.1 | None | \(-3\) | \(0\) | \(1\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.dt | $3$ | $363.208$ | 3.3.148.1 | None | \(-3\) | \(0\) | \(2\) | \(-3\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.du | $3$ | $363.208$ | 3.3.1304.1 | None | \(-3\) | \(0\) | \(3\) | \(3\) | $+$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.dv | $3$ | $363.208$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(3\) | \(3\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.dw | $3$ | $363.208$ | 3.3.469.1 | None | \(3\) | \(0\) | \(-5\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.dx | $3$ | $363.208$ | 3.3.4860.1 | None | \(3\) | \(0\) | \(-3\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.dy | $3$ | $363.208$ | 3.3.1304.1 | None | \(3\) | \(0\) | \(-3\) | \(3\) | $-$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.dz | $3$ | $363.208$ | 3.3.148.1 | None | \(3\) | \(0\) | \(-2\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.ea | $3$ | $363.208$ | 3.3.148.1 | None | \(3\) | \(0\) | \(-2\) | \(3\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.eb | $3$ | $363.208$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(0\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.ec | $3$ | $363.208$ | 3.3.148.1 | None | \(3\) | \(0\) | \(1\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ed | $3$ | $363.208$ | 3.3.1304.1 | None | \(3\) | \(0\) | \(3\) | \(3\) | $-$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.ee | $3$ | $363.208$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(3\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.ef | $4$ | $363.208$ | 4.4.9225.1 | None | \(-4\) | \(0\) | \(-5\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.eg | $4$ | $363.208$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(-2\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.eh | $4$ | $363.208$ | 4.4.151572.1 | None | \(-4\) | \(0\) | \(-1\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.ei | $4$ | $363.208$ | 4.4.12400.1 | None | \(-4\) | \(0\) | \(0\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ej | $4$ | $363.208$ | \(\Q(\zeta_{24})^+\) | None | \(-4\) | \(0\) | \(0\) | \(4\) | $+$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.ek | $4$ | $363.208$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(4\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.el | $4$ | $363.208$ | 4.4.9225.1 | None | \(4\) | \(0\) | \(-5\) | \(4\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.em | $4$ | $363.208$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(-2\) | \(4\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.en | $4$ | $363.208$ | 4.4.151572.1 | None | \(4\) | \(0\) | \(-1\) | \(4\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.eo | $4$ | $363.208$ | 4.4.12400.1 | None | \(4\) | \(0\) | \(0\) | \(-4\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ep | $4$ | $363.208$ | \(\Q(\zeta_{24})^+\) | None | \(4\) | \(0\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.eq | $4$ | $363.208$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(4\) | \(4\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.er | $5$ | $363.208$ | 5.5.1903616.1 | None | \(-5\) | \(0\) | \(-3\) | \(-5\) | $+$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.es | $5$ | $363.208$ | 5.5.1903616.1 | None | \(-5\) | \(0\) | \(3\) | \(-5\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.et | $5$ | $363.208$ | 5.5.1903616.1 | None | \(5\) | \(0\) | \(-3\) | \(-5\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.eu | $5$ | $363.208$ | 5.5.1903616.1 | None | \(5\) | \(0\) | \(3\) | \(-5\) | $-$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.ev | $6$ | $363.208$ | 6.6.583942000.1 | None | \(-6\) | \(0\) | \(-4\) | \(6\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.ew | $6$ | $363.208$ | 6.6.309418000.1 | None | \(-6\) | \(0\) | \(0\) | \(-6\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ex | $6$ | $363.208$ | 6.6.17721261.1 | None | \(-6\) | \(0\) | \(0\) | \(-6\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ey | $6$ | $363.208$ | 6.6.1292517.1 | None | \(-6\) | \(0\) | \(0\) | \(6\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.ez | $6$ | $363.208$ | 6.6.36538000.1 | None | \(-6\) | \(0\) | \(1\) | \(6\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.fa | $6$ | $363.208$ | 6.6.1528713.1 | None | \(-6\) | \(0\) | \(3\) | \(-6\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.fb | $6$ | $363.208$ | 6.6.48952000.1 | None | \(-6\) | \(0\) | \(5\) | \(-6\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.fc | $6$ | $363.208$ | 6.6.3549501.1 | None | \(-6\) | \(0\) | \(6\) | \(-6\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.fd | $6$ | $363.208$ | 6.6.4126869.1 | None | \(-6\) | \(0\) | \(6\) | \(6\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.fe | $6$ | $363.208$ | 6.6.583942000.1 | None | \(6\) | \(0\) | \(-4\) | \(6\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.ff | $6$ | $363.208$ | 6.6.309418000.1 | None | \(6\) | \(0\) | \(0\) | \(-6\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.fg | $6$ | $363.208$ | 6.6.17721261.1 | None | \(6\) | \(0\) | \(0\) | \(-6\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.fh | $6$ | $363.208$ | 6.6.1292517.1 | None | \(6\) | \(0\) | \(0\) | \(6\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.fi | $6$ | $363.208$ | 6.6.36538000.1 | None | \(6\) | \(0\) | \(1\) | \(6\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.fj | $6$ | $363.208$ | 6.6.1528713.1 | None | \(6\) | \(0\) | \(3\) | \(-6\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.fk | $6$ | $363.208$ | 6.6.48952000.1 | None | \(6\) | \(0\) | \(5\) | \(-6\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.fl | $6$ | $363.208$ | 6.6.3549501.1 | None | \(6\) | \(0\) | \(6\) | \(-6\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.fm | $6$ | $363.208$ | 6.6.4126869.1 | None | \(6\) | \(0\) | \(6\) | \(6\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.fn | $8$ | $363.208$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(0\) | \(-6\) | \(-8\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.fo | $8$ | $363.208$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(0\) | \(-2\) | \(-8\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.fp | $8$ | $363.208$ | 8.8.5120000000.1 | None | \(-8\) | \(0\) | \(0\) | \(-8\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.fq | $8$ | $363.208$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(0\) | \(2\) | \(-8\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.fr | $8$ | $363.208$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(0\) | \(2\) | \(8\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.fs | $8$ | $363.208$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(0\) | \(8\) | \(8\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.ft | $8$ | $363.208$ | 8.8.\(\cdots\).1 | None | \(8\) | \(0\) | \(-6\) | \(-8\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.fu | $8$ | $363.208$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(0\) | \(-2\) | \(-8\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.fv | $8$ | $363.208$ | 8.8.5120000000.1 | None | \(8\) | \(0\) | \(0\) | \(-8\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.fw | $8$ | $363.208$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(0\) | \(2\) | \(-8\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.fx | $8$ | $363.208$ | 8.8.\(\cdots\).1 | None | \(8\) | \(0\) | \(2\) | \(8\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.fy | $8$ | $363.208$ | 8.8.\(\cdots\).1 | None | \(8\) | \(0\) | \(8\) | \(8\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.fz | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(0\) | \(-6\) | \(-9\) | $+$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.ga | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(0\) | \(-6\) | \(9\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.gb | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(0\) | \(-3\) | \(-9\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.gc | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(0\) | \(0\) | \(-9\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.gd | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(0\) | \(0\) | \(9\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.ge | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(0\) | \(-6\) | \(-9\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.gf | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(0\) | \(-6\) | \(9\) | $-$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.gg | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(0\) | \(-3\) | \(-9\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.gh | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(0\) | \(0\) | \(-9\) | $-$ | $-$ | $+$ | $-$ | ||
| 45486.2.a.gi | $9$ | $363.208$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(0\) | \(0\) | \(9\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.gj | $10$ | $363.208$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(0\) | \(0\) | \(10\) | $+$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.gk | $10$ | $363.208$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(0\) | \(0\) | \(10\) | $+$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.gl | $10$ | $363.208$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(10\) | \(0\) | \(0\) | \(10\) | $-$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.gm | $10$ | $363.208$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(10\) | \(0\) | \(0\) | \(10\) | $-$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.gn | $12$ | $363.208$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(-8\) | \(12\) | $+$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.go | $12$ | $363.208$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(-3\) | \(12\) | $+$ | $-$ | $-$ | $-$ | ||
| 45486.2.a.gp | $12$ | $363.208$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(0\) | \(-12\) | $+$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.gq | $12$ | $363.208$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(-8\) | \(12\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.gr | $12$ | $363.208$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(-3\) | \(12\) | $-$ | $-$ | $-$ | $+$ | ||
| 45486.2.a.gs | $12$ | $363.208$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(0\) | \(-12\) | $-$ | $-$ | $+$ | $+$ | ||
| 45486.2.a.gt | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(-15\) | \(0\) | \(-6\) | \(-15\) | $+$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.gu | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(-15\) | \(0\) | \(-6\) | \(15\) | $+$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.gv | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(-15\) | \(0\) | \(6\) | \(-15\) | $+$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.gw | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(-15\) | \(0\) | \(6\) | \(15\) | $+$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.gx | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(15\) | \(0\) | \(-6\) | \(-15\) | $-$ | $+$ | $+$ | $-$ | ||
| 45486.2.a.gy | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(15\) | \(0\) | \(-6\) | \(15\) | $-$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.gz | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(15\) | \(0\) | \(6\) | \(-15\) | $-$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.ha | $15$ | $363.208$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(15\) | \(0\) | \(6\) | \(15\) | $-$ | $+$ | $-$ | $-$ | ||
| 45486.2.a.hb | $16$ | $363.208$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-16\) | \(0\) | \(0\) | \(-16\) | $+$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.hc | $16$ | $363.208$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-16\) | \(0\) | \(0\) | \(16\) | $+$ | $+$ | $-$ | $+$ | ||
| 45486.2.a.hd | $16$ | $363.208$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(16\) | \(0\) | \(0\) | \(-16\) | $-$ | $+$ | $+$ | $+$ | ||
| 45486.2.a.he | $16$ | $363.208$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(16\) | \(0\) | \(0\) | \(16\) | $-$ | $+$ | $-$ | $+$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(45486))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(45486)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(798))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1197))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2166))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2394))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2527))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3249))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5054))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6498))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7581))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(22743))\)\(^{\oplus 2}\)