Properties

Label 45486.2.a.ck
Level $45486$
Weight $2$
Character orbit 45486.a
Self dual yes
Analytic conductor $363.208$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45486,2,Mod(1,45486)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45486.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45486, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 45486 = 2 \cdot 3^{2} \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45486.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,3,0,2,-2,0,-3,6,0,3,-2,0,2,-1,0,0,3,0,-6,2,0,-3,-3, 0,2,15,0,4,-2,0,1,3,0,11,0,0,-3,11,0,-2,6,0,-2,14,0,2,3,0,3,7,0,14,-2, 0,-15,20,0,-1,-4,0,2,12,0,16,-1,0,-3,6,0,3,-11,0,0,6,0,-10,3,0,-11,12, 0,-4,2,0,-6,15,0,3,2,0,-14,0,0,1,-2,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(363.207538634\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q - 2 q^{2} + 2 q^{4} + 3 q^{5} + 2 q^{7} - 2 q^{8} - 3 q^{10} + 6 q^{11} + 3 q^{13} - 2 q^{14} + 2 q^{16} - q^{17} + 3 q^{20} - 6 q^{22} + 2 q^{23} - 3 q^{25} - 3 q^{26} + 2 q^{28} + 15 q^{29} + 4 q^{31}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(19\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.