Properties

Label 45.2.e.b.16.2
Level $45$
Weight $2$
Character 45.16
Analytic conductor $0.359$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(16,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.2
Root \(-1.62241 + 0.606458i\) of defining polynomial
Character \(\chi\) \(=\) 45.16
Dual form 45.2.e.b.31.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.285997 + 0.495361i) q^{2} +(0.285997 - 1.70828i) q^{3} +(0.836412 + 1.44871i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(0.764419 + 0.630233i) q^{6} +(-0.714003 + 1.23669i) q^{7} -2.10083 q^{8} +(-2.83641 - 0.977122i) q^{9} +O(q^{10})\) \(q+(-0.285997 + 0.495361i) q^{2} +(0.285997 - 1.70828i) q^{3} +(0.836412 + 1.44871i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(0.764419 + 0.630233i) q^{6} +(-0.714003 + 1.23669i) q^{7} -2.10083 q^{8} +(-2.83641 - 0.977122i) q^{9} +0.571993 q^{10} +(-1.33641 + 2.31473i) q^{11} +(2.71400 - 1.01450i) q^{12} +(-2.33641 - 4.04678i) q^{13} +(-0.408405 - 0.707378i) q^{14} +(-1.62241 + 0.606458i) q^{15} +(-1.07199 + 1.85675i) q^{16} +2.67282 q^{17} +(1.29523 - 1.12559i) q^{18} +4.67282 q^{19} +(0.836412 - 1.44871i) q^{20} +(1.90841 + 1.57340i) q^{21} +(-0.764419 - 1.32401i) q^{22} +(2.95882 + 5.12483i) q^{23} +(-0.600830 + 3.58880i) q^{24} +(-0.500000 + 0.866025i) q^{25} +2.67282 q^{26} +(-2.48040 + 4.56592i) q^{27} -2.38880 q^{28} +(4.74482 - 8.21826i) q^{29} +(0.163588 - 0.977122i) q^{30} +(-3.48040 - 6.02823i) q^{31} +(-2.71400 - 4.70079i) q^{32} +(3.57199 + 2.94497i) q^{33} +(-0.764419 + 1.32401i) q^{34} +1.42801 q^{35} +(-0.956844 - 4.92641i) q^{36} -1.81681 q^{37} +(-1.33641 + 2.31473i) q^{38} +(-7.58123 + 2.83387i) q^{39} +(1.05042 + 1.81937i) q^{40} +(0.735581 + 1.27406i) q^{41} +(-1.32520 + 0.495361i) q^{42} +(-0.235581 + 0.408039i) q^{43} -4.47116 q^{44} +(0.571993 + 2.94497i) q^{45} -3.38485 q^{46} +(-3.47842 + 6.02480i) q^{47} +(2.86525 + 2.36228i) q^{48} +(2.48040 + 4.29618i) q^{49} +(-0.285997 - 0.495361i) q^{50} +(0.764419 - 4.56592i) q^{51} +(3.90841 - 6.76956i) q^{52} -1.14399 q^{53} +(-1.55239 - 2.53453i) q^{54} +2.67282 q^{55} +(1.50000 - 2.59808i) q^{56} +(1.33641 - 7.98247i) q^{57} +(2.71400 + 4.70079i) q^{58} +(0.571993 + 0.990721i) q^{59} +(-2.23558 - 1.84315i) q^{60} +(1.26442 - 2.19004i) q^{61} +3.98153 q^{62} +(3.23360 - 2.81009i) q^{63} -1.18319 q^{64} +(-2.33641 + 4.04678i) q^{65} +(-2.48040 + 0.927175i) q^{66} +(3.29523 + 5.70751i) q^{67} +(2.23558 + 3.87214i) q^{68} +(9.60083 - 3.58880i) q^{69} +(-0.408405 + 0.707378i) q^{70} -12.8745 q^{71} +(5.95882 + 2.05277i) q^{72} -1.71203 q^{73} +(0.519602 - 0.899976i) q^{74} +(1.33641 + 1.10182i) q^{75} +(3.90841 + 6.76956i) q^{76} +(-1.90841 - 3.30545i) q^{77} +(0.764419 - 4.56592i) q^{78} +(0.143987 - 0.249392i) q^{79} +2.14399 q^{80} +(7.09046 + 5.54304i) q^{81} -0.841495 q^{82} +(2.14201 - 3.71007i) q^{83} +(-0.683190 + 4.08074i) q^{84} +(-1.33641 - 2.31473i) q^{85} +(-0.134751 - 0.233396i) q^{86} +(-12.6821 - 10.4559i) q^{87} +(2.80757 - 4.86286i) q^{88} -3.00000 q^{89} +(-1.62241 - 0.558907i) q^{90} +6.67282 q^{91} +(-4.94958 + 8.57293i) q^{92} +(-11.2933 + 4.22143i) q^{93} +(-1.98963 - 3.44615i) q^{94} +(-2.33641 - 4.04678i) q^{95} +(-8.80644 + 3.29186i) q^{96} +(-3.91764 + 6.78555i) q^{97} -2.83754 q^{98} +(6.05239 - 5.25970i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + q^{3} - 5 q^{4} - 3 q^{5} - 4 q^{6} - 5 q^{7} + 6 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} + q^{3} - 5 q^{4} - 3 q^{5} - 4 q^{6} - 5 q^{7} + 6 q^{8} - 7 q^{9} + 2 q^{10} + 2 q^{11} + 17 q^{12} - 4 q^{13} + 9 q^{14} + q^{15} - 5 q^{16} - 4 q^{17} - 23 q^{18} + 8 q^{19} - 5 q^{20} + 4 q^{22} - 3 q^{23} + 15 q^{24} - 3 q^{25} - 4 q^{26} - 2 q^{27} + 10 q^{28} + 7 q^{29} + 11 q^{30} - 8 q^{31} - 17 q^{32} + 20 q^{33} + 4 q^{34} + 10 q^{35} + 10 q^{36} + 12 q^{37} + 2 q^{38} - 14 q^{39} - 3 q^{40} + 13 q^{41} - 33 q^{42} - 10 q^{43} - 44 q^{44} + 2 q^{45} - 6 q^{46} - 13 q^{47} - 10 q^{48} + 2 q^{49} - q^{50} - 4 q^{51} + 12 q^{52} - 4 q^{53} + 5 q^{54} - 4 q^{55} + 9 q^{56} - 2 q^{57} + 17 q^{58} + 2 q^{59} - 22 q^{60} - q^{61} + 84 q^{62} + 33 q^{63} - 30 q^{64} - 4 q^{65} - 2 q^{66} - 11 q^{67} + 22 q^{68} + 39 q^{69} + 9 q^{70} - 20 q^{71} + 15 q^{72} - 16 q^{73} + 16 q^{74} - 2 q^{75} + 12 q^{76} - 4 q^{78} - 2 q^{79} + 10 q^{80} - 19 q^{81} - 58 q^{82} + 15 q^{83} - 27 q^{84} + 2 q^{85} - 28 q^{86} - 26 q^{87} + 24 q^{88} - 18 q^{89} + q^{90} + 20 q^{91} - 39 q^{92} - 42 q^{93} + 31 q^{94} - 4 q^{95} + 13 q^{96} + 18 q^{97} - 80 q^{98} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.285997 + 0.495361i −0.202230 + 0.350273i −0.949247 0.314533i \(-0.898152\pi\)
0.747017 + 0.664805i \(0.231486\pi\)
\(3\) 0.285997 1.70828i 0.165120 0.986273i
\(4\) 0.836412 + 1.44871i 0.418206 + 0.724354i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0.764419 + 0.630233i 0.312073 + 0.257291i
\(7\) −0.714003 + 1.23669i −0.269868 + 0.467425i −0.968828 0.247736i \(-0.920313\pi\)
0.698960 + 0.715161i \(0.253647\pi\)
\(8\) −2.10083 −0.742756
\(9\) −2.83641 0.977122i −0.945471 0.325707i
\(10\) 0.571993 0.180880
\(11\) −1.33641 + 2.31473i −0.402943 + 0.697918i −0.994080 0.108653i \(-0.965346\pi\)
0.591136 + 0.806572i \(0.298679\pi\)
\(12\) 2.71400 1.01450i 0.783465 0.292860i
\(13\) −2.33641 4.04678i −0.648004 1.12238i −0.983599 0.180370i \(-0.942271\pi\)
0.335595 0.942006i \(-0.391063\pi\)
\(14\) −0.408405 0.707378i −0.109151 0.189055i
\(15\) −1.62241 + 0.606458i −0.418904 + 0.156587i
\(16\) −1.07199 + 1.85675i −0.267998 + 0.464187i
\(17\) 2.67282 0.648255 0.324127 0.946013i \(-0.394929\pi\)
0.324127 + 0.946013i \(0.394929\pi\)
\(18\) 1.29523 1.12559i 0.305289 0.265305i
\(19\) 4.67282 1.07202 0.536010 0.844212i \(-0.319931\pi\)
0.536010 + 0.844212i \(0.319931\pi\)
\(20\) 0.836412 1.44871i 0.187027 0.323941i
\(21\) 1.90841 + 1.57340i 0.416448 + 0.343345i
\(22\) −0.764419 1.32401i −0.162975 0.282280i
\(23\) 2.95882 + 5.12483i 0.616957 + 1.06860i 0.990038 + 0.140802i \(0.0449680\pi\)
−0.373081 + 0.927799i \(0.621699\pi\)
\(24\) −0.600830 + 3.58880i −0.122644 + 0.732560i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 2.67282 0.524184
\(27\) −2.48040 + 4.56592i −0.477353 + 0.878712i
\(28\) −2.38880 −0.451441
\(29\) 4.74482 8.21826i 0.881090 1.52609i 0.0309603 0.999521i \(-0.490143\pi\)
0.850130 0.526573i \(-0.176523\pi\)
\(30\) 0.163588 0.977122i 0.0298670 0.178397i
\(31\) −3.48040 6.02823i −0.625098 1.08270i −0.988522 0.151078i \(-0.951726\pi\)
0.363424 0.931624i \(-0.381608\pi\)
\(32\) −2.71400 4.70079i −0.479773 0.830990i
\(33\) 3.57199 + 2.94497i 0.621804 + 0.512653i
\(34\) −0.764419 + 1.32401i −0.131097 + 0.227066i
\(35\) 1.42801 0.241377
\(36\) −0.956844 4.92641i −0.159474 0.821068i
\(37\) −1.81681 −0.298682 −0.149341 0.988786i \(-0.547715\pi\)
−0.149341 + 0.988786i \(0.547715\pi\)
\(38\) −1.33641 + 2.31473i −0.216795 + 0.375499i
\(39\) −7.58123 + 2.83387i −1.21397 + 0.453782i
\(40\) 1.05042 + 1.81937i 0.166085 + 0.287668i
\(41\) 0.735581 + 1.27406i 0.114879 + 0.198975i 0.917731 0.397202i \(-0.130019\pi\)
−0.802853 + 0.596177i \(0.796685\pi\)
\(42\) −1.32520 + 0.495361i −0.204483 + 0.0764358i
\(43\) −0.235581 + 0.408039i −0.0359258 + 0.0622254i −0.883429 0.468565i \(-0.844771\pi\)
0.847503 + 0.530790i \(0.178105\pi\)
\(44\) −4.47116 −0.674053
\(45\) 0.571993 + 2.94497i 0.0852677 + 0.439010i
\(46\) −3.38485 −0.499069
\(47\) −3.47842 + 6.02480i −0.507380 + 0.878808i 0.492584 + 0.870265i \(0.336053\pi\)
−0.999964 + 0.00854274i \(0.997281\pi\)
\(48\) 2.86525 + 2.36228i 0.413563 + 0.340966i
\(49\) 2.48040 + 4.29618i 0.354343 + 0.613739i
\(50\) −0.285997 0.495361i −0.0404460 0.0700546i
\(51\) 0.764419 4.56592i 0.107040 0.639357i
\(52\) 3.90841 6.76956i 0.541998 0.938769i
\(53\) −1.14399 −0.157139 −0.0785693 0.996909i \(-0.525035\pi\)
−0.0785693 + 0.996909i \(0.525035\pi\)
\(54\) −1.55239 2.53453i −0.211254 0.344906i
\(55\) 2.67282 0.360403
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 1.33641 7.98247i 0.177012 1.05730i
\(58\) 2.71400 + 4.70079i 0.356366 + 0.617244i
\(59\) 0.571993 + 0.990721i 0.0744672 + 0.128981i 0.900854 0.434121i \(-0.142941\pi\)
−0.826387 + 0.563102i \(0.809608\pi\)
\(60\) −2.23558 1.84315i −0.288612 0.237949i
\(61\) 1.26442 2.19004i 0.161892 0.280406i −0.773655 0.633607i \(-0.781574\pi\)
0.935547 + 0.353201i \(0.114907\pi\)
\(62\) 3.98153 0.505655
\(63\) 3.23360 2.81009i 0.407396 0.354039i
\(64\) −1.18319 −0.147899
\(65\) −2.33641 + 4.04678i −0.289796 + 0.501942i
\(66\) −2.48040 + 0.927175i −0.305316 + 0.114127i
\(67\) 3.29523 + 5.70751i 0.402577 + 0.697283i 0.994036 0.109051i \(-0.0347813\pi\)
−0.591459 + 0.806335i \(0.701448\pi\)
\(68\) 2.23558 + 3.87214i 0.271104 + 0.469566i
\(69\) 9.60083 3.58880i 1.15580 0.432040i
\(70\) −0.408405 + 0.707378i −0.0488137 + 0.0845479i
\(71\) −12.8745 −1.52792 −0.763960 0.645263i \(-0.776748\pi\)
−0.763960 + 0.645263i \(0.776748\pi\)
\(72\) 5.95882 + 2.05277i 0.702254 + 0.241921i
\(73\) −1.71203 −0.200378 −0.100189 0.994968i \(-0.531945\pi\)
−0.100189 + 0.994968i \(0.531945\pi\)
\(74\) 0.519602 0.899976i 0.0604025 0.104620i
\(75\) 1.33641 + 1.10182i 0.154316 + 0.127227i
\(76\) 3.90841 + 6.76956i 0.448325 + 0.776521i
\(77\) −1.90841 3.30545i −0.217483 0.376692i
\(78\) 0.764419 4.56592i 0.0865534 0.516989i
\(79\) 0.143987 0.249392i 0.0161998 0.0280588i −0.857812 0.513964i \(-0.828177\pi\)
0.874012 + 0.485905i \(0.161510\pi\)
\(80\) 2.14399 0.239705
\(81\) 7.09046 + 5.54304i 0.787829 + 0.615894i
\(82\) −0.841495 −0.0929276
\(83\) 2.14201 3.71007i 0.235116 0.407233i −0.724190 0.689600i \(-0.757786\pi\)
0.959306 + 0.282367i \(0.0911196\pi\)
\(84\) −0.683190 + 4.08074i −0.0745421 + 0.445245i
\(85\) −1.33641 2.31473i −0.144954 0.251068i
\(86\) −0.134751 0.233396i −0.0145306 0.0251677i
\(87\) −12.6821 10.4559i −1.35966 1.12098i
\(88\) 2.80757 4.86286i 0.299288 0.518383i
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) −1.62241 0.558907i −0.171017 0.0589140i
\(91\) 6.67282 0.699502
\(92\) −4.94958 + 8.57293i −0.516030 + 0.893790i
\(93\) −11.2933 + 4.22143i −1.17106 + 0.437742i
\(94\) −1.98963 3.44615i −0.205215 0.355443i
\(95\) −2.33641 4.04678i −0.239711 0.415191i
\(96\) −8.80644 + 3.29186i −0.898804 + 0.335974i
\(97\) −3.91764 + 6.78555i −0.397776 + 0.688968i −0.993451 0.114257i \(-0.963551\pi\)
0.595675 + 0.803225i \(0.296885\pi\)
\(98\) −2.83754 −0.286635
\(99\) 6.05239 5.25970i 0.608288 0.528620i
\(100\) −1.67282 −0.167282
\(101\) 2.10083 3.63875i 0.209040 0.362069i −0.742372 0.669988i \(-0.766299\pi\)
0.951413 + 0.307919i \(0.0996326\pi\)
\(102\) 2.04316 + 1.68450i 0.202303 + 0.166790i
\(103\) 0.908405 + 1.57340i 0.0895078 + 0.155032i 0.907303 0.420477i \(-0.138137\pi\)
−0.817795 + 0.575509i \(0.804804\pi\)
\(104\) 4.90841 + 8.50161i 0.481309 + 0.833651i
\(105\) 0.408405 2.43943i 0.0398563 0.238064i
\(106\) 0.327176 0.566686i 0.0317782 0.0550414i
\(107\) 11.9176 1.15212 0.576061 0.817407i \(-0.304589\pi\)
0.576061 + 0.817407i \(0.304589\pi\)
\(108\) −8.68932 + 0.225617i −0.836130 + 0.0217100i
\(109\) −16.6521 −1.59498 −0.797491 0.603331i \(-0.793840\pi\)
−0.797491 + 0.603331i \(0.793840\pi\)
\(110\) −0.764419 + 1.32401i −0.0728845 + 0.126240i
\(111\) −0.519602 + 3.10361i −0.0493184 + 0.294582i
\(112\) −1.53081 2.65145i −0.144648 0.250538i
\(113\) −10.0616 17.4272i −0.946518 1.63942i −0.752682 0.658384i \(-0.771240\pi\)
−0.193836 0.981034i \(-0.562093\pi\)
\(114\) 3.57199 + 2.94497i 0.334548 + 0.275821i
\(115\) 2.95882 5.12483i 0.275911 0.477893i
\(116\) 15.8745 1.47391
\(117\) 2.67282 + 13.7613i 0.247103 + 1.27223i
\(118\) −0.654353 −0.0602380
\(119\) −1.90841 + 3.30545i −0.174943 + 0.303011i
\(120\) 3.40841 1.27406i 0.311143 0.116306i
\(121\) 1.92801 + 3.33941i 0.175273 + 0.303582i
\(122\) 0.723239 + 1.25269i 0.0654790 + 0.113413i
\(123\) 2.38683 0.892198i 0.215213 0.0804468i
\(124\) 5.82209 10.0842i 0.522839 0.905584i
\(125\) 1.00000 0.0894427
\(126\) 0.467210 + 2.40548i 0.0416224 + 0.214297i
\(127\) 2.18714 0.194078 0.0970388 0.995281i \(-0.469063\pi\)
0.0970388 + 0.995281i \(0.469063\pi\)
\(128\) 5.76640 9.98769i 0.509682 0.882795i
\(129\) 0.629668 + 0.519136i 0.0554391 + 0.0457074i
\(130\) −1.33641 2.31473i −0.117211 0.203016i
\(131\) 3.00000 + 5.19615i 0.262111 + 0.453990i 0.966803 0.255524i \(-0.0822479\pi\)
−0.704692 + 0.709514i \(0.748915\pi\)
\(132\) −1.27874 + 7.63798i −0.111300 + 0.664801i
\(133\) −3.33641 + 5.77883i −0.289304 + 0.501089i
\(134\) −3.76970 −0.325653
\(135\) 5.19440 0.134872i 0.447063 0.0116079i
\(136\) −5.61515 −0.481495
\(137\) 5.10083 8.83490i 0.435793 0.754816i −0.561567 0.827431i \(-0.689801\pi\)
0.997360 + 0.0726153i \(0.0231345\pi\)
\(138\) −0.968056 + 5.78226i −0.0824064 + 0.492218i
\(139\) −4.00000 6.92820i −0.339276 0.587643i 0.645021 0.764165i \(-0.276849\pi\)
−0.984297 + 0.176522i \(0.943515\pi\)
\(140\) 1.19440 + 2.06876i 0.100945 + 0.174843i
\(141\) 9.29721 + 7.66518i 0.782966 + 0.645524i
\(142\) 3.68206 6.37751i 0.308992 0.535189i
\(143\) 12.4896 1.04444
\(144\) 4.85488 4.21903i 0.404574 0.351586i
\(145\) −9.48963 −0.788071
\(146\) 0.489634 0.848071i 0.0405224 0.0701868i
\(147\) 8.04844 3.00851i 0.663824 0.248138i
\(148\) −1.51960 2.63203i −0.124910 0.216351i
\(149\) 10.0381 + 17.3865i 0.822351 + 1.42435i 0.903927 + 0.427687i \(0.140671\pi\)
−0.0815762 + 0.996667i \(0.525995\pi\)
\(150\) −0.928007 + 0.346890i −0.0757714 + 0.0283234i
\(151\) −1.51960 + 2.63203i −0.123663 + 0.214191i −0.921210 0.389066i \(-0.872798\pi\)
0.797546 + 0.603258i \(0.206131\pi\)
\(152\) −9.81681 −0.796248
\(153\) −7.58123 2.61168i −0.612906 0.211141i
\(154\) 2.18319 0.175926
\(155\) −3.48040 + 6.02823i −0.279552 + 0.484199i
\(156\) −10.4465 8.61270i −0.836388 0.689568i
\(157\) −0.100830 0.174643i −0.00804714 0.0139381i 0.861974 0.506953i \(-0.169228\pi\)
−0.870021 + 0.493015i \(0.835895\pi\)
\(158\) 0.0823593 + 0.142651i 0.00655216 + 0.0113487i
\(159\) −0.327176 + 1.95424i −0.0259468 + 0.154982i
\(160\) −2.71400 + 4.70079i −0.214561 + 0.371630i
\(161\) −8.45043 −0.665987
\(162\) −4.77365 + 1.92705i −0.375054 + 0.151403i
\(163\) 17.8168 1.39552 0.697760 0.716331i \(-0.254180\pi\)
0.697760 + 0.716331i \(0.254180\pi\)
\(164\) −1.23050 + 2.13129i −0.0960858 + 0.166425i
\(165\) 0.764419 4.56592i 0.0595099 0.355456i
\(166\) 1.22522 + 2.12214i 0.0950952 + 0.164710i
\(167\) −7.05042 12.2117i −0.545578 0.944968i −0.998570 0.0534538i \(-0.982977\pi\)
0.452993 0.891514i \(-0.350356\pi\)
\(168\) −4.00924 3.30545i −0.309319 0.255021i
\(169\) −4.41764 + 7.65158i −0.339819 + 0.588583i
\(170\) 1.52884 0.117256
\(171\) −13.2541 4.56592i −1.01356 0.349165i
\(172\) −0.788172 −0.0600976
\(173\) −2.18319 + 3.78140i −0.165985 + 0.287494i −0.937005 0.349317i \(-0.886414\pi\)
0.771020 + 0.636811i \(0.219747\pi\)
\(174\) 8.80644 3.29186i 0.667615 0.249555i
\(175\) −0.714003 1.23669i −0.0539736 0.0934850i
\(176\) −2.86525 4.96276i −0.215976 0.374082i
\(177\) 1.85601 0.693779i 0.139507 0.0521476i
\(178\) 0.857990 1.48608i 0.0643091 0.111387i
\(179\) −15.1625 −1.13330 −0.566648 0.823960i \(-0.691760\pi\)
−0.566648 + 0.823960i \(0.691760\pi\)
\(180\) −3.78797 + 3.29186i −0.282339 + 0.245360i
\(181\) 3.20166 0.237978 0.118989 0.992896i \(-0.462035\pi\)
0.118989 + 0.992896i \(0.462035\pi\)
\(182\) −1.90841 + 3.30545i −0.141460 + 0.245017i
\(183\) −3.37957 2.78632i −0.249825 0.205971i
\(184\) −6.21598 10.7664i −0.458248 0.793709i
\(185\) 0.908405 + 1.57340i 0.0667873 + 0.115679i
\(186\) 1.13870 6.80155i 0.0834938 0.498714i
\(187\) −3.57199 + 6.18687i −0.261210 + 0.452429i
\(188\) −11.6376 −0.848757
\(189\) −3.87562 6.32757i −0.281910 0.460263i
\(190\) 2.67282 0.193907
\(191\) 1.41877 2.45738i 0.102659 0.177810i −0.810121 0.586263i \(-0.800598\pi\)
0.912779 + 0.408453i \(0.133932\pi\)
\(192\) −0.338388 + 2.02121i −0.0244211 + 0.145869i
\(193\) 9.39409 + 16.2710i 0.676201 + 1.17121i 0.976116 + 0.217249i \(0.0697083\pi\)
−0.299915 + 0.953966i \(0.596958\pi\)
\(194\) −2.24086 3.88129i −0.160885 0.278660i
\(195\) 6.24482 + 5.14860i 0.447201 + 0.368699i
\(196\) −4.14927 + 7.18675i −0.296376 + 0.513339i
\(197\) 5.83528 0.415747 0.207873 0.978156i \(-0.433346\pi\)
0.207873 + 0.978156i \(0.433346\pi\)
\(198\) 0.874485 + 4.50237i 0.0621469 + 0.319970i
\(199\) 13.0761 0.926943 0.463472 0.886112i \(-0.346604\pi\)
0.463472 + 0.886112i \(0.346604\pi\)
\(200\) 1.05042 1.81937i 0.0742756 0.128649i
\(201\) 10.6924 3.99684i 0.754186 0.281915i
\(202\) 1.20166 + 2.08134i 0.0845486 + 0.146442i
\(203\) 6.77563 + 11.7357i 0.475556 + 0.823687i
\(204\) 7.25405 2.71157i 0.507885 0.189848i
\(205\) 0.735581 1.27406i 0.0513752 0.0889845i
\(206\) −1.03920 −0.0724047
\(207\) −3.38485 17.4272i −0.235263 1.21128i
\(208\) 10.0185 0.694656
\(209\) −6.24482 + 10.8163i −0.431963 + 0.748182i
\(210\) 1.09159 + 0.899976i 0.0753272 + 0.0621043i
\(211\) −4.19243 7.26149i −0.288618 0.499902i 0.684862 0.728673i \(-0.259863\pi\)
−0.973480 + 0.228771i \(0.926529\pi\)
\(212\) −0.956844 1.65730i −0.0657163 0.113824i
\(213\) −3.68206 + 21.9932i −0.252291 + 1.50695i
\(214\) −3.40841 + 5.90353i −0.232994 + 0.403557i
\(215\) 0.471163 0.0321330
\(216\) 5.21090 9.59222i 0.354557 0.652668i
\(217\) 9.94006 0.674776
\(218\) 4.76244 8.24879i 0.322553 0.558679i
\(219\) −0.489634 + 2.92461i −0.0330864 + 0.197627i
\(220\) 2.23558 + 3.87214i 0.150723 + 0.261060i
\(221\) −6.24482 10.8163i −0.420072 0.727586i
\(222\) −1.38880 1.14501i −0.0932104 0.0768482i
\(223\) −4.58321 + 7.93834i −0.306914 + 0.531591i −0.977686 0.210073i \(-0.932630\pi\)
0.670772 + 0.741664i \(0.265963\pi\)
\(224\) 7.75123 0.517901
\(225\) 2.26442 1.96784i 0.150961 0.131190i
\(226\) 11.5104 0.765658
\(227\) 1.33641 2.31473i 0.0887008 0.153634i −0.818261 0.574846i \(-0.805062\pi\)
0.906962 + 0.421212i \(0.138395\pi\)
\(228\) 12.6821 4.74056i 0.839890 0.313951i
\(229\) −1.27365 2.20603i −0.0841654 0.145779i 0.820870 0.571115i \(-0.193489\pi\)
−0.905035 + 0.425336i \(0.860156\pi\)
\(230\) 1.69243 + 2.93137i 0.111595 + 0.193289i
\(231\) −6.19243 + 2.31473i −0.407432 + 0.152298i
\(232\) −9.96806 + 17.2652i −0.654435 + 1.13351i
\(233\) −6.22013 −0.407494 −0.203747 0.979024i \(-0.565312\pi\)
−0.203747 + 0.979024i \(0.565312\pi\)
\(234\) −7.58123 2.61168i −0.495600 0.170731i
\(235\) 6.95684 0.453814
\(236\) −0.956844 + 1.65730i −0.0622852 + 0.107881i
\(237\) −0.384851 0.317294i −0.0249987 0.0206105i
\(238\) −1.09159 1.89070i −0.0707576 0.122556i
\(239\) −4.06163 7.03494i −0.262725 0.455053i 0.704240 0.709962i \(-0.251288\pi\)
−0.966965 + 0.254909i \(0.917954\pi\)
\(240\) 0.613173 3.66252i 0.0395801 0.236415i
\(241\) 13.1821 22.8320i 0.849131 1.47074i −0.0328536 0.999460i \(-0.510460\pi\)
0.881985 0.471278i \(-0.156207\pi\)
\(242\) −2.20561 −0.141782
\(243\) 11.4969 10.5272i 0.737526 0.675319i
\(244\) 4.23030 0.270817
\(245\) 2.48040 4.29618i 0.158467 0.274473i
\(246\) −0.240665 + 1.43751i −0.0153442 + 0.0916520i
\(247\) −10.9176 18.9099i −0.694673 1.20321i
\(248\) 7.31173 + 12.6643i 0.464295 + 0.804183i
\(249\) −5.72522 4.72021i −0.362821 0.299131i
\(250\) −0.285997 + 0.495361i −0.0180880 + 0.0313294i
\(251\) −0.549569 −0.0346885 −0.0173443 0.999850i \(-0.505521\pi\)
−0.0173443 + 0.999850i \(0.505521\pi\)
\(252\) 6.77563 + 2.33415i 0.426825 + 0.147038i
\(253\) −15.8168 −0.994394
\(254\) −0.625515 + 1.08342i −0.0392483 + 0.0679801i
\(255\) −4.33641 + 1.62095i −0.271557 + 0.101508i
\(256\) 2.11515 + 3.66355i 0.132197 + 0.228972i
\(257\) 9.00000 + 15.5885i 0.561405 + 0.972381i 0.997374 + 0.0724199i \(0.0230722\pi\)
−0.435970 + 0.899961i \(0.643595\pi\)
\(258\) −0.437242 + 0.163441i −0.0272215 + 0.0101754i
\(259\) 1.29721 2.24683i 0.0806046 0.139611i
\(260\) −7.81681 −0.484778
\(261\) −21.4885 + 18.6741i −1.33010 + 1.15590i
\(262\) −3.43196 −0.212027
\(263\) −5.94761 + 10.3016i −0.366745 + 0.635221i −0.989055 0.147550i \(-0.952861\pi\)
0.622309 + 0.782771i \(0.286195\pi\)
\(264\) −7.50415 6.18687i −0.461849 0.380776i
\(265\) 0.571993 + 0.990721i 0.0351373 + 0.0608595i
\(266\) −1.90841 3.30545i −0.117012 0.202670i
\(267\) −0.857990 + 5.12483i −0.0525081 + 0.313634i
\(268\) −5.51234 + 9.54766i −0.336720 + 0.583216i
\(269\) 28.5737 1.74217 0.871084 0.491134i \(-0.163417\pi\)
0.871084 + 0.491134i \(0.163417\pi\)
\(270\) −1.41877 + 2.61168i −0.0863437 + 0.158942i
\(271\) −23.3641 −1.41927 −0.709635 0.704570i \(-0.751140\pi\)
−0.709635 + 0.704570i \(0.751140\pi\)
\(272\) −2.86525 + 4.96276i −0.173731 + 0.300911i
\(273\) 1.90841 11.3990i 0.115502 0.689900i
\(274\) 2.91764 + 5.05350i 0.176261 + 0.305293i
\(275\) −1.33641 2.31473i −0.0805887 0.139584i
\(276\) 13.2294 + 10.9071i 0.796314 + 0.656529i
\(277\) 7.53807 13.0563i 0.452919 0.784479i −0.545647 0.838015i \(-0.683716\pi\)
0.998566 + 0.0535366i \(0.0170494\pi\)
\(278\) 4.57595 0.274447
\(279\) 3.98153 + 20.4993i 0.238368 + 1.22726i
\(280\) −3.00000 −0.179284
\(281\) −3.32605 + 5.76088i −0.198415 + 0.343665i −0.948015 0.318226i \(-0.896913\pi\)
0.749599 + 0.661892i \(0.230246\pi\)
\(282\) −6.45600 + 2.41326i −0.384449 + 0.143707i
\(283\) −13.4485 23.2934i −0.799428 1.38465i −0.919989 0.391943i \(-0.871803\pi\)
0.120562 0.992706i \(-0.461530\pi\)
\(284\) −10.7684 18.6514i −0.638985 1.10675i
\(285\) −7.58123 + 2.83387i −0.449073 + 0.167864i
\(286\) −3.57199 + 6.18687i −0.211216 + 0.365838i
\(287\) −2.10083 −0.124008
\(288\) 3.10478 + 15.9853i 0.182951 + 0.941943i
\(289\) −9.85601 −0.579765
\(290\) 2.71400 4.70079i 0.159372 0.276040i
\(291\) 10.4712 + 8.63306i 0.613830 + 0.506079i
\(292\) −1.43196 2.48023i −0.0837991 0.145144i
\(293\) −6.19243 10.7256i −0.361765 0.626596i 0.626486 0.779433i \(-0.284493\pi\)
−0.988251 + 0.152837i \(0.951159\pi\)
\(294\) −0.811528 + 4.84730i −0.0473292 + 0.282701i
\(295\) 0.571993 0.990721i 0.0333027 0.0576820i
\(296\) 3.81681 0.221848
\(297\) −7.25405 11.8434i −0.420923 0.687224i
\(298\) −11.4834 −0.665217
\(299\) 13.8260 23.9474i 0.799581 1.38491i
\(300\) −0.478422 + 2.85764i −0.0276217 + 0.164986i
\(301\) −0.336412 0.582682i −0.0193905 0.0335853i
\(302\) −0.869202 1.50550i −0.0500169 0.0866319i
\(303\) −5.61515 4.62947i −0.322582 0.265956i
\(304\) −5.00924 + 8.67625i −0.287299 + 0.497617i
\(305\) −2.52884 −0.144801
\(306\) 3.46193 3.00851i 0.197905 0.171985i
\(307\) −2.49359 −0.142317 −0.0711583 0.997465i \(-0.522670\pi\)
−0.0711583 + 0.997465i \(0.522670\pi\)
\(308\) 3.19243 5.52944i 0.181905 0.315069i
\(309\) 2.94761 1.10182i 0.167684 0.0626802i
\(310\) −1.99076 3.44811i −0.113068 0.195839i
\(311\) 12.1101 + 20.9752i 0.686699 + 1.18940i 0.972900 + 0.231228i \(0.0742742\pi\)
−0.286201 + 0.958170i \(0.592392\pi\)
\(312\) 15.9269 5.95348i 0.901682 0.337049i
\(313\) 17.5420 30.3837i 0.991534 1.71739i 0.383315 0.923618i \(-0.374782\pi\)
0.608219 0.793770i \(-0.291884\pi\)
\(314\) 0.115349 0.00650950
\(315\) −4.05042 1.39534i −0.228215 0.0786183i
\(316\) 0.481728 0.0270993
\(317\) 5.23558 9.06829i 0.294060 0.509326i −0.680706 0.732557i \(-0.738327\pi\)
0.974766 + 0.223231i \(0.0716603\pi\)
\(318\) −0.874485 0.720978i −0.0490387 0.0404304i
\(319\) 12.6821 + 21.9660i 0.710059 + 1.22986i
\(320\) 0.591595 + 1.02467i 0.0330712 + 0.0572809i
\(321\) 3.40841 20.3586i 0.190239 1.13631i
\(322\) 2.41679 4.18601i 0.134683 0.233277i
\(323\) 12.4896 0.694942
\(324\) −2.09970 + 14.9083i −0.116650 + 0.828238i
\(325\) 4.67282 0.259202
\(326\) −5.09555 + 8.82575i −0.282216 + 0.488813i
\(327\) −4.76244 + 28.4464i −0.263364 + 1.57309i
\(328\) −1.54533 2.67659i −0.0853267 0.147790i
\(329\) −4.96721 8.60346i −0.273851 0.474324i
\(330\) 2.04316 + 1.68450i 0.112472 + 0.0927287i
\(331\) −8.38880 + 14.5298i −0.461090 + 0.798632i −0.999016 0.0443606i \(-0.985875\pi\)
0.537925 + 0.842993i \(0.319208\pi\)
\(332\) 7.16641 0.393308
\(333\) 5.15322 + 1.77525i 0.282395 + 0.0972829i
\(334\) 8.06558 0.441329
\(335\) 3.29523 5.70751i 0.180038 0.311835i
\(336\) −4.96721 + 1.85675i −0.270984 + 0.101294i
\(337\) 13.5905 + 23.5394i 0.740320 + 1.28227i 0.952350 + 0.305008i \(0.0986592\pi\)
−0.212030 + 0.977263i \(0.568007\pi\)
\(338\) −2.52686 4.37665i −0.137443 0.238058i
\(339\) −32.6481 + 12.2039i −1.77320 + 0.662825i
\(340\) 2.23558 3.87214i 0.121241 0.209996i
\(341\) 18.6050 1.00752
\(342\) 6.05239 5.25970i 0.327276 0.284412i
\(343\) −17.0801 −0.922239
\(344\) 0.494917 0.857221i 0.0266841 0.0462182i
\(345\) −7.90841 6.52016i −0.425774 0.351034i
\(346\) −1.24877 2.16293i −0.0671343 0.116280i
\(347\) 11.7829 + 20.4086i 0.632539 + 1.09559i 0.987031 + 0.160530i \(0.0513204\pi\)
−0.354492 + 0.935059i \(0.615346\pi\)
\(348\) 4.54005 27.1180i 0.243372 1.45368i
\(349\) 5.35601 9.27689i 0.286701 0.496580i −0.686319 0.727300i \(-0.740775\pi\)
0.973020 + 0.230720i \(0.0741081\pi\)
\(350\) 0.816810 0.0436603
\(351\) 24.2725 0.630233i 1.29557 0.0336393i
\(352\) 14.5081 0.773285
\(353\) −13.6336 + 23.6141i −0.725644 + 1.25685i 0.233064 + 0.972461i \(0.425125\pi\)
−0.958708 + 0.284392i \(0.908208\pi\)
\(354\) −0.187143 + 1.11781i −0.00994652 + 0.0594112i
\(355\) 6.43724 + 11.1496i 0.341653 + 0.591761i
\(356\) −2.50924 4.34612i −0.132989 0.230344i
\(357\) 5.10083 + 4.20543i 0.269965 + 0.222575i
\(358\) 4.33641 7.51089i 0.229186 0.396963i
\(359\) −10.6807 −0.563707 −0.281854 0.959457i \(-0.590949\pi\)
−0.281854 + 0.959457i \(0.590949\pi\)
\(360\) −1.20166 6.18687i −0.0633331 0.326077i
\(361\) 2.83528 0.149225
\(362\) −0.915664 + 1.58598i −0.0481262 + 0.0833571i
\(363\) 6.25603 2.33851i 0.328356 0.122740i
\(364\) 5.58123 + 9.66697i 0.292536 + 0.506687i
\(365\) 0.856013 + 1.48266i 0.0448058 + 0.0776059i
\(366\) 2.34678 0.877227i 0.122668 0.0458534i
\(367\) 4.23558 7.33624i 0.221096 0.382949i −0.734045 0.679100i \(-0.762370\pi\)
0.955141 + 0.296152i \(0.0957034\pi\)
\(368\) −12.6873 −0.661373
\(369\) −0.841495 4.33252i −0.0438065 0.225542i
\(370\) −1.03920 −0.0540256
\(371\) 0.816810 1.41476i 0.0424067 0.0734505i
\(372\) −15.5614 12.8298i −0.806822 0.665193i
\(373\) −5.06163 8.76700i −0.262081 0.453938i 0.704714 0.709492i \(-0.251075\pi\)
−0.966795 + 0.255554i \(0.917742\pi\)
\(374\) −2.04316 3.53885i −0.105649 0.182990i
\(375\) 0.285997 1.70828i 0.0147688 0.0882150i
\(376\) 7.30757 12.6571i 0.376859 0.652740i
\(377\) −44.3434 −2.28380
\(378\) 4.24284 0.110165i 0.218228 0.00566626i
\(379\) 11.9216 0.612371 0.306186 0.951972i \(-0.400947\pi\)
0.306186 + 0.951972i \(0.400947\pi\)
\(380\) 3.90841 6.76956i 0.200497 0.347271i
\(381\) 0.625515 3.73624i 0.0320461 0.191414i
\(382\) 0.811528 + 1.40561i 0.0415214 + 0.0719171i
\(383\) −4.90841 8.50161i −0.250808 0.434412i 0.712941 0.701224i \(-0.247363\pi\)
−0.963748 + 0.266813i \(0.914030\pi\)
\(384\) −15.4126 12.7070i −0.786519 0.648453i
\(385\) −1.90841 + 3.30545i −0.0972613 + 0.168462i
\(386\) −10.7467 −0.546993
\(387\) 1.06691 0.927175i 0.0542341 0.0471309i
\(388\) −13.1070 −0.665409
\(389\) −4.61007 + 7.98487i −0.233740 + 0.404849i −0.958906 0.283725i \(-0.908430\pi\)
0.725166 + 0.688574i \(0.241763\pi\)
\(390\) −4.33641 + 1.62095i −0.219583 + 0.0820802i
\(391\) 7.90841 + 13.6978i 0.399945 + 0.692725i
\(392\) −5.21090 9.02554i −0.263190 0.455858i
\(393\) 9.73445 3.63875i 0.491038 0.183550i
\(394\) −1.66887 + 2.89057i −0.0840765 + 0.145625i
\(395\) −0.287973 −0.0144895
\(396\) 12.6821 + 4.36887i 0.637297 + 0.219544i
\(397\) −22.9793 −1.15330 −0.576648 0.816993i \(-0.695640\pi\)
−0.576648 + 0.816993i \(0.695640\pi\)
\(398\) −3.73973 + 6.47741i −0.187456 + 0.324683i
\(399\) 8.91764 + 7.35224i 0.446440 + 0.368072i
\(400\) −1.07199 1.85675i −0.0535997 0.0928373i
\(401\) 5.53279 + 9.58307i 0.276294 + 0.478556i 0.970461 0.241259i \(-0.0775602\pi\)
−0.694167 + 0.719814i \(0.744227\pi\)
\(402\) −1.07812 + 6.43969i −0.0537718 + 0.321183i
\(403\) −16.2633 + 28.1688i −0.810132 + 1.40319i
\(404\) 7.02864 0.349688
\(405\) 1.25518 8.91204i 0.0623705 0.442843i
\(406\) −7.75123 −0.384687
\(407\) 2.42801 4.20543i 0.120352 0.208455i
\(408\) −1.60591 + 9.59222i −0.0795046 + 0.474886i
\(409\) 8.81681 + 15.2712i 0.435963 + 0.755110i 0.997374 0.0724270i \(-0.0230744\pi\)
−0.561411 + 0.827537i \(0.689741\pi\)
\(410\) 0.420748 + 0.728756i 0.0207792 + 0.0359907i
\(411\) −13.6336 11.2404i −0.672497 0.554447i
\(412\) −1.51960 + 2.63203i −0.0748654 + 0.129671i
\(413\) −1.63362 −0.0803852
\(414\) 9.60083 + 3.30741i 0.471855 + 0.162550i
\(415\) −4.28402 −0.210294
\(416\) −12.6821 + 21.9660i −0.621789 + 1.07697i
\(417\) −12.9793 + 4.85166i −0.635597 + 0.237587i
\(418\) −3.57199 6.18687i −0.174712 0.302610i
\(419\) −18.5173 32.0730i −0.904631 1.56687i −0.821411 0.570336i \(-0.806813\pi\)
−0.0832199 0.996531i \(-0.526520\pi\)
\(420\) 3.87562 1.44871i 0.189111 0.0706897i
\(421\) −2.52884 + 4.38007i −0.123248 + 0.213472i −0.921047 0.389452i \(-0.872664\pi\)
0.797799 + 0.602924i \(0.205998\pi\)
\(422\) 4.79608 0.233469
\(423\) 15.7532 13.6900i 0.765947 0.665630i
\(424\) 2.40332 0.116716
\(425\) −1.33641 + 2.31473i −0.0648255 + 0.112281i
\(426\) −9.84150 8.11392i −0.476822 0.393121i
\(427\) 1.80560 + 3.12739i 0.0873790 + 0.151345i
\(428\) 9.96806 + 17.2652i 0.481824 + 0.834544i
\(429\) 3.57199 21.3357i 0.172457 1.03010i
\(430\) −0.134751 + 0.233396i −0.00649827 + 0.0112553i
\(431\) −5.23030 −0.251935 −0.125967 0.992034i \(-0.540203\pi\)
−0.125967 + 0.992034i \(0.540203\pi\)
\(432\) −5.81879 9.50011i −0.279957 0.457074i
\(433\) 34.3434 1.65044 0.825219 0.564813i \(-0.191052\pi\)
0.825219 + 0.564813i \(0.191052\pi\)
\(434\) −2.84283 + 4.92392i −0.136460 + 0.236356i
\(435\) −2.71400 + 16.2109i −0.130127 + 0.777254i
\(436\) −13.9280 24.1240i −0.667031 1.15533i
\(437\) 13.8260 + 23.9474i 0.661389 + 1.14556i
\(438\) −1.30871 1.07898i −0.0625324 0.0515554i
\(439\) 9.77365 16.9285i 0.466471 0.807952i −0.532796 0.846244i \(-0.678859\pi\)
0.999267 + 0.0382924i \(0.0121918\pi\)
\(440\) −5.61515 −0.267692
\(441\) −2.83754 14.6094i −0.135121 0.695685i
\(442\) 7.14399 0.339805
\(443\) −5.25208 + 9.09686i −0.249534 + 0.432205i −0.963396 0.268081i \(-0.913611\pi\)
0.713863 + 0.700286i \(0.246944\pi\)
\(444\) −4.93083 + 1.84315i −0.234007 + 0.0874719i
\(445\) 1.50000 + 2.59808i 0.0711068 + 0.123161i
\(446\) −2.62156 4.54068i −0.124135 0.215007i
\(447\) 32.5717 12.1753i 1.54059 0.575873i
\(448\) 0.844801 1.46324i 0.0399131 0.0691315i
\(449\) 22.8560 1.07864 0.539321 0.842100i \(-0.318681\pi\)
0.539321 + 0.842100i \(0.318681\pi\)
\(450\) 0.327176 + 1.68450i 0.0154232 + 0.0794081i
\(451\) −3.93216 −0.185158
\(452\) 16.8313 29.1527i 0.791679 1.37123i
\(453\) 4.06163 + 3.34865i 0.190832 + 0.157333i
\(454\) 0.764419 + 1.32401i 0.0358759 + 0.0621390i
\(455\) −3.33641 5.77883i −0.156413 0.270916i
\(456\) −2.80757 + 16.7698i −0.131477 + 0.785319i
\(457\) 7.01319 12.1472i 0.328063 0.568222i −0.654064 0.756439i \(-0.726937\pi\)
0.982127 + 0.188217i \(0.0602708\pi\)
\(458\) 1.45704 0.0680832
\(459\) −6.62967 + 12.2039i −0.309446 + 0.569629i
\(460\) 9.89917 0.461551
\(461\) 12.0513 20.8734i 0.561283 0.972171i −0.436102 0.899897i \(-0.643641\pi\)
0.997385 0.0722736i \(-0.0230255\pi\)
\(462\) 0.624385 3.72949i 0.0290490 0.173512i
\(463\) 16.9700 + 29.3930i 0.788664 + 1.36601i 0.926785 + 0.375591i \(0.122560\pi\)
−0.138121 + 0.990415i \(0.544106\pi\)
\(464\) 10.1728 + 17.6198i 0.472261 + 0.817981i
\(465\) 9.30249 + 7.66953i 0.431393 + 0.355666i
\(466\) 1.77894 3.08121i 0.0824077 0.142734i
\(467\) −27.3720 −1.26663 −0.633313 0.773896i \(-0.718305\pi\)
−0.633313 + 0.773896i \(0.718305\pi\)
\(468\) −17.7005 + 15.3823i −0.818207 + 0.711045i
\(469\) −9.41123 −0.434570
\(470\) −1.98963 + 3.44615i −0.0917750 + 0.158959i
\(471\) −0.327176 + 0.122299i −0.0150755 + 0.00563523i
\(472\) −1.20166 2.08134i −0.0553109 0.0958013i
\(473\) −0.629668 1.09062i −0.0289521 0.0501466i
\(474\) 0.267241 0.0998949i 0.0122748 0.00458832i
\(475\) −2.33641 + 4.04678i −0.107202 + 0.185679i
\(476\) −6.38485 −0.292649
\(477\) 3.24482 + 1.11781i 0.148570 + 0.0511812i
\(478\) 4.64645 0.212524
\(479\) −2.61515 + 4.52957i −0.119489 + 0.206961i −0.919565 0.392937i \(-0.871459\pi\)
0.800076 + 0.599898i \(0.204792\pi\)
\(480\) 7.25405 + 5.98068i 0.331101 + 0.272979i
\(481\) 4.24482 + 7.35224i 0.193547 + 0.335233i
\(482\) 7.54005 + 13.0597i 0.343440 + 0.594855i
\(483\) −2.41679 + 14.4357i −0.109968 + 0.656846i
\(484\) −3.22522 + 5.58624i −0.146601 + 0.253920i
\(485\) 7.83528 0.355782
\(486\) 1.92668 + 8.70585i 0.0873958 + 0.394905i
\(487\) −24.0185 −1.08838 −0.544190 0.838962i \(-0.683163\pi\)
−0.544190 + 0.838962i \(0.683163\pi\)
\(488\) −2.65633 + 4.60090i −0.120246 + 0.208273i
\(489\) 5.09555 30.4360i 0.230429 1.37636i
\(490\) 1.41877 + 2.45738i 0.0640935 + 0.111013i
\(491\) −7.38880 12.7978i −0.333452 0.577556i 0.649734 0.760161i \(-0.274880\pi\)
−0.983186 + 0.182606i \(0.941547\pi\)
\(492\) 3.28890 + 2.71157i 0.148275 + 0.122247i
\(493\) 12.6821 21.9660i 0.571171 0.989298i
\(494\) 12.4896 0.561935
\(495\) −7.58123 2.61168i −0.340751 0.117386i
\(496\) 14.9239 0.670101
\(497\) 9.19243 15.9217i 0.412337 0.714188i
\(498\) 3.97560 1.48608i 0.178151 0.0665929i
\(499\) −12.4280 21.5259i −0.556354 0.963633i −0.997797 0.0663440i \(-0.978867\pi\)
0.441443 0.897289i \(-0.354467\pi\)
\(500\) 0.836412 + 1.44871i 0.0374055 + 0.0647882i
\(501\) −22.8773 + 8.55155i −1.02208 + 0.382055i
\(502\) 0.157175 0.272235i 0.00701506 0.0121504i
\(503\) 38.9154 1.73515 0.867576 0.497305i \(-0.165677\pi\)
0.867576 + 0.497305i \(0.165677\pi\)
\(504\) −6.79326 + 5.90353i −0.302596 + 0.262964i
\(505\) −4.20166 −0.186971
\(506\) 4.52355 7.83503i 0.201097 0.348309i
\(507\) 11.8076 + 9.73487i 0.524393 + 0.432341i
\(508\) 1.82935 + 3.16853i 0.0811644 + 0.140581i
\(509\) −1.01037 1.75001i −0.0447837 0.0775676i 0.842765 0.538282i \(-0.180927\pi\)
−0.887548 + 0.460715i \(0.847593\pi\)
\(510\) 0.437242 2.61168i 0.0193614 0.115647i
\(511\) 1.22239 2.11725i 0.0540755 0.0936615i
\(512\) 20.6459 0.912428
\(513\) −11.5905 + 21.3357i −0.511732 + 0.941996i
\(514\) −10.2959 −0.454132
\(515\) 0.908405 1.57340i 0.0400291 0.0693325i
\(516\) −0.225415 + 1.34642i −0.00992333 + 0.0592726i
\(517\) −9.29721 16.1032i −0.408891 0.708220i
\(518\) 0.741995 + 1.28517i 0.0326014 + 0.0564672i
\(519\) 5.83528 + 4.81096i 0.256140 + 0.211178i
\(520\) 4.90841 8.50161i 0.215248 0.372820i
\(521\) −23.0290 −1.00892 −0.504460 0.863435i \(-0.668308\pi\)
−0.504460 + 0.863435i \(0.668308\pi\)
\(522\) −3.10478 15.9853i −0.135893 0.699657i
\(523\) −41.1170 −1.79792 −0.898961 0.438028i \(-0.855677\pi\)
−0.898961 + 0.438028i \(0.855677\pi\)
\(524\) −5.01847 + 8.69225i −0.219233 + 0.379723i
\(525\) −2.31681 + 0.866025i −0.101114 + 0.0377964i
\(526\) −3.40199 5.89242i −0.148334 0.256922i
\(527\) −9.30249 16.1124i −0.405223 0.701867i
\(528\) −9.29721 + 3.47530i −0.404609 + 0.151243i
\(529\) −6.00924 + 10.4083i −0.261271 + 0.452535i
\(530\) −0.654353 −0.0284233
\(531\) −0.654353 3.36900i −0.0283965 0.146202i
\(532\) −11.1625 −0.483954
\(533\) 3.43724 5.95348i 0.148883 0.257874i
\(534\) −2.29326 1.89070i −0.0992389 0.0818185i
\(535\) −5.95882 10.3210i −0.257622 0.446215i
\(536\) −6.92272 11.9905i −0.299016 0.517911i
\(537\) −4.33641 + 25.9017i −0.187130 + 1.11774i
\(538\) −8.17198 + 14.1543i −0.352319 + 0.610234i
\(539\) −13.2593 −0.571120
\(540\) 4.54005 + 7.41236i 0.195373 + 0.318977i
\(541\) 5.20957 0.223977 0.111988 0.993710i \(-0.464278\pi\)
0.111988 + 0.993710i \(0.464278\pi\)
\(542\) 6.68206 11.5737i 0.287019 0.497132i
\(543\) 0.915664 5.46932i 0.0392949 0.234711i
\(544\) −7.25405 12.5644i −0.311015 0.538694i
\(545\) 8.32605 + 14.4211i 0.356649 + 0.617734i
\(546\) 5.10083 + 4.20543i 0.218295 + 0.179976i
\(547\) −20.0204 + 34.6764i −0.856013 + 1.48266i 0.0196900 + 0.999806i \(0.493732\pi\)
−0.875702 + 0.482851i \(0.839601\pi\)
\(548\) 17.0656 0.729005
\(549\) −5.72635 + 4.97636i −0.244394 + 0.212386i
\(550\) 1.52884 0.0651898
\(551\) 22.1717 38.4025i 0.944546 1.63600i
\(552\) −20.1697 + 7.53946i −0.858480 + 0.320901i
\(553\) 0.205614 + 0.356133i 0.00874359 + 0.0151443i
\(554\) 4.31173 + 7.46813i 0.183188 + 0.317290i
\(555\) 2.94761 1.10182i 0.125119 0.0467696i
\(556\) 6.69129 11.5897i 0.283774 0.491511i
\(557\) −14.4033 −0.610288 −0.305144 0.952306i \(-0.598705\pi\)
−0.305144 + 0.952306i \(0.598705\pi\)
\(558\) −11.2933 3.89044i −0.478082 0.164695i
\(559\) 2.20166 0.0931203
\(560\) −1.53081 + 2.65145i −0.0646887 + 0.112044i
\(561\) 9.54731 + 7.87137i 0.403088 + 0.332330i
\(562\) −1.90248 3.29518i −0.0802511 0.138999i
\(563\) −14.6840 25.4335i −0.618858 1.07189i −0.989694 0.143196i \(-0.954262\pi\)
0.370836 0.928698i \(-0.379071\pi\)
\(564\) −3.32831 + 19.8802i −0.140147 + 0.837107i
\(565\) −10.0616 + 17.4272i −0.423296 + 0.733170i
\(566\) 15.3849 0.646674
\(567\) −11.9176 + 4.81096i −0.500494 + 0.202041i
\(568\) 27.0471 1.13487
\(569\) −23.4033 + 40.5357i −0.981118 + 1.69935i −0.323062 + 0.946378i \(0.604712\pi\)
−0.658056 + 0.752969i \(0.728621\pi\)
\(570\) 0.764419 4.56592i 0.0320180 0.191245i
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) 10.4465 + 18.0938i 0.436789 + 0.756541i
\(573\) −3.79213 3.12646i −0.158418 0.130610i
\(574\) 0.600830 1.04067i 0.0250782 0.0434367i
\(575\) −5.91764 −0.246783
\(576\) 3.35601 + 1.15612i 0.139834 + 0.0481717i
\(577\) 28.2386 1.17559 0.587794 0.809010i \(-0.299996\pi\)
0.587794 + 0.809010i \(0.299996\pi\)
\(578\) 2.81879 4.88228i 0.117246 0.203076i
\(579\) 30.4821 11.3942i 1.26679 0.473528i
\(580\) −7.93724 13.7477i −0.329576 0.570842i
\(581\) 3.05880 + 5.29801i 0.126901 + 0.219798i
\(582\) −7.27119 + 2.71798i −0.301401 + 0.112664i
\(583\) 1.52884 2.64802i 0.0633180 0.109670i
\(584\) 3.59668 0.148832
\(585\) 10.5812 9.19539i 0.437480 0.380182i
\(586\) 7.08405 0.292639
\(587\) −9.04118 + 15.6598i −0.373169 + 0.646348i −0.990051 0.140707i \(-0.955062\pi\)
0.616882 + 0.787056i \(0.288396\pi\)
\(588\) 11.0903 + 9.14348i 0.457355 + 0.377071i
\(589\) −16.2633 28.1688i −0.670117 1.16068i
\(590\) 0.327176 + 0.566686i 0.0134696 + 0.0233301i
\(591\) 1.66887 9.96827i 0.0686482 0.410040i
\(592\) 1.94761 3.37336i 0.0800462 0.138644i
\(593\) −7.73840 −0.317778 −0.158889 0.987296i \(-0.550791\pi\)
−0.158889 + 0.987296i \(0.550791\pi\)
\(594\) 7.94139 0.206197i 0.325839 0.00846037i
\(595\) 3.81681 0.156474
\(596\) −16.7919 + 29.0845i −0.687824 + 1.19135i
\(597\) 3.73973 22.3377i 0.153057 0.914220i
\(598\) 7.90841 + 13.6978i 0.323399 + 0.560143i
\(599\) 13.9608 + 24.1808i 0.570423 + 0.988001i 0.996522 + 0.0833249i \(0.0265539\pi\)
−0.426100 + 0.904676i \(0.640113\pi\)
\(600\) −2.80757 2.31473i −0.114619 0.0944986i
\(601\) −19.2201 + 33.2902i −0.784006 + 1.35794i 0.145586 + 0.989346i \(0.453493\pi\)
−0.929591 + 0.368592i \(0.879840\pi\)
\(602\) 0.384851 0.0156853
\(603\) −3.76970 19.4087i −0.153514 0.790383i
\(604\) −5.08405 −0.206867
\(605\) 1.92801 3.33941i 0.0783846 0.135766i
\(606\) 3.89917 1.45751i 0.158393 0.0592074i
\(607\) 0.319917 + 0.554113i 0.0129850 + 0.0224907i 0.872445 0.488712i \(-0.162533\pi\)
−0.859460 + 0.511203i \(0.829200\pi\)
\(608\) −12.6821 21.9660i −0.514325 0.890838i
\(609\) 21.9857 8.21826i 0.890905 0.333021i
\(610\) 0.723239 1.25269i 0.0292831 0.0507198i
\(611\) 32.5081 1.31514
\(612\) −2.55748 13.1674i −0.103380 0.532261i
\(613\) 42.7467 1.72652 0.863262 0.504757i \(-0.168418\pi\)
0.863262 + 0.504757i \(0.168418\pi\)
\(614\) 0.713157 1.23522i 0.0287807 0.0498496i
\(615\) −1.96608 1.62095i −0.0792800 0.0653632i
\(616\) 4.00924 + 6.94420i 0.161537 + 0.279790i
\(617\) −10.5513 18.2753i −0.424778 0.735737i 0.571622 0.820517i \(-0.306314\pi\)
−0.996400 + 0.0847805i \(0.972981\pi\)
\(618\) −0.297209 + 1.77525i −0.0119555 + 0.0714109i
\(619\) 6.82605 11.8231i 0.274362 0.475209i −0.695612 0.718418i \(-0.744867\pi\)
0.969974 + 0.243209i \(0.0782000\pi\)
\(620\) −11.6442 −0.467642
\(621\) −30.7386 + 0.798123i −1.23350 + 0.0320276i
\(622\) −13.8538 −0.555485
\(623\) 2.14201 3.71007i 0.0858178 0.148641i
\(624\) 2.86525 17.1143i 0.114702 0.685121i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 10.0339 + 17.3793i 0.401036 + 0.694615i
\(627\) 16.6913 + 13.7613i 0.666586 + 0.549574i
\(628\) 0.168672 0.292148i 0.00673073 0.0116580i
\(629\) −4.85601 −0.193622
\(630\) 1.84960 1.60735i 0.0736898 0.0640385i
\(631\) 33.2593 1.32403 0.662017 0.749489i \(-0.269701\pi\)
0.662017 + 0.749489i \(0.269701\pi\)
\(632\) −0.302491 + 0.523930i −0.0120325 + 0.0208408i
\(633\) −13.6037 + 5.08506i −0.540697 + 0.202113i
\(634\) 2.99472 + 5.18700i 0.118935 + 0.206002i
\(635\) −1.09357 1.89412i −0.0433971 0.0751659i
\(636\) −3.10478 + 1.16057i −0.123113 + 0.0460196i
\(637\) 11.5905 20.0753i 0.459231 0.795411i
\(638\) −14.5081 −0.574381
\(639\) 36.5173 + 12.5799i 1.44460 + 0.497655i
\(640\) −11.5328 −0.455874
\(641\) −13.1429 + 22.7641i −0.519112 + 0.899128i 0.480642 + 0.876917i \(0.340404\pi\)
−0.999753 + 0.0222106i \(0.992930\pi\)
\(642\) 9.11007 + 7.51089i 0.359546 + 0.296431i
\(643\) −10.2913 17.8250i −0.405848 0.702950i 0.588571 0.808445i \(-0.299691\pi\)
−0.994420 + 0.105495i \(0.966357\pi\)
\(644\) −7.06804 12.2422i −0.278520 0.482410i
\(645\) 0.134751 0.804876i 0.00530581 0.0316920i
\(646\) −3.57199 + 6.18687i −0.140538 + 0.243419i
\(647\) 23.2527 0.914159 0.457079 0.889426i \(-0.348896\pi\)
0.457079 + 0.889426i \(0.348896\pi\)
\(648\) −14.8959 11.6450i −0.585165 0.457458i
\(649\) −3.05767 −0.120024
\(650\) −1.33641 + 2.31473i −0.0524184 + 0.0907913i
\(651\) 2.84283 16.9804i 0.111419 0.665513i
\(652\) 14.9022 + 25.8114i 0.583615 + 1.01085i
\(653\) −9.37957 16.2459i −0.367051 0.635751i 0.622052 0.782976i \(-0.286299\pi\)
−0.989103 + 0.147225i \(0.952966\pi\)
\(654\) −12.7292 10.4947i −0.497750 0.410375i
\(655\) 3.00000 5.19615i 0.117220 0.203030i
\(656\) −3.15415 −0.123149
\(657\) 4.85601 + 1.67286i 0.189451 + 0.0652645i
\(658\) 5.68242 0.221524
\(659\) 0.140034 0.242545i 0.00545494 0.00944823i −0.863285 0.504717i \(-0.831597\pi\)
0.868740 + 0.495268i \(0.164930\pi\)
\(660\) 7.25405 2.71157i 0.282364 0.105548i
\(661\) 19.8930 + 34.4556i 0.773746 + 1.34017i 0.935496 + 0.353336i \(0.114953\pi\)
−0.161750 + 0.986832i \(0.551714\pi\)
\(662\) −4.79834 8.31097i −0.186493 0.323015i
\(663\) −20.2633 + 7.57443i −0.786961 + 0.294167i
\(664\) −4.50000 + 7.79423i −0.174634 + 0.302475i
\(665\) 6.67282 0.258761
\(666\) −2.35319 + 2.04499i −0.0911843 + 0.0792417i
\(667\) 56.1562 2.17438
\(668\) 11.7941 20.4280i 0.456327 0.790382i
\(669\) 12.2501 + 10.0997i 0.473616 + 0.390478i
\(670\) 1.88485 + 3.26466i 0.0728181 + 0.126125i
\(671\) 3.37957 + 5.85358i 0.130467 + 0.225975i
\(672\) 2.21683 13.2412i 0.0855159 0.510792i
\(673\) −16.7644 + 29.0368i −0.646221 + 1.11929i 0.337797 + 0.941219i \(0.390318\pi\)
−0.984018 + 0.178068i \(0.943015\pi\)
\(674\) −15.5473 −0.598860
\(675\) −2.71400 4.43105i −0.104462 0.170551i
\(676\) −14.7799 −0.568456
\(677\) −13.7437 + 23.8048i −0.528213 + 0.914891i 0.471246 + 0.882002i \(0.343804\pi\)
−0.999459 + 0.0328897i \(0.989529\pi\)
\(678\) 3.29193 19.6629i 0.126426 0.755148i
\(679\) −5.59442 9.68981i −0.214694 0.371861i
\(680\) 2.80757 + 4.86286i 0.107666 + 0.186482i
\(681\) −3.57199 2.94497i −0.136879 0.112851i
\(682\) −5.32096 + 9.21618i −0.203750 + 0.352906i
\(683\) −34.5865 −1.32342 −0.661708 0.749762i \(-0.730168\pi\)
−0.661708 + 0.749762i \(0.730168\pi\)
\(684\) −4.47116 23.0202i −0.170959 0.880201i
\(685\) −10.2017 −0.389785
\(686\) 4.88485 8.46081i 0.186504 0.323035i
\(687\) −4.13277 + 1.54483i −0.157675 + 0.0589391i
\(688\) −0.505083 0.874830i −0.0192561 0.0333526i
\(689\) 2.67282 + 4.62947i 0.101826 + 0.176369i
\(690\) 5.49161 2.05277i 0.209062 0.0781475i
\(691\) −20.3641 + 35.2717i −0.774688 + 1.34180i 0.160282 + 0.987071i \(0.448760\pi\)
−0.934970 + 0.354727i \(0.884574\pi\)
\(692\) −7.30418 −0.277663
\(693\) 2.18319 + 11.2404i 0.0829325 + 0.426987i
\(694\) −13.4795 −0.511674
\(695\) −4.00000 + 6.92820i −0.151729 + 0.262802i
\(696\) 26.6429 + 21.9660i 1.00989 + 0.832618i
\(697\) 1.96608 + 3.40535i 0.0744706 + 0.128987i
\(698\) 3.06360 + 5.30632i 0.115959 + 0.200847i
\(699\) −1.77894 + 10.6257i −0.0672856 + 0.401901i
\(700\) 1.19440 2.06876i 0.0451441 0.0781919i
\(701\) −19.4712 −0.735416 −0.367708 0.929941i \(-0.619857\pi\)
−0.367708 + 0.929941i \(0.619857\pi\)
\(702\) −6.62967 + 12.2039i −0.250221 + 0.460606i
\(703\) −8.48963 −0.320193
\(704\) 1.58123 2.73877i 0.0595948 0.103221i
\(705\) 1.98963 11.8842i 0.0749339 0.447585i
\(706\) −7.79834 13.5071i −0.293494 0.508347i
\(707\) 3.00000 + 5.19615i 0.112827 + 0.195421i
\(708\) 2.55748 + 2.10854i 0.0961158 + 0.0792436i
\(709\) −7.54316 + 13.0651i −0.283289 + 0.490671i −0.972193 0.234182i \(-0.924759\pi\)
0.688904 + 0.724853i \(0.258092\pi\)
\(710\) −7.36412 −0.276370
\(711\) −0.652092 + 0.566686i −0.0244553 + 0.0212524i
\(712\) 6.30249 0.236196
\(713\) 20.5957 35.6729i 0.771317 1.33596i
\(714\) −3.54203 + 1.32401i −0.132557 + 0.0495499i
\(715\) −6.24482 10.8163i −0.233543 0.404508i
\(716\) −12.6821 21.9660i −0.473951 0.820907i
\(717\) −13.1792 + 4.92641i −0.492188 + 0.183980i
\(718\) 3.05465 5.29081i 0.113999 0.197451i
\(719\) −3.43196 −0.127990 −0.0639952 0.997950i \(-0.520384\pi\)
−0.0639952 + 0.997950i \(0.520384\pi\)
\(720\) −6.08123 2.09494i −0.226634 0.0780737i
\(721\) −2.59442 −0.0966211
\(722\) −0.810881 + 1.40449i −0.0301779 + 0.0522696i
\(723\) −35.2333 29.0485i −1.31034 1.08032i
\(724\) 2.67791 + 4.63827i 0.0995236 + 0.172380i
\(725\) 4.74482 + 8.21826i 0.176218 + 0.305219i
\(726\) −0.630798 + 3.76780i −0.0234111 + 0.139836i
\(727\) 17.8857 30.9789i 0.663344 1.14895i −0.316388 0.948630i \(-0.602470\pi\)
0.979732 0.200315i \(-0.0641966\pi\)
\(728\) −14.0185 −0.519559
\(729\) −14.6952 22.6506i −0.544268 0.838911i
\(730\) −0.979268 −0.0362443
\(731\) −0.629668 + 1.09062i −0.0232891 + 0.0403379i
\(732\) 1.20985 7.22652i 0.0447174 0.267100i
\(733\) 11.0000 + 19.0526i 0.406294 + 0.703722i 0.994471 0.105010i \(-0.0334875\pi\)
−0.588177 + 0.808732i \(0.700154\pi\)
\(734\) 2.42272 + 4.19628i 0.0894244 + 0.154888i
\(735\) −6.62967 5.46590i −0.244539 0.201613i
\(736\) 16.0605 27.8176i 0.591998 1.02537i
\(737\) −17.6151 −0.648862
\(738\) 2.38683 + 0.822244i 0.0878603 + 0.0302672i
\(739\) 6.08631 0.223889 0.111944 0.993714i \(-0.464292\pi\)
0.111944 + 0.993714i \(0.464292\pi\)
\(740\) −1.51960 + 2.63203i −0.0558617 + 0.0967552i
\(741\) −35.4257 + 13.2422i −1.30140 + 0.486463i
\(742\) 0.467210 + 0.809231i 0.0171518 + 0.0297078i
\(743\) 12.7509 + 22.0853i 0.467787 + 0.810231i 0.999322 0.0368054i \(-0.0117182\pi\)
−0.531536 + 0.847036i \(0.678385\pi\)
\(744\) 23.7252 8.86850i 0.869809 0.325135i
\(745\) 10.0381 17.3865i 0.367767 0.636990i
\(746\) 5.79043 0.212003
\(747\) −9.70081 + 8.43028i −0.354934 + 0.308448i
\(748\) −11.9506 −0.436958
\(749\) −8.50924 + 14.7384i −0.310921 + 0.538530i
\(750\) 0.764419 + 0.630233i 0.0279126 + 0.0230128i
\(751\) 9.19638 + 15.9286i 0.335581 + 0.581243i 0.983596 0.180384i \(-0.0577342\pi\)
−0.648016 + 0.761627i \(0.724401\pi\)
\(752\) −7.45769 12.9171i −0.271954 0.471038i
\(753\) −0.157175 + 0.938816i −0.00572777 + 0.0342124i
\(754\) 12.6821 21.9660i 0.461853 0.799953i
\(755\) 3.03920 0.110608
\(756\) 5.92518 10.9071i 0.215497 0.396687i
\(757\) −41.8986 −1.52283 −0.761415 0.648264i \(-0.775495\pi\)
−0.761415 + 0.648264i \(0.775495\pi\)
\(758\) −3.40954 + 5.90549i −0.123840 + 0.214497i
\(759\) −4.52355 + 27.0195i −0.164195 + 0.980745i
\(760\) 4.90841 + 8.50161i 0.178047 + 0.308386i
\(761\) 3.98568 + 6.90340i 0.144481 + 0.250248i 0.929179 0.369630i \(-0.120515\pi\)
−0.784698 + 0.619878i \(0.787182\pi\)
\(762\) 1.67189 + 1.37841i 0.0605663 + 0.0499345i
\(763\) 11.8896 20.5935i 0.430434 0.745534i
\(764\) 4.74671 0.171730
\(765\) 1.52884 + 7.87137i 0.0552752 + 0.284590i
\(766\) 5.61515 0.202884
\(767\) 2.67282 4.62947i 0.0965101 0.167160i
\(768\) 6.86327 2.56550i 0.247657 0.0925744i
\(769\) −3.01432 5.22095i −0.108699 0.188272i 0.806544