Properties

Label 45.2.e
Level $45$
Weight $2$
Character orbit 45.e
Rep. character $\chi_{45}(16,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $2$
Sturm bound $12$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(45, [\chi])\).

Total New Old
Modular forms 16 8 8
Cusp forms 8 8 0
Eisenstein series 8 0 8

Trace form

\( 8 q - 2 q^{2} - 2 q^{3} - 4 q^{4} - 2 q^{5} - 4 q^{6} - 2 q^{7} - 4 q^{9} + 4 q^{11} + 14 q^{12} - 2 q^{13} + 12 q^{14} - 2 q^{15} - 4 q^{16} + 4 q^{17} - 20 q^{18} - 8 q^{19} - 6 q^{20} + 6 q^{22} - 6 q^{23}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.2.e.a 45.e 9.c $2$ $0.359$ \(\Q(\sqrt{-3}) \) None 45.2.e.a \(-1\) \(-3\) \(1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-2+\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
45.2.e.b 45.e 9.c $6$ $0.359$ 6.0.954288.1 None 45.2.e.b \(-1\) \(1\) \(-3\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{2}-\beta _{4}-\beta _{5})q^{2}+\beta _{4}q^{3}+\cdots\)