Properties

Label 448.6.a.q
Level $448$
Weight $6$
Character orbit 448.a
Self dual yes
Analytic conductor $71.852$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,6,Mod(1,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8519512762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{177}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 13) q^{3} + (5 \beta + 31) q^{5} - 49 q^{7} + (26 \beta + 103) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta - 13) q^{3} + (5 \beta + 31) q^{5} - 49 q^{7} + (26 \beta + 103) q^{9} + ( - 6 \beta + 486) q^{11} + (71 \beta - 39) q^{13} + ( - 96 \beta - 1288) q^{15} + (6 \beta + 280) q^{17} + (37 \beta + 1321) q^{19} + (49 \beta + 637) q^{21} + (248 \beta - 1136) q^{23} + (310 \beta + 2261) q^{25} + ( - 198 \beta - 2782) q^{27} + (14 \beta + 3904) q^{29} + ( - 130 \beta - 2722) q^{31} + ( - 408 \beta - 5256) q^{33} + ( - 245 \beta - 1519) q^{35} + ( - 650 \beta - 288) q^{37} + ( - 884 \beta - 12060) q^{39} + (378 \beta - 8444) q^{41} + ( - 338 \beta - 4198) q^{43} + (1321 \beta + 26203) q^{45} + ( - 1238 \beta + 2266) q^{47} + 2401 q^{49} + ( - 358 \beta - 4702) q^{51} + (1152 \beta - 710) q^{53} + (2244 \beta + 9756) q^{55} + ( - 1802 \beta - 23722) q^{57} + (325 \beta + 17073) q^{59} + ( - 3347 \beta - 9553) q^{61} + ( - 1274 \beta - 5047) q^{63} + (2006 \beta + 61626) q^{65} + (1240 \beta + 28476) q^{67} + ( - 2088 \beta - 29128) q^{69} + ( - 700 \beta + 3612) q^{71} + ( - 1260 \beta + 64414) q^{73} + ( - 6291 \beta - 84263) q^{75} + (294 \beta - 23814) q^{77} + (1548 \beta - 26404) q^{79} + ( - 962 \beta + 46183) q^{81} + (5209 \beta - 42243) q^{83} + (1586 \beta + 13990) q^{85} + ( - 4086 \beta - 53230) q^{87} + ( - 2312 \beta - 65486) q^{89} + ( - 3479 \beta + 1911) q^{91} + (4412 \beta + 58396) q^{93} + (7752 \beta + 73696) q^{95} + (350 \beta + 97312) q^{97} + (12018 \beta + 22446) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 26 q^{3} + 62 q^{5} - 98 q^{7} + 206 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 26 q^{3} + 62 q^{5} - 98 q^{7} + 206 q^{9} + 972 q^{11} - 78 q^{13} - 2576 q^{15} + 560 q^{17} + 2642 q^{19} + 1274 q^{21} - 2272 q^{23} + 4522 q^{25} - 5564 q^{27} + 7808 q^{29} - 5444 q^{31} - 10512 q^{33} - 3038 q^{35} - 576 q^{37} - 24120 q^{39} - 16888 q^{41} - 8396 q^{43} + 52406 q^{45} + 4532 q^{47} + 4802 q^{49} - 9404 q^{51} - 1420 q^{53} + 19512 q^{55} - 47444 q^{57} + 34146 q^{59} - 19106 q^{61} - 10094 q^{63} + 123252 q^{65} + 56952 q^{67} - 58256 q^{69} + 7224 q^{71} + 128828 q^{73} - 168526 q^{75} - 47628 q^{77} - 52808 q^{79} + 92366 q^{81} - 84486 q^{83} + 27980 q^{85} - 106460 q^{87} - 130972 q^{89} + 3822 q^{91} + 116792 q^{93} + 147392 q^{95} + 194624 q^{97} + 44892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.15207
−6.15207
0 −26.3041 0 97.5207 0 −49.0000 0 448.908 0
1.2 0 0.304135 0 −35.5207 0 −49.0000 0 −242.908 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.6.a.q 2
4.b odd 2 1 448.6.a.z 2
8.b even 2 1 112.6.a.k 2
8.d odd 2 1 56.6.a.c 2
24.f even 2 1 504.6.a.s 2
24.h odd 2 1 1008.6.a.bt 2
56.e even 2 1 392.6.a.f 2
56.h odd 2 1 784.6.a.p 2
56.k odd 6 2 392.6.i.l 4
56.m even 6 2 392.6.i.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.6.a.c 2 8.d odd 2 1
112.6.a.k 2 8.b even 2 1
392.6.a.f 2 56.e even 2 1
392.6.i.g 4 56.m even 6 2
392.6.i.l 4 56.k odd 6 2
448.6.a.q 2 1.a even 1 1 trivial
448.6.a.z 2 4.b odd 2 1
504.6.a.s 2 24.f even 2 1
784.6.a.p 2 56.h odd 2 1
1008.6.a.bt 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(448))\):

\( T_{3}^{2} + 26T_{3} - 8 \) Copy content Toggle raw display
\( T_{5}^{2} - 62T_{5} - 3464 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 26T - 8 \) Copy content Toggle raw display
$5$ \( T^{2} - 62T - 3464 \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 972T + 229824 \) Copy content Toggle raw display
$13$ \( T^{2} + 78T - 890736 \) Copy content Toggle raw display
$17$ \( T^{2} - 560T + 72028 \) Copy content Toggle raw display
$19$ \( T^{2} - 2642 T + 1502728 \) Copy content Toggle raw display
$23$ \( T^{2} + 2272 T - 9595712 \) Copy content Toggle raw display
$29$ \( T^{2} - 7808 T + 15206524 \) Copy content Toggle raw display
$31$ \( T^{2} + 5444 T + 4417984 \) Copy content Toggle raw display
$37$ \( T^{2} + 576 T - 74699556 \) Copy content Toggle raw display
$41$ \( T^{2} + 16888 T + 46010668 \) Copy content Toggle raw display
$43$ \( T^{2} + 8396 T - 2597984 \) Copy content Toggle raw display
$47$ \( T^{2} - 4532 T - 266143232 \) Copy content Toggle raw display
$53$ \( T^{2} + 1420 T - 234393308 \) Copy content Toggle raw display
$59$ \( T^{2} - 34146 T + 272791704 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 1891566584 \) Copy content Toggle raw display
$67$ \( T^{2} - 56952 T + 538727376 \) Copy content Toggle raw display
$71$ \( T^{2} - 7224 T - 73683456 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 3868158196 \) Copy content Toggle raw display
$79$ \( T^{2} + 52808 T + 273025408 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 3018190488 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 3342290308 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 9447942844 \) Copy content Toggle raw display
show more
show less