Properties

Label 448.3.s.g.257.5
Level $448$
Weight $3$
Character 448.257
Analytic conductor $12.207$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(129,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.129"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 522x^{12} + 3644x^{10} + 12219x^{8} + 15156x^{6} + 15478x^{4} - 10992x^{2} + 11025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.5
Root \(0.707107 + 0.358323i\) of defining polynomial
Character \(\chi\) \(=\) 448.257
Dual form 448.3.s.g.129.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.438854 - 0.253372i) q^{3} +(4.59219 + 2.65130i) q^{5} +(5.27770 + 4.59846i) q^{7} +(-4.37160 + 7.57184i) q^{9} +(8.54498 + 14.8003i) q^{11} -21.4744i q^{13} +2.68707 q^{15} +(-20.7992 + 12.0084i) q^{17} +(-10.5831 - 6.11016i) q^{19} +(3.48126 + 0.680829i) q^{21} +(-20.1464 + 34.8946i) q^{23} +(1.55882 + 2.69996i) q^{25} +8.99128i q^{27} +26.0770 q^{29} +(21.8789 - 12.6318i) q^{31} +(7.50000 + 4.33013i) q^{33} +(12.0443 + 35.1098i) q^{35} +(6.48126 - 11.2259i) q^{37} +(-5.44101 - 9.42411i) q^{39} -33.8721i q^{41} +29.9958 q^{43} +(-40.1505 + 23.1809i) q^{45} +(48.2788 + 27.8738i) q^{47} +(6.70828 + 48.5386i) q^{49} +(-6.08521 + 10.5399i) q^{51} +(-4.36362 - 7.55801i) q^{53} +90.6214i q^{55} -6.19259 q^{57} +(-43.2893 + 24.9931i) q^{59} +(-3.40886 - 1.96811i) q^{61} +(-57.8909 + 19.8593i) q^{63} +(56.9351 - 98.6144i) q^{65} +(52.9426 + 91.6994i) q^{67} +20.4182i q^{69} +35.0232 q^{71} +(40.3712 - 23.3083i) q^{73} +(1.36819 + 0.789926i) q^{75} +(-22.9610 + 117.406i) q^{77} +(43.4998 - 75.3438i) q^{79} +(-37.0663 - 64.2007i) q^{81} -64.0079i q^{83} -127.352 q^{85} +(11.4440 - 6.60721i) q^{87} +(37.2272 + 21.4932i) q^{89} +(98.7491 - 113.335i) q^{91} +(6.40109 - 11.0870i) q^{93} +(-32.3998 - 56.1181i) q^{95} +28.7493i q^{97} -149.421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{9} + 48 q^{17} - 56 q^{21} + 16 q^{25} - 112 q^{29} + 120 q^{33} - 8 q^{37} + 72 q^{45} - 128 q^{49} + 24 q^{53} - 528 q^{57} + 360 q^{61} - 8 q^{65} + 72 q^{73} + 32 q^{81} - 720 q^{85} + 408 q^{89}+ \cdots + 232 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.438854 0.253372i 0.146285 0.0844575i −0.425071 0.905160i \(-0.639751\pi\)
0.571356 + 0.820702i \(0.306418\pi\)
\(4\) 0 0
\(5\) 4.59219 + 2.65130i 0.918439 + 0.530261i 0.883137 0.469116i \(-0.155427\pi\)
0.0353020 + 0.999377i \(0.488761\pi\)
\(6\) 0 0
\(7\) 5.27770 + 4.59846i 0.753957 + 0.656923i
\(8\) 0 0
\(9\) −4.37160 + 7.57184i −0.485734 + 0.841316i
\(10\) 0 0
\(11\) 8.54498 + 14.8003i 0.776817 + 1.34549i 0.933768 + 0.357880i \(0.116500\pi\)
−0.156951 + 0.987606i \(0.550167\pi\)
\(12\) 0 0
\(13\) 21.4744i 1.65187i −0.563762 0.825937i \(-0.690647\pi\)
0.563762 0.825937i \(-0.309353\pi\)
\(14\) 0 0
\(15\) 2.68707 0.179138
\(16\) 0 0
\(17\) −20.7992 + 12.0084i −1.22348 + 0.706378i −0.965659 0.259814i \(-0.916339\pi\)
−0.257824 + 0.966192i \(0.583005\pi\)
\(18\) 0 0
\(19\) −10.5831 6.11016i −0.557006 0.321588i 0.194937 0.980816i \(-0.437550\pi\)
−0.751943 + 0.659228i \(0.770883\pi\)
\(20\) 0 0
\(21\) 3.48126 + 0.680829i 0.165775 + 0.0324205i
\(22\) 0 0
\(23\) −20.1464 + 34.8946i −0.875932 + 1.51716i −0.0201644 + 0.999797i \(0.506419\pi\)
−0.855767 + 0.517361i \(0.826914\pi\)
\(24\) 0 0
\(25\) 1.55882 + 2.69996i 0.0623530 + 0.107998i
\(26\) 0 0
\(27\) 8.99128i 0.333010i
\(28\) 0 0
\(29\) 26.0770 0.899209 0.449604 0.893228i \(-0.351565\pi\)
0.449604 + 0.893228i \(0.351565\pi\)
\(30\) 0 0
\(31\) 21.8789 12.6318i 0.705770 0.407477i −0.103723 0.994606i \(-0.533075\pi\)
0.809493 + 0.587130i \(0.199742\pi\)
\(32\) 0 0
\(33\) 7.50000 + 4.33013i 0.227273 + 0.131216i
\(34\) 0 0
\(35\) 12.0443 + 35.1098i 0.344123 + 1.00314i
\(36\) 0 0
\(37\) 6.48126 11.2259i 0.175169 0.303402i −0.765051 0.643970i \(-0.777286\pi\)
0.940220 + 0.340568i \(0.110619\pi\)
\(38\) 0 0
\(39\) −5.44101 9.42411i −0.139513 0.241644i
\(40\) 0 0
\(41\) 33.8721i 0.826150i −0.910697 0.413075i \(-0.864455\pi\)
0.910697 0.413075i \(-0.135545\pi\)
\(42\) 0 0
\(43\) 29.9958 0.697576 0.348788 0.937202i \(-0.386593\pi\)
0.348788 + 0.937202i \(0.386593\pi\)
\(44\) 0 0
\(45\) −40.1505 + 23.1809i −0.892233 + 0.515131i
\(46\) 0 0
\(47\) 48.2788 + 27.8738i 1.02721 + 0.593060i 0.916184 0.400758i \(-0.131253\pi\)
0.111025 + 0.993818i \(0.464587\pi\)
\(48\) 0 0
\(49\) 6.70828 + 48.5386i 0.136904 + 0.990584i
\(50\) 0 0
\(51\) −6.08521 + 10.5399i −0.119318 + 0.206665i
\(52\) 0 0
\(53\) −4.36362 7.55801i −0.0823324 0.142604i 0.821919 0.569604i \(-0.192904\pi\)
−0.904251 + 0.427001i \(0.859570\pi\)
\(54\) 0 0
\(55\) 90.6214i 1.64766i
\(56\) 0 0
\(57\) −6.19259 −0.108642
\(58\) 0 0
\(59\) −43.2893 + 24.9931i −0.733718 + 0.423612i −0.819781 0.572678i \(-0.805905\pi\)
0.0860631 + 0.996290i \(0.472571\pi\)
\(60\) 0 0
\(61\) −3.40886 1.96811i −0.0558829 0.0322640i 0.471798 0.881707i \(-0.343605\pi\)
−0.527681 + 0.849443i \(0.676938\pi\)
\(62\) 0 0
\(63\) −57.8909 + 19.8593i −0.918903 + 0.315226i
\(64\) 0 0
\(65\) 56.9351 98.6144i 0.875924 1.51715i
\(66\) 0 0
\(67\) 52.9426 + 91.6994i 0.790189 + 1.36865i 0.925850 + 0.377892i \(0.123351\pi\)
−0.135661 + 0.990755i \(0.543316\pi\)
\(68\) 0 0
\(69\) 20.4182i 0.295916i
\(70\) 0 0
\(71\) 35.0232 0.493285 0.246642 0.969107i \(-0.420673\pi\)
0.246642 + 0.969107i \(0.420673\pi\)
\(72\) 0 0
\(73\) 40.3712 23.3083i 0.553030 0.319292i −0.197313 0.980340i \(-0.563222\pi\)
0.750343 + 0.661049i \(0.229888\pi\)
\(74\) 0 0
\(75\) 1.36819 + 0.789926i 0.0182426 + 0.0105323i
\(76\) 0 0
\(77\) −22.9610 + 117.406i −0.298194 + 1.52475i
\(78\) 0 0
\(79\) 43.4998 75.3438i 0.550630 0.953719i −0.447599 0.894234i \(-0.647721\pi\)
0.998229 0.0594846i \(-0.0189457\pi\)
\(80\) 0 0
\(81\) −37.0663 64.2007i −0.457609 0.792601i
\(82\) 0 0
\(83\) 64.0079i 0.771180i −0.922670 0.385590i \(-0.873998\pi\)
0.922670 0.385590i \(-0.126002\pi\)
\(84\) 0 0
\(85\) −127.352 −1.49826
\(86\) 0 0
\(87\) 11.4440 6.60721i 0.131540 0.0759449i
\(88\) 0 0
\(89\) 37.2272 + 21.4932i 0.418284 + 0.241496i 0.694343 0.719645i \(-0.255695\pi\)
−0.276059 + 0.961141i \(0.589029\pi\)
\(90\) 0 0
\(91\) 98.7491 113.335i 1.08515 1.24544i
\(92\) 0 0
\(93\) 6.40109 11.0870i 0.0688289 0.119215i
\(94\) 0 0
\(95\) −32.3998 56.1181i −0.341051 0.590717i
\(96\) 0 0
\(97\) 28.7493i 0.296384i 0.988959 + 0.148192i \(0.0473454\pi\)
−0.988959 + 0.148192i \(0.952655\pi\)
\(98\) 0 0
\(99\) −149.421 −1.50930
\(100\) 0 0
\(101\) 53.2337 30.7345i 0.527067 0.304302i −0.212754 0.977106i \(-0.568243\pi\)
0.739821 + 0.672804i \(0.234910\pi\)
\(102\) 0 0
\(103\) −51.7263 29.8642i −0.502197 0.289944i 0.227423 0.973796i \(-0.426970\pi\)
−0.729620 + 0.683852i \(0.760303\pi\)
\(104\) 0 0
\(105\) 14.1816 + 12.3564i 0.135062 + 0.117680i
\(106\) 0 0
\(107\) 65.8380 114.035i 0.615308 1.06574i −0.375022 0.927016i \(-0.622365\pi\)
0.990330 0.138729i \(-0.0443017\pi\)
\(108\) 0 0
\(109\) −18.9045 32.7436i −0.173436 0.300400i 0.766183 0.642623i \(-0.222154\pi\)
−0.939619 + 0.342222i \(0.888820\pi\)
\(110\) 0 0
\(111\) 6.56870i 0.0591774i
\(112\) 0 0
\(113\) −46.4443 −0.411012 −0.205506 0.978656i \(-0.565884\pi\)
−0.205506 + 0.978656i \(0.565884\pi\)
\(114\) 0 0
\(115\) −185.033 + 106.829i −1.60898 + 0.928944i
\(116\) 0 0
\(117\) 162.601 + 93.8774i 1.38975 + 0.802371i
\(118\) 0 0
\(119\) −164.992 32.2675i −1.38649 0.271155i
\(120\) 0 0
\(121\) −85.5335 + 148.148i −0.706888 + 1.22437i
\(122\) 0 0
\(123\) −8.58227 14.8649i −0.0697745 0.120853i
\(124\) 0 0
\(125\) 116.034i 0.928268i
\(126\) 0 0
\(127\) −12.7816 −0.100642 −0.0503211 0.998733i \(-0.516024\pi\)
−0.0503211 + 0.998733i \(0.516024\pi\)
\(128\) 0 0
\(129\) 13.1638 7.60010i 0.102045 0.0589155i
\(130\) 0 0
\(131\) 0.929338 + 0.536554i 0.00709418 + 0.00409583i 0.503543 0.863970i \(-0.332030\pi\)
−0.496449 + 0.868066i \(0.665363\pi\)
\(132\) 0 0
\(133\) −27.7572 80.9137i −0.208700 0.608374i
\(134\) 0 0
\(135\) −23.8386 + 41.2897i −0.176582 + 0.305850i
\(136\) 0 0
\(137\) 33.4330 + 57.9076i 0.244036 + 0.422683i 0.961860 0.273541i \(-0.0881951\pi\)
−0.717824 + 0.696225i \(0.754862\pi\)
\(138\) 0 0
\(139\) 221.071i 1.59044i −0.606322 0.795219i \(-0.707356\pi\)
0.606322 0.795219i \(-0.292644\pi\)
\(140\) 0 0
\(141\) 28.2498 0.200353
\(142\) 0 0
\(143\) 317.828 183.498i 2.22257 1.28320i
\(144\) 0 0
\(145\) 119.751 + 69.1382i 0.825868 + 0.476815i
\(146\) 0 0
\(147\) 15.2423 + 19.6017i 0.103689 + 0.133345i
\(148\) 0 0
\(149\) −19.7606 + 34.2264i −0.132621 + 0.229707i −0.924686 0.380730i \(-0.875673\pi\)
0.792065 + 0.610437i \(0.209006\pi\)
\(150\) 0 0
\(151\) −111.362 192.885i −0.737499 1.27739i −0.953618 0.301019i \(-0.902673\pi\)
0.216119 0.976367i \(-0.430660\pi\)
\(152\) 0 0
\(153\) 209.984i 1.37245i
\(154\) 0 0
\(155\) 133.963 0.864275
\(156\) 0 0
\(157\) 175.081 101.083i 1.11516 0.643840i 0.175002 0.984568i \(-0.444007\pi\)
0.940162 + 0.340728i \(0.110673\pi\)
\(158\) 0 0
\(159\) −3.82998 2.21124i −0.0240879 0.0139072i
\(160\) 0 0
\(161\) −266.789 + 91.5209i −1.65707 + 0.568453i
\(162\) 0 0
\(163\) −1.31509 + 2.27780i −0.00806802 + 0.0139742i −0.870031 0.492997i \(-0.835901\pi\)
0.861963 + 0.506971i \(0.169235\pi\)
\(164\) 0 0
\(165\) 22.9610 + 39.7696i 0.139157 + 0.241028i
\(166\) 0 0
\(167\) 133.004i 0.796434i 0.917291 + 0.398217i \(0.130371\pi\)
−0.917291 + 0.398217i \(0.869629\pi\)
\(168\) 0 0
\(169\) −292.148 −1.72869
\(170\) 0 0
\(171\) 92.5304 53.4224i 0.541113 0.312412i
\(172\) 0 0
\(173\) −84.0786 48.5428i −0.486004 0.280594i 0.236911 0.971531i \(-0.423865\pi\)
−0.722915 + 0.690937i \(0.757198\pi\)
\(174\) 0 0
\(175\) −4.18867 + 21.4178i −0.0239352 + 0.122387i
\(176\) 0 0
\(177\) −12.6651 + 21.9367i −0.0715544 + 0.123936i
\(178\) 0 0
\(179\) 42.0185 + 72.7782i 0.234740 + 0.406582i 0.959197 0.282738i \(-0.0912427\pi\)
−0.724457 + 0.689320i \(0.757909\pi\)
\(180\) 0 0
\(181\) 214.347i 1.18424i −0.805851 0.592119i \(-0.798292\pi\)
0.805851 0.592119i \(-0.201708\pi\)
\(182\) 0 0
\(183\) −1.99466 −0.0108998
\(184\) 0 0
\(185\) 59.5264 34.3676i 0.321765 0.185771i
\(186\) 0 0
\(187\) −355.458 205.224i −1.90084 1.09745i
\(188\) 0 0
\(189\) −41.3461 + 47.4533i −0.218762 + 0.251076i
\(190\) 0 0
\(191\) −27.3687 + 47.4040i −0.143292 + 0.248188i −0.928734 0.370746i \(-0.879102\pi\)
0.785443 + 0.618934i \(0.212435\pi\)
\(192\) 0 0
\(193\) 174.150 + 301.637i 0.902332 + 1.56289i 0.824459 + 0.565922i \(0.191480\pi\)
0.0778732 + 0.996963i \(0.475187\pi\)
\(194\) 0 0
\(195\) 57.7031i 0.295913i
\(196\) 0 0
\(197\) −161.606 −0.820337 −0.410169 0.912010i \(-0.634530\pi\)
−0.410169 + 0.912010i \(0.634530\pi\)
\(198\) 0 0
\(199\) −119.186 + 68.8121i −0.598925 + 0.345789i −0.768618 0.639707i \(-0.779056\pi\)
0.169694 + 0.985497i \(0.445722\pi\)
\(200\) 0 0
\(201\) 46.4682 + 26.8284i 0.231185 + 0.133475i
\(202\) 0 0
\(203\) 137.627 + 119.914i 0.677965 + 0.590711i
\(204\) 0 0
\(205\) 89.8053 155.547i 0.438075 0.758768i
\(206\) 0 0
\(207\) −176.144 305.091i −0.850939 1.47387i
\(208\) 0 0
\(209\) 208.845i 0.999258i
\(210\) 0 0
\(211\) −101.563 −0.481341 −0.240670 0.970607i \(-0.577367\pi\)
−0.240670 + 0.970607i \(0.577367\pi\)
\(212\) 0 0
\(213\) 15.3701 8.87392i 0.0721600 0.0416616i
\(214\) 0 0
\(215\) 137.746 + 79.5279i 0.640681 + 0.369897i
\(216\) 0 0
\(217\) 173.557 + 33.9425i 0.799802 + 0.156417i
\(218\) 0 0
\(219\) 11.8114 20.4579i 0.0539332 0.0934150i
\(220\) 0 0
\(221\) 257.873 + 446.650i 1.16685 + 2.02104i
\(222\) 0 0
\(223\) 180.573i 0.809744i −0.914373 0.404872i \(-0.867316\pi\)
0.914373 0.404872i \(-0.132684\pi\)
\(224\) 0 0
\(225\) −27.2582 −0.121148
\(226\) 0 0
\(227\) −43.9146 + 25.3541i −0.193456 + 0.111692i −0.593600 0.804761i \(-0.702294\pi\)
0.400143 + 0.916453i \(0.368960\pi\)
\(228\) 0 0
\(229\) 172.801 + 99.7665i 0.754588 + 0.435661i 0.827349 0.561688i \(-0.189848\pi\)
−0.0727614 + 0.997349i \(0.523181\pi\)
\(230\) 0 0
\(231\) 19.6708 + 57.3416i 0.0851551 + 0.248232i
\(232\) 0 0
\(233\) 88.5790 153.423i 0.380167 0.658469i −0.610919 0.791693i \(-0.709200\pi\)
0.991086 + 0.133224i \(0.0425330\pi\)
\(234\) 0 0
\(235\) 147.804 + 256.004i 0.628952 + 1.08938i
\(236\) 0 0
\(237\) 44.0866i 0.186019i
\(238\) 0 0
\(239\) 135.694 0.567756 0.283878 0.958860i \(-0.408379\pi\)
0.283878 + 0.958860i \(0.408379\pi\)
\(240\) 0 0
\(241\) 273.872 158.120i 1.13640 0.656101i 0.190863 0.981617i \(-0.438871\pi\)
0.945537 + 0.325516i \(0.105538\pi\)
\(242\) 0 0
\(243\) −102.613 59.2439i −0.422278 0.243802i
\(244\) 0 0
\(245\) −97.8850 + 240.684i −0.399530 + 0.982386i
\(246\) 0 0
\(247\) −131.212 + 227.266i −0.531222 + 0.920104i
\(248\) 0 0
\(249\) −16.2179 28.0901i −0.0651319 0.112812i
\(250\) 0 0
\(251\) 40.1231i 0.159853i −0.996801 0.0799265i \(-0.974531\pi\)
0.996801 0.0799265i \(-0.0254686\pi\)
\(252\) 0 0
\(253\) −688.603 −2.72175
\(254\) 0 0
\(255\) −55.8889 + 32.2675i −0.219172 + 0.126539i
\(256\) 0 0
\(257\) −150.405 86.8366i −0.585235 0.337886i 0.177976 0.984035i \(-0.443045\pi\)
−0.763211 + 0.646149i \(0.776378\pi\)
\(258\) 0 0
\(259\) 85.8280 29.4430i 0.331382 0.113680i
\(260\) 0 0
\(261\) −113.999 + 197.451i −0.436776 + 0.756518i
\(262\) 0 0
\(263\) 182.291 + 315.737i 0.693120 + 1.20052i 0.970810 + 0.239848i \(0.0770977\pi\)
−0.277690 + 0.960671i \(0.589569\pi\)
\(264\) 0 0
\(265\) 46.2771i 0.174631i
\(266\) 0 0
\(267\) 21.7831 0.0815846
\(268\) 0 0
\(269\) −15.0874 + 8.71074i −0.0560871 + 0.0323819i −0.527781 0.849380i \(-0.676976\pi\)
0.471694 + 0.881762i \(0.343643\pi\)
\(270\) 0 0
\(271\) 112.812 + 65.1322i 0.416281 + 0.240340i 0.693485 0.720471i \(-0.256074\pi\)
−0.277204 + 0.960811i \(0.589408\pi\)
\(272\) 0 0
\(273\) 14.6204 74.7580i 0.0535545 0.273839i
\(274\) 0 0
\(275\) −26.6402 + 46.1423i −0.0968736 + 0.167790i
\(276\) 0 0
\(277\) −124.595 215.804i −0.449801 0.779077i 0.548572 0.836103i \(-0.315172\pi\)
−0.998373 + 0.0570258i \(0.981838\pi\)
\(278\) 0 0
\(279\) 220.885i 0.791701i
\(280\) 0 0
\(281\) −197.454 −0.702684 −0.351342 0.936247i \(-0.614275\pi\)
−0.351342 + 0.936247i \(0.614275\pi\)
\(282\) 0 0
\(283\) −185.615 + 107.165i −0.655884 + 0.378675i −0.790707 0.612195i \(-0.790287\pi\)
0.134823 + 0.990870i \(0.456953\pi\)
\(284\) 0 0
\(285\) −28.4376 16.4184i −0.0997809 0.0576085i
\(286\) 0 0
\(287\) 155.760 178.767i 0.542717 0.622882i
\(288\) 0 0
\(289\) 143.904 249.250i 0.497939 0.862456i
\(290\) 0 0
\(291\) 7.28427 + 12.6167i 0.0250319 + 0.0433565i
\(292\) 0 0
\(293\) 71.8385i 0.245182i −0.992457 0.122591i \(-0.960880\pi\)
0.992457 0.122591i \(-0.0391204\pi\)
\(294\) 0 0
\(295\) −265.057 −0.898499
\(296\) 0 0
\(297\) −133.074 + 76.8304i −0.448061 + 0.258688i
\(298\) 0 0
\(299\) 749.340 + 432.632i 2.50615 + 1.44693i
\(300\) 0 0
\(301\) 158.309 + 137.934i 0.525943 + 0.458254i
\(302\) 0 0
\(303\) 15.5746 26.9759i 0.0514012 0.0890295i
\(304\) 0 0
\(305\) −10.4361 18.0758i −0.0342167 0.0592651i
\(306\) 0 0
\(307\) 507.046i 1.65162i 0.563951 + 0.825808i \(0.309281\pi\)
−0.563951 + 0.825808i \(0.690719\pi\)
\(308\) 0 0
\(309\) −30.2671 −0.0979516
\(310\) 0 0
\(311\) 269.089 155.359i 0.865239 0.499546i −0.000524087 1.00000i \(-0.500167\pi\)
0.865763 + 0.500454i \(0.166833\pi\)
\(312\) 0 0
\(313\) 475.367 + 274.453i 1.51875 + 0.876848i 0.999756 + 0.0220674i \(0.00702483\pi\)
0.518989 + 0.854781i \(0.326309\pi\)
\(314\) 0 0
\(315\) −318.499 62.2887i −1.01111 0.197742i
\(316\) 0 0
\(317\) 70.9651 122.915i 0.223865 0.387745i −0.732113 0.681183i \(-0.761466\pi\)
0.955978 + 0.293437i \(0.0947993\pi\)
\(318\) 0 0
\(319\) 222.828 + 385.949i 0.698520 + 1.20987i
\(320\) 0 0
\(321\) 66.7261i 0.207869i
\(322\) 0 0
\(323\) 293.494 0.908649
\(324\) 0 0
\(325\) 57.9800 33.4748i 0.178400 0.102999i
\(326\) 0 0
\(327\) −16.5927 9.57978i −0.0507421 0.0292960i
\(328\) 0 0
\(329\) 126.625 + 369.118i 0.384877 + 1.12194i
\(330\) 0 0
\(331\) −18.4325 + 31.9260i −0.0556873 + 0.0964533i −0.892525 0.450997i \(-0.851068\pi\)
0.836838 + 0.547451i \(0.184402\pi\)
\(332\) 0 0
\(333\) 56.6671 + 98.1502i 0.170171 + 0.294745i
\(334\) 0 0
\(335\) 561.468i 1.67602i
\(336\) 0 0
\(337\) −541.604 −1.60713 −0.803567 0.595214i \(-0.797067\pi\)
−0.803567 + 0.595214i \(0.797067\pi\)
\(338\) 0 0
\(339\) −20.3823 + 11.7677i −0.0601247 + 0.0347130i
\(340\) 0 0
\(341\) 373.909 + 215.877i 1.09651 + 0.633069i
\(342\) 0 0
\(343\) −187.799 + 287.020i −0.547518 + 0.836794i
\(344\) 0 0
\(345\) −54.1348 + 93.7643i −0.156913 + 0.271781i
\(346\) 0 0
\(347\) −122.201 211.658i −0.352164 0.609966i 0.634464 0.772952i \(-0.281221\pi\)
−0.986628 + 0.162986i \(0.947887\pi\)
\(348\) 0 0
\(349\) 190.205i 0.545001i −0.962156 0.272501i \(-0.912149\pi\)
0.962156 0.272501i \(-0.0878507\pi\)
\(350\) 0 0
\(351\) 193.082 0.550091
\(352\) 0 0
\(353\) 341.878 197.383i 0.968493 0.559160i 0.0697166 0.997567i \(-0.477791\pi\)
0.898777 + 0.438407i \(0.144457\pi\)
\(354\) 0 0
\(355\) 160.833 + 92.8572i 0.453052 + 0.261570i
\(356\) 0 0
\(357\) −80.5832 + 27.6438i −0.225723 + 0.0774336i
\(358\) 0 0
\(359\) 148.162 256.625i 0.412709 0.714833i −0.582476 0.812848i \(-0.697916\pi\)
0.995185 + 0.0980151i \(0.0312494\pi\)
\(360\) 0 0
\(361\) −105.832 183.306i −0.293163 0.507773i
\(362\) 0 0
\(363\) 86.6873i 0.238808i
\(364\) 0 0
\(365\) 247.190 0.677232
\(366\) 0 0
\(367\) −521.865 + 301.299i −1.42198 + 0.820978i −0.996468 0.0839772i \(-0.973238\pi\)
−0.425507 + 0.904955i \(0.639904\pi\)
\(368\) 0 0
\(369\) 256.474 + 148.076i 0.695053 + 0.401289i
\(370\) 0 0
\(371\) 11.7253 59.9548i 0.0316047 0.161603i
\(372\) 0 0
\(373\) 53.4998 92.6644i 0.143431 0.248430i −0.785355 0.619045i \(-0.787520\pi\)
0.928787 + 0.370615i \(0.120853\pi\)
\(374\) 0 0
\(375\) −29.3997 50.9218i −0.0783992 0.135791i
\(376\) 0 0
\(377\) 559.988i 1.48538i
\(378\) 0 0
\(379\) −539.901 −1.42454 −0.712270 0.701906i \(-0.752333\pi\)
−0.712270 + 0.701906i \(0.752333\pi\)
\(380\) 0 0
\(381\) −5.60924 + 3.23849i −0.0147224 + 0.00849998i
\(382\) 0 0
\(383\) −115.719 66.8102i −0.302137 0.174439i 0.341265 0.939967i \(-0.389145\pi\)
−0.643403 + 0.765528i \(0.722478\pi\)
\(384\) 0 0
\(385\) −416.719 + 478.273i −1.08239 + 1.24227i
\(386\) 0 0
\(387\) −131.130 + 227.123i −0.338836 + 0.586882i
\(388\) 0 0
\(389\) −285.627 494.721i −0.734260 1.27178i −0.955047 0.296454i \(-0.904196\pi\)
0.220787 0.975322i \(-0.429138\pi\)
\(390\) 0 0
\(391\) 967.707i 2.47495i
\(392\) 0 0
\(393\) 0.543792 0.00138369
\(394\) 0 0
\(395\) 399.518 230.662i 1.01144 0.583955i
\(396\) 0 0
\(397\) 172.662 + 99.6863i 0.434916 + 0.251099i 0.701439 0.712730i \(-0.252541\pi\)
−0.266523 + 0.963829i \(0.585875\pi\)
\(398\) 0 0
\(399\) −32.6826 28.4764i −0.0819114 0.0713694i
\(400\) 0 0
\(401\) −317.211 + 549.426i −0.791050 + 1.37014i 0.134267 + 0.990945i \(0.457132\pi\)
−0.925317 + 0.379194i \(0.876201\pi\)
\(402\) 0 0
\(403\) −271.259 469.835i −0.673100 1.16584i
\(404\) 0 0
\(405\) 393.096i 0.970608i
\(406\) 0 0
\(407\) 221.529 0.544298
\(408\) 0 0
\(409\) −597.403 + 344.911i −1.46064 + 0.843303i −0.999041 0.0437846i \(-0.986058\pi\)
−0.461602 + 0.887087i \(0.652725\pi\)
\(410\) 0 0
\(411\) 29.3444 + 16.9420i 0.0713975 + 0.0412214i
\(412\) 0 0
\(413\) −343.398 67.1582i −0.831472 0.162611i
\(414\) 0 0
\(415\) 169.704 293.937i 0.408926 0.708281i
\(416\) 0 0
\(417\) −56.0133 97.0179i −0.134324 0.232657i
\(418\) 0 0
\(419\) 43.8224i 0.104588i 0.998632 + 0.0522940i \(0.0166533\pi\)
−0.998632 + 0.0522940i \(0.983347\pi\)
\(420\) 0 0
\(421\) 357.611 0.849433 0.424717 0.905326i \(-0.360374\pi\)
0.424717 + 0.905326i \(0.360374\pi\)
\(422\) 0 0
\(423\) −422.112 + 243.706i −0.997901 + 0.576138i
\(424\) 0 0
\(425\) −64.8446 37.4380i −0.152575 0.0880895i
\(426\) 0 0
\(427\) −8.94068 26.0626i −0.0209384 0.0610365i
\(428\) 0 0
\(429\) 92.9867 161.058i 0.216752 0.375426i
\(430\) 0 0
\(431\) 143.259 + 248.131i 0.332387 + 0.575711i 0.982979 0.183716i \(-0.0588127\pi\)
−0.650592 + 0.759427i \(0.725479\pi\)
\(432\) 0 0
\(433\) 407.880i 0.941986i 0.882137 + 0.470993i \(0.156104\pi\)
−0.882137 + 0.470993i \(0.843896\pi\)
\(434\) 0 0
\(435\) 70.0708 0.161082
\(436\) 0 0
\(437\) 426.424 246.196i 0.975798 0.563377i
\(438\) 0 0
\(439\) 46.8249 + 27.0344i 0.106663 + 0.0615817i 0.552382 0.833591i \(-0.313719\pi\)
−0.445720 + 0.895173i \(0.647052\pi\)
\(440\) 0 0
\(441\) −396.853 161.398i −0.899893 0.365981i
\(442\) 0 0
\(443\) −158.497 + 274.526i −0.357782 + 0.619697i −0.987590 0.157054i \(-0.949800\pi\)
0.629808 + 0.776751i \(0.283134\pi\)
\(444\) 0 0
\(445\) 113.970 + 197.401i 0.256112 + 0.443599i
\(446\) 0 0
\(447\) 20.0272i 0.0448035i
\(448\) 0 0
\(449\) 544.261 1.21216 0.606081 0.795403i \(-0.292741\pi\)
0.606081 + 0.795403i \(0.292741\pi\)
\(450\) 0 0
\(451\) 501.319 289.437i 1.11157 0.641767i
\(452\) 0 0
\(453\) −97.7437 56.4323i −0.215770 0.124575i
\(454\) 0 0
\(455\) 753.961 258.644i 1.65706 0.568448i
\(456\) 0 0
\(457\) 343.708 595.320i 0.752096 1.30267i −0.194709 0.980861i \(-0.562376\pi\)
0.946805 0.321808i \(-0.104291\pi\)
\(458\) 0 0
\(459\) −107.971 187.011i −0.235231 0.407432i
\(460\) 0 0
\(461\) 676.260i 1.46694i −0.679721 0.733470i \(-0.737899\pi\)
0.679721 0.733470i \(-0.262101\pi\)
\(462\) 0 0
\(463\) −559.738 −1.20894 −0.604469 0.796629i \(-0.706615\pi\)
−0.604469 + 0.796629i \(0.706615\pi\)
\(464\) 0 0
\(465\) 58.7901 33.9425i 0.126430 0.0729945i
\(466\) 0 0
\(467\) −319.886 184.686i −0.684981 0.395474i 0.116748 0.993162i \(-0.462753\pi\)
−0.801729 + 0.597687i \(0.796086\pi\)
\(468\) 0 0
\(469\) −142.261 + 727.417i −0.303327 + 1.55100i
\(470\) 0 0
\(471\) 51.2233 88.7213i 0.108754 0.188368i
\(472\) 0 0
\(473\) 256.313 + 443.948i 0.541889 + 0.938579i
\(474\) 0 0
\(475\) 38.0987i 0.0802077i
\(476\) 0 0
\(477\) 76.3040 0.159967
\(478\) 0 0
\(479\) −270.362 + 156.094i −0.564430 + 0.325874i −0.754922 0.655815i \(-0.772325\pi\)
0.190492 + 0.981689i \(0.438992\pi\)
\(480\) 0 0
\(481\) −241.069 139.181i −0.501182 0.289358i
\(482\) 0 0
\(483\) −93.8923 + 107.761i −0.194394 + 0.223108i
\(484\) 0 0
\(485\) −76.2231 + 132.022i −0.157161 + 0.272211i
\(486\) 0 0
\(487\) 140.195 + 242.824i 0.287874 + 0.498613i 0.973302 0.229528i \(-0.0737182\pi\)
−0.685428 + 0.728140i \(0.740385\pi\)
\(488\) 0 0
\(489\) 1.33283i 0.00272562i
\(490\) 0 0
\(491\) 423.804 0.863145 0.431573 0.902078i \(-0.357959\pi\)
0.431573 + 0.902078i \(0.357959\pi\)
\(492\) 0 0
\(493\) −542.382 + 313.144i −1.10017 + 0.635181i
\(494\) 0 0
\(495\) −686.171 396.161i −1.38620 0.800325i
\(496\) 0 0
\(497\) 184.842 + 161.053i 0.371916 + 0.324050i
\(498\) 0 0
\(499\) 83.0243 143.802i 0.166381 0.288181i −0.770764 0.637121i \(-0.780125\pi\)
0.937145 + 0.348940i \(0.113458\pi\)
\(500\) 0 0
\(501\) 33.6997 + 58.3695i 0.0672648 + 0.116506i
\(502\) 0 0
\(503\) 632.164i 1.25679i −0.777896 0.628393i \(-0.783713\pi\)
0.777896 0.628393i \(-0.216287\pi\)
\(504\) 0 0
\(505\) 325.946 0.645438
\(506\) 0 0
\(507\) −128.211 + 74.0224i −0.252881 + 0.146001i
\(508\) 0 0
\(509\) 269.053 + 155.338i 0.528592 + 0.305183i 0.740443 0.672119i \(-0.234616\pi\)
−0.211851 + 0.977302i \(0.567949\pi\)
\(510\) 0 0
\(511\) 320.249 + 62.6310i 0.626711 + 0.122566i
\(512\) 0 0
\(513\) 54.9382 95.1558i 0.107092 0.185489i
\(514\) 0 0
\(515\) −158.358 274.284i −0.307491 0.532591i
\(516\) 0 0
\(517\) 952.725i 1.84279i
\(518\) 0 0
\(519\) −49.1977 −0.0947932
\(520\) 0 0
\(521\) 58.0568 33.5191i 0.111433 0.0643361i −0.443247 0.896399i \(-0.646174\pi\)
0.554681 + 0.832063i \(0.312840\pi\)
\(522\) 0 0
\(523\) −462.718 267.150i −0.884738 0.510804i −0.0125204 0.999922i \(-0.503985\pi\)
−0.872218 + 0.489118i \(0.837319\pi\)
\(524\) 0 0
\(525\) 3.58846 + 10.4606i 0.00683517 + 0.0199249i
\(526\) 0 0
\(527\) −303.375 + 525.462i −0.575665 + 0.997081i
\(528\) 0 0
\(529\) −547.257 947.877i −1.03451 1.79183i
\(530\) 0 0
\(531\) 437.040i 0.823051i
\(532\) 0 0
\(533\) −727.383 −1.36470
\(534\) 0 0
\(535\) 604.681 349.113i 1.13025 0.652547i
\(536\) 0 0
\(537\) 36.8800 + 21.2927i 0.0686778 + 0.0396512i
\(538\) 0 0
\(539\) −661.066 + 514.047i −1.22647 + 0.953704i
\(540\) 0 0
\(541\) 75.6707 131.065i 0.139872 0.242265i −0.787576 0.616217i \(-0.788664\pi\)
0.927448 + 0.373952i \(0.121998\pi\)
\(542\) 0 0
\(543\) −54.3096 94.0670i −0.100018 0.173236i
\(544\) 0 0
\(545\) 200.487i 0.367865i
\(546\) 0 0
\(547\) 775.543 1.41781 0.708906 0.705303i \(-0.249189\pi\)
0.708906 + 0.705303i \(0.249189\pi\)
\(548\) 0 0
\(549\) 29.8044 17.2076i 0.0542885 0.0313435i
\(550\) 0 0
\(551\) −275.976 159.335i −0.500865 0.289174i
\(552\) 0 0
\(553\) 576.044 197.610i 1.04167 0.357342i
\(554\) 0 0
\(555\) 17.4156 30.1647i 0.0313795 0.0543508i
\(556\) 0 0
\(557\) 32.2200 + 55.8066i 0.0578455 + 0.100191i 0.893498 0.449067i \(-0.148244\pi\)
−0.835653 + 0.549258i \(0.814910\pi\)
\(558\) 0 0
\(559\) 644.140i 1.15231i
\(560\) 0 0
\(561\) −207.992 −0.370752
\(562\) 0 0
\(563\) 789.688 455.927i 1.40264 0.809816i 0.407980 0.912991i \(-0.366233\pi\)
0.994663 + 0.103175i \(0.0329000\pi\)
\(564\) 0 0
\(565\) −213.281 123.138i −0.377489 0.217943i
\(566\) 0 0
\(567\) 99.5997 509.280i 0.175661 0.898201i
\(568\) 0 0
\(569\) −118.002 + 204.386i −0.207385 + 0.359201i −0.950890 0.309529i \(-0.899829\pi\)
0.743505 + 0.668730i \(0.233162\pi\)
\(570\) 0 0
\(571\) −414.770 718.403i −0.726392 1.25815i −0.958398 0.285434i \(-0.907862\pi\)
0.232006 0.972714i \(-0.425471\pi\)
\(572\) 0 0
\(573\) 27.7379i 0.0484082i
\(574\) 0 0
\(575\) −125.619 −0.218468
\(576\) 0 0
\(577\) 380.226 219.524i 0.658971 0.380457i −0.132914 0.991128i \(-0.542433\pi\)
0.791885 + 0.610671i \(0.209100\pi\)
\(578\) 0 0
\(579\) 152.853 + 88.2497i 0.263995 + 0.152417i
\(580\) 0 0
\(581\) 294.338 337.815i 0.506606 0.581437i
\(582\) 0 0
\(583\) 74.5741 129.166i 0.127914 0.221554i
\(584\) 0 0
\(585\) 497.795 + 862.207i 0.850932 + 1.47386i
\(586\) 0 0
\(587\) 871.738i 1.48507i 0.669805 + 0.742537i \(0.266378\pi\)
−0.669805 + 0.742537i \(0.733622\pi\)
\(588\) 0 0
\(589\) −308.729 −0.524158
\(590\) 0 0
\(591\) −70.9216 + 40.9466i −0.120003 + 0.0692836i
\(592\) 0 0
\(593\) 662.637 + 382.574i 1.11743 + 0.645149i 0.940744 0.339117i \(-0.110128\pi\)
0.176688 + 0.984267i \(0.443462\pi\)
\(594\) 0 0
\(595\) −672.125 585.623i −1.12962 0.984240i
\(596\) 0 0
\(597\) −34.8702 + 60.3969i −0.0584090 + 0.101167i
\(598\) 0 0
\(599\) −146.400 253.571i −0.244407 0.423325i 0.717558 0.696499i \(-0.245260\pi\)
−0.961965 + 0.273174i \(0.911926\pi\)
\(600\) 0 0
\(601\) 748.440i 1.24532i −0.782491 0.622662i \(-0.786051\pi\)
0.782491 0.622662i \(-0.213949\pi\)
\(602\) 0 0
\(603\) −925.777 −1.53529
\(604\) 0 0
\(605\) −785.572 + 453.550i −1.29847 + 0.749670i
\(606\) 0 0
\(607\) 53.7404 + 31.0270i 0.0885344 + 0.0511154i 0.543614 0.839336i \(-0.317056\pi\)
−0.455079 + 0.890451i \(0.650389\pi\)
\(608\) 0 0
\(609\) 90.7811 + 17.7540i 0.149066 + 0.0291527i
\(610\) 0 0
\(611\) 598.572 1036.76i 0.979660 1.69682i
\(612\) 0 0
\(613\) 22.3280 + 38.6732i 0.0364241 + 0.0630884i 0.883663 0.468124i \(-0.155070\pi\)
−0.847239 + 0.531212i \(0.821737\pi\)
\(614\) 0 0
\(615\) 91.0168i 0.147995i
\(616\) 0 0
\(617\) −832.160 −1.34872 −0.674360 0.738403i \(-0.735580\pi\)
−0.674360 + 0.738403i \(0.735580\pi\)
\(618\) 0 0
\(619\) 216.394 124.935i 0.349586 0.201834i −0.314917 0.949119i \(-0.601977\pi\)
0.664503 + 0.747285i \(0.268643\pi\)
\(620\) 0 0
\(621\) −313.747 181.142i −0.505229 0.291694i
\(622\) 0 0
\(623\) 97.6388 + 284.623i 0.156724 + 0.456858i
\(624\) 0 0
\(625\) 346.611 600.347i 0.554577 0.960556i
\(626\) 0 0
\(627\) −52.9156 91.6525i −0.0843948 0.146176i
\(628\) 0 0
\(629\) 311.319i 0.494943i
\(630\) 0 0
\(631\) −26.0372 −0.0412634 −0.0206317 0.999787i \(-0.506568\pi\)
−0.0206317 + 0.999787i \(0.506568\pi\)
\(632\) 0 0
\(633\) −44.5713 + 25.7332i −0.0704128 + 0.0406528i
\(634\) 0 0
\(635\) −58.6954 33.8878i −0.0924336 0.0533666i
\(636\) 0 0
\(637\) 1042.34 144.056i 1.63632 0.226148i
\(638\) 0 0
\(639\) −153.108 + 265.190i −0.239605 + 0.415008i
\(640\) 0 0
\(641\) −235.195 407.370i −0.366920 0.635523i 0.622163 0.782888i \(-0.286254\pi\)
−0.989082 + 0.147365i \(0.952921\pi\)
\(642\) 0 0
\(643\) 668.123i 1.03907i 0.854449 + 0.519536i \(0.173895\pi\)
−0.854449 + 0.519536i \(0.826105\pi\)
\(644\) 0 0
\(645\) 80.6007 0.124962
\(646\) 0 0
\(647\) −925.107 + 534.111i −1.42984 + 0.825519i −0.997108 0.0760031i \(-0.975784\pi\)
−0.432733 + 0.901522i \(0.642451\pi\)
\(648\) 0 0
\(649\) −739.813 427.131i −1.13993 0.658138i
\(650\) 0 0
\(651\) 84.7662 29.0788i 0.130209 0.0446678i
\(652\) 0 0
\(653\) −389.917 + 675.357i −0.597117 + 1.03424i 0.396128 + 0.918195i \(0.370354\pi\)
−0.993244 + 0.116041i \(0.962980\pi\)
\(654\) 0 0
\(655\) 2.84513 + 4.92792i 0.00434371 + 0.00752353i
\(656\) 0 0
\(657\) 407.579i 0.620363i
\(658\) 0 0
\(659\) −1017.20 −1.54355 −0.771774 0.635897i \(-0.780630\pi\)
−0.771774 + 0.635897i \(0.780630\pi\)
\(660\) 0 0
\(661\) 819.200 472.966i 1.23934 0.715530i 0.270377 0.962755i \(-0.412852\pi\)
0.968958 + 0.247224i \(0.0795184\pi\)
\(662\) 0 0
\(663\) 226.337 + 130.676i 0.341384 + 0.197098i
\(664\) 0 0
\(665\) 87.0605 445.164i 0.130918 0.669419i
\(666\) 0 0
\(667\) −525.359 + 909.949i −0.787645 + 1.36424i
\(668\) 0 0
\(669\) −45.7522 79.2452i −0.0683890 0.118453i
\(670\) 0 0
\(671\) 67.2697i 0.100253i
\(672\) 0 0
\(673\) −76.8911 −0.114251 −0.0571256 0.998367i \(-0.518194\pi\)
−0.0571256 + 0.998367i \(0.518194\pi\)
\(674\) 0 0
\(675\) −24.2761 + 14.0158i −0.0359646 + 0.0207642i
\(676\) 0 0
\(677\) −555.161 320.523i −0.820031 0.473445i 0.0303959 0.999538i \(-0.490323\pi\)
−0.850427 + 0.526093i \(0.823657\pi\)
\(678\) 0 0
\(679\) −132.202 + 151.730i −0.194702 + 0.223461i
\(680\) 0 0
\(681\) −12.8481 + 22.2535i −0.0188665 + 0.0326777i
\(682\) 0 0
\(683\) 511.461 + 885.877i 0.748845 + 1.29704i 0.948377 + 0.317147i \(0.102725\pi\)
−0.199531 + 0.979891i \(0.563942\pi\)
\(684\) 0 0
\(685\) 354.564i 0.517611i
\(686\) 0 0
\(687\) 101.112 0.147180
\(688\) 0 0
\(689\) −162.303 + 93.7059i −0.235564 + 0.136003i
\(690\) 0 0
\(691\) 597.595 + 345.021i 0.864826 + 0.499307i 0.865625 0.500692i \(-0.166921\pi\)
−0.000799666 1.00000i \(0.500255\pi\)
\(692\) 0 0
\(693\) −788.600 687.108i −1.13795 0.991497i
\(694\) 0 0
\(695\) 586.126 1015.20i 0.843347 1.46072i
\(696\) 0 0
\(697\) 406.751 + 704.513i 0.583574 + 1.01078i
\(698\) 0 0
\(699\) 89.7739i 0.128432i
\(700\) 0 0
\(701\) 361.922 0.516294 0.258147 0.966106i \(-0.416888\pi\)
0.258147 + 0.966106i \(0.416888\pi\)
\(702\) 0 0
\(703\) −137.184 + 79.2032i −0.195141 + 0.112665i
\(704\) 0 0
\(705\) 129.729 + 74.8988i 0.184012 + 0.106239i
\(706\) 0 0
\(707\) 422.283 + 82.5858i 0.597289 + 0.116812i
\(708\) 0 0
\(709\) 260.952 451.982i 0.368056 0.637492i −0.621205 0.783648i \(-0.713357\pi\)
0.989262 + 0.146156i \(0.0466900\pi\)
\(710\) 0 0
\(711\) 380.327 + 658.746i 0.534919 + 0.926507i
\(712\) 0 0
\(713\) 1017.94i 1.42769i
\(714\) 0 0
\(715\) 1946.04 2.72173
\(716\) 0 0
\(717\) 59.5497 34.3810i 0.0830540 0.0479513i
\(718\) 0 0
\(719\) 573.144 + 330.905i 0.797141 + 0.460230i 0.842470 0.538743i \(-0.181100\pi\)
−0.0453294 + 0.998972i \(0.514434\pi\)
\(720\) 0 0
\(721\) −135.667 395.476i −0.188164 0.548510i
\(722\) 0 0
\(723\) 80.1267 138.783i 0.110825 0.191955i
\(724\) 0 0
\(725\) 40.6495 + 70.4070i 0.0560683 + 0.0971132i
\(726\) 0 0
\(727\) 1169.62i 1.60882i 0.594071 + 0.804412i \(0.297520\pi\)
−0.594071 + 0.804412i \(0.702480\pi\)
\(728\) 0 0
\(729\) 607.150 0.832854
\(730\) 0 0
\(731\) −623.888 + 360.202i −0.853472 + 0.492752i
\(732\) 0 0
\(733\) 391.800 + 226.206i 0.534516 + 0.308603i 0.742853 0.669454i \(-0.233472\pi\)
−0.208338 + 0.978057i \(0.566805\pi\)
\(734\) 0 0
\(735\) 18.0256 + 130.427i 0.0245246 + 0.177451i
\(736\) 0 0
\(737\) −904.788 + 1567.14i −1.22766 + 2.12638i
\(738\) 0 0
\(739\) 2.75378 + 4.76968i 0.00372636 + 0.00645424i 0.867883 0.496769i \(-0.165481\pi\)
−0.864156 + 0.503224i \(0.832147\pi\)
\(740\) 0 0
\(741\) 132.982i 0.179463i
\(742\) 0 0
\(743\) 866.020 1.16557 0.582786 0.812626i \(-0.301963\pi\)
0.582786 + 0.812626i \(0.301963\pi\)
\(744\) 0 0
\(745\) −181.489 + 104.783i −0.243609 + 0.140648i
\(746\) 0 0
\(747\) 484.658 + 279.817i 0.648806 + 0.374588i
\(748\) 0 0
\(749\) 871.857 299.088i 1.16403 0.399316i
\(750\) 0 0
\(751\) 230.421 399.101i 0.306819 0.531426i −0.670846 0.741597i \(-0.734069\pi\)
0.977665 + 0.210171i \(0.0674020\pi\)
\(752\) 0 0
\(753\) −10.1661 17.6082i −0.0135008 0.0233840i
\(754\) 0 0
\(755\) 1181.02i 1.56427i
\(756\) 0 0
\(757\) 547.987 0.723893 0.361946 0.932199i \(-0.382112\pi\)
0.361946 + 0.932199i \(0.382112\pi\)
\(758\) 0 0
\(759\) −302.196 + 174.473i −0.398151 + 0.229872i
\(760\) 0 0
\(761\) −1129.20 651.942i −1.48383 0.856691i −0.484002 0.875067i \(-0.660817\pi\)
−0.999831 + 0.0183760i \(0.994150\pi\)
\(762\) 0 0
\(763\) 50.7978 259.743i 0.0665764 0.340423i
\(764\) 0 0
\(765\) 556.732 964.289i 0.727755 1.26051i
\(766\) 0 0
\(767\) 536.711 + 929.611i 0.699754 + 1.21201i
\(768\) 0 0
\(769\) 771.004i 1.00261i 0.865272 + 0.501303i \(0.167146\pi\)
−0.865272 + 0.501303i \(0.832854\pi\)
\(770\) 0 0
\(771\) −88.0080 −0.114148
\(772\) 0 0
\(773\) 922.592 532.659i 1.19352 0.689080i 0.234418 0.972136i \(-0.424681\pi\)
0.959104 + 0.283056i \(0.0913481\pi\)
\(774\) 0 0
\(775\) 68.2106 + 39.3814i 0.0880137 + 0.0508147i
\(776\) 0 0
\(777\) 30.2059 34.6676i 0.0388750 0.0446173i
\(778\) 0 0
\(779\) −206.964 + 358.473i −0.265679 + 0.460170i
\(780\) 0 0
\(781\) 299.273 + 518.356i 0.383192 + 0.663708i
\(782\) 0 0
\(783\) 234.466i 0.299446i
\(784\) 0 0
\(785\) 1072.01 1.36561
\(786\) 0 0
\(787\) −818.075 + 472.316i −1.03948 + 0.600147i −0.919687 0.392651i \(-0.871558\pi\)
−0.119798 + 0.992798i \(0.538225\pi\)
\(788\) 0 0
\(789\) 159.998 + 92.3748i 0.202786 + 0.117078i
\(790\) 0 0
\(791\) −245.119 213.572i −0.309885 0.270003i
\(792\) 0 0
\(793\) −42.2638 + 73.2031i −0.0532961 + 0.0923116i
\(794\) 0 0
\(795\) −11.7253 20.3089i −0.0147489 0.0255458i
\(796\) 0 0
\(797\) 1245.89i 1.56322i −0.623765 0.781612i \(-0.714398\pi\)
0.623765 0.781612i \(-0.285602\pi\)
\(798\) 0 0
\(799\) −1338.88 −1.67570
\(800\) 0 0
\(801\) −325.486 + 187.919i −0.406349 + 0.234606i
\(802\) 0 0
\(803\) 689.942 + 398.338i 0.859205 + 0.496062i
\(804\) 0 0
\(805\) −1467.79 287.056i −1.82335 0.356591i
\(806\) 0 0
\(807\) −4.41412 + 7.64548i −0.00546979 + 0.00947396i
\(808\) 0 0
\(809\) 88.6536 + 153.553i 0.109584 + 0.189805i 0.915602 0.402086i \(-0.131715\pi\)
−0.806018 + 0.591891i \(0.798381\pi\)
\(810\) 0 0
\(811\) 1212.71i 1.49532i 0.664079 + 0.747662i \(0.268824\pi\)
−0.664079 + 0.747662i \(0.731176\pi\)
\(812\) 0 0
\(813\) 66.0108 0.0811941
\(814\) 0 0
\(815\) −12.0783 + 6.97339i −0.0148200 + 0.00855631i
\(816\) 0 0
\(817\) −317.449 183.279i −0.388554 0.224332i
\(818\) 0 0
\(819\) 426.465 + 1243.17i 0.520714 + 1.51791i
\(820\) 0 0
\(821\) −532.253 + 921.889i −0.648298 + 1.12289i 0.335231 + 0.942136i \(0.391186\pi\)
−0.983529 + 0.180749i \(0.942148\pi\)
\(822\) 0 0
\(823\) 142.824 + 247.378i 0.173540 + 0.300581i 0.939655 0.342123i \(-0.111146\pi\)
−0.766115 + 0.642704i \(0.777813\pi\)
\(824\) 0 0
\(825\) 26.9996i 0.0327268i
\(826\) 0 0
\(827\) −1182.30 −1.42962 −0.714811 0.699317i \(-0.753487\pi\)
−0.714811 + 0.699317i \(0.753487\pi\)
\(828\) 0 0
\(829\) −624.399 + 360.497i −0.753195 + 0.434857i −0.826847 0.562427i \(-0.809868\pi\)
0.0736521 + 0.997284i \(0.476535\pi\)
\(830\) 0 0
\(831\) −109.358 63.1378i −0.131598 0.0759781i
\(832\) 0 0
\(833\) −722.399 929.009i −0.867226 1.11526i
\(834\) 0 0
\(835\) −352.635 + 610.782i −0.422317 + 0.731475i
\(836\) 0 0
\(837\) 113.576 + 196.719i 0.135694 + 0.235029i
\(838\) 0 0
\(839\) 548.052i 0.653221i 0.945159 + 0.326610i \(0.105906\pi\)
−0.945159 + 0.326610i \(0.894094\pi\)
\(840\) 0 0
\(841\) −160.988 −0.191424
\(842\) 0 0
\(843\) −86.6536 + 50.0295i −0.102792 + 0.0593469i
\(844\) 0 0
\(845\) −1341.60 774.574i −1.58769 0.916656i
\(846\) 0 0
\(847\) −1132.67 + 388.560i −1.33728 + 0.458749i
\(848\) 0 0
\(849\) −54.3053 + 94.0596i −0.0639639 + 0.110789i
\(850\) 0 0
\(851\) 261.149 + 452.323i 0.306873 + 0.531519i
\(852\) 0 0
\(853\) 1110.62i 1.30201i 0.759072 + 0.651007i \(0.225653\pi\)
−0.759072 + 0.651007i \(0.774347\pi\)
\(854\) 0 0
\(855\) 566.556 0.662639
\(856\) 0 0
\(857\) −125.717 + 72.5826i −0.146694 + 0.0846939i −0.571551 0.820567i \(-0.693658\pi\)
0.424856 + 0.905261i \(0.360325\pi\)
\(858\) 0 0
\(859\) −1156.42 667.660i −1.34624 0.777252i −0.358526 0.933520i \(-0.616720\pi\)
−0.987715 + 0.156268i \(0.950054\pi\)
\(860\) 0 0
\(861\) 23.0612 117.918i 0.0267841 0.136955i
\(862\) 0 0
\(863\) −281.425 + 487.443i −0.326101 + 0.564824i −0.981735 0.190255i \(-0.939068\pi\)
0.655633 + 0.755079i \(0.272402\pi\)
\(864\) 0 0
\(865\) −257.404 445.836i −0.297576 0.515417i
\(866\) 0 0
\(867\) 145.846i 0.168219i
\(868\) 0 0
\(869\) 1486.82 1.71095
\(870\) 0 0
\(871\) 1969.19 1136.91i 2.26083 1.30529i
\(872\) 0 0
\(873\) −217.685 125.680i −0.249353 0.143964i
\(874\) 0 0
\(875\) 533.576 612.390i 0.609801 0.699875i
\(876\) 0 0
\(877\) −453.268 + 785.084i −0.516840 + 0.895193i 0.482969 + 0.875637i \(0.339558\pi\)
−0.999809 + 0.0195553i \(0.993775\pi\)
\(878\) 0 0
\(879\) −18.2019 31.5266i −0.0207075 0.0358664i
\(880\) 0 0
\(881\) 422.614i 0.479698i 0.970810 + 0.239849i \(0.0770979\pi\)
−0.970810 + 0.239849i \(0.922902\pi\)
\(882\) 0 0
\(883\) 310.036 0.351116 0.175558 0.984469i \(-0.443827\pi\)
0.175558 + 0.984469i \(0.443827\pi\)
\(884\) 0 0
\(885\) −116.321 + 67.1582i −0.131437 + 0.0758850i
\(886\) 0 0
\(887\) −983.657 567.915i −1.10897 0.640265i −0.170408 0.985374i \(-0.554509\pi\)
−0.938563 + 0.345109i \(0.887842\pi\)
\(888\) 0 0
\(889\) −67.4572 58.7755i −0.0758799 0.0661142i
\(890\) 0 0
\(891\) 633.462 1097.19i 0.710956 1.23141i
\(892\) 0 0
\(893\) −340.627 589.983i −0.381441 0.660676i
\(894\) 0 0
\(895\) 445.616i 0.497895i
\(896\) 0 0
\(897\) 438.468 0.488816
\(898\) 0 0
\(899\) 570.536 329.399i 0.634635 0.366406i
\(900\) 0 0
\(901\) 181.519 + 104.800i 0.201464 + 0.116316i
\(902\) 0 0
\(903\) 104.423 + 20.4220i 0.115640 + 0.0226157i
\(904\) 0 0
\(905\) 568.299 984.323i 0.627955 1.08765i
\(906\) 0 0
\(907\) −40.4633 70.0846i −0.0446123 0.0772707i 0.842857 0.538138i \(-0.180872\pi\)
−0.887469 + 0.460867i \(0.847539\pi\)
\(908\) 0 0
\(909\) 537.436i 0.591239i
\(910\) 0 0
\(911\) 1285.92 1.41155 0.705774 0.708437i \(-0.250599\pi\)
0.705774 + 0.708437i \(0.250599\pi\)
\(912\) 0 0
\(913\) 947.340 546.947i 1.03761 0.599065i
\(914\) 0 0
\(915\) −9.15984 5.28844i −0.0100108 0.00577971i
\(916\) 0 0
\(917\) 2.43745 + 7.10530i 0.00265807 + 0.00774842i
\(918\) 0 0
\(919\) −856.410 + 1483.35i −0.931894 + 1.61409i −0.151812 + 0.988409i \(0.548511\pi\)
−0.780082 + 0.625678i \(0.784823\pi\)
\(920\) 0 0
\(921\) 128.472 + 222.519i 0.139491 + 0.241606i
\(922\) 0 0
\(923\) 752.101i 0.814845i
\(924\) 0 0
\(925\) 40.4126 0.0436893
\(926\) 0 0
\(927\) 452.254 261.109i 0.487868 0.281671i
\(928\) 0 0
\(929\) 1178.70 + 680.522i 1.26878 + 0.732531i 0.974757 0.223267i \(-0.0716720\pi\)
0.294024 + 0.955798i \(0.405005\pi\)
\(930\) 0 0
\(931\) 225.585 554.679i 0.242303 0.595788i
\(932\) 0 0
\(933\) 78.7273 136.360i 0.0843808 0.146152i
\(934\) 0 0
\(935\) −1088.22 1884.85i −1.16387 2.01588i
\(936\) 0 0
\(937\) 314.858i 0.336028i 0.985785 + 0.168014i \(0.0537354\pi\)
−0.985785 + 0.168014i \(0.946265\pi\)
\(938\) 0 0
\(939\) 278.156 0.296226
\(940\) 0 0
\(941\) 261.326 150.877i 0.277711 0.160336i −0.354676 0.934989i \(-0.615409\pi\)
0.632387 + 0.774653i \(0.282075\pi\)
\(942\) 0 0
\(943\) 1181.96 + 682.403i 1.25340 + 0.723651i
\(944\) 0 0
\(945\) −315.682 + 108.294i −0.334055 + 0.114597i
\(946\) 0 0
\(947\) −726.588 + 1258.49i −0.767252 + 1.32892i 0.171796 + 0.985133i \(0.445043\pi\)
−0.939048 + 0.343787i \(0.888290\pi\)
\(948\) 0 0
\(949\) −500.531 866.945i −0.527430 0.913536i
\(950\) 0 0
\(951\) 71.9225i 0.0756282i
\(952\) 0 0
\(953\) 977.784 1.02601 0.513003 0.858387i \(-0.328533\pi\)
0.513003 + 0.858387i \(0.328533\pi\)
\(954\) 0 0
\(955\) −251.365 + 145.126i −0.263209 + 0.151964i
\(956\) 0 0
\(957\) 195.578 + 112.917i 0.204366 + 0.117991i
\(958\) 0 0
\(959\) −89.8367 + 459.359i −0.0936775 + 0.478998i
\(960\) 0 0
\(961\) −161.377 + 279.512i −0.167926 + 0.290856i
\(962\) 0 0
\(963\) 575.635 + 997.029i 0.597752 + 1.03534i
\(964\) 0 0
\(965\) 1846.90i 1.91389i
\(966\) 0 0
\(967\) −181.044 −0.187222 −0.0936109 0.995609i \(-0.529841\pi\)
−0.0936109 + 0.995609i \(0.529841\pi\)
\(968\) 0 0
\(969\) 128.801 74.3632i 0.132921 0.0767422i
\(970\) 0 0
\(971\) 210.470 + 121.515i 0.216756 + 0.125144i 0.604447 0.796645i \(-0.293394\pi\)
−0.387691 + 0.921789i \(0.626727\pi\)
\(972\) 0 0
\(973\) 1016.59 1166.75i 1.04480 1.19912i
\(974\) 0 0
\(975\) 16.9632 29.3811i 0.0173981 0.0301344i
\(976\) 0 0
\(977\) −715.865 1239.91i −0.732717 1.26910i −0.955718 0.294285i \(-0.904918\pi\)
0.223000 0.974818i \(-0.428415\pi\)
\(978\) 0 0
\(979\) 734.635i 0.750393i
\(980\) 0 0
\(981\) 330.573 0.336975
\(982\) 0 0
\(983\) −384.934 + 222.241i −0.391591 + 0.226085i −0.682849 0.730559i \(-0.739259\pi\)
0.291259 + 0.956644i \(0.405926\pi\)
\(984\) 0 0
\(985\) −742.128 428.468i −0.753429 0.434993i
\(986\) 0 0
\(987\) 149.094 + 129.906i 0.151058 + 0.131617i
\(988\) 0 0
\(989\) −604.308 + 1046.69i −0.611029 + 1.05833i
\(990\) 0 0
\(991\) −902.358 1562.93i −0.910553 1.57712i −0.813284 0.581867i \(-0.802323\pi\)
−0.0972693 0.995258i \(-0.531011\pi\)
\(992\) 0 0
\(993\) 18.6812i 0.0188128i
\(994\) 0 0
\(995\) −729.767 −0.733434
\(996\) 0 0
\(997\) −1649.18 + 952.153i −1.65414 + 0.955018i −0.678796 + 0.734327i \(0.737498\pi\)
−0.975344 + 0.220691i \(0.929169\pi\)
\(998\) 0 0
\(999\) 100.935 + 58.2749i 0.101036 + 0.0583332i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.s.g.257.5 16
4.3 odd 2 inner 448.3.s.g.257.4 16
7.3 odd 6 inner 448.3.s.g.129.5 16
8.3 odd 2 224.3.s.a.33.5 yes 16
8.5 even 2 224.3.s.a.33.4 16
28.3 even 6 inner 448.3.s.g.129.4 16
56.3 even 6 224.3.s.a.129.5 yes 16
56.5 odd 6 1568.3.c.h.97.9 16
56.19 even 6 1568.3.c.h.97.7 16
56.37 even 6 1568.3.c.h.97.8 16
56.45 odd 6 224.3.s.a.129.4 yes 16
56.51 odd 6 1568.3.c.h.97.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.3.s.a.33.4 16 8.5 even 2
224.3.s.a.33.5 yes 16 8.3 odd 2
224.3.s.a.129.4 yes 16 56.45 odd 6
224.3.s.a.129.5 yes 16 56.3 even 6
448.3.s.g.129.4 16 28.3 even 6 inner
448.3.s.g.129.5 16 7.3 odd 6 inner
448.3.s.g.257.4 16 4.3 odd 2 inner
448.3.s.g.257.5 16 1.1 even 1 trivial
1568.3.c.h.97.7 16 56.19 even 6
1568.3.c.h.97.8 16 56.37 even 6
1568.3.c.h.97.9 16 56.5 odd 6
1568.3.c.h.97.10 16 56.51 odd 6