Properties

Label 448.3.o.b.95.7
Level $448$
Weight $3$
Character 448.95
Analytic conductor $12.207$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(95,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.95"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 34 x^{18} + 755 x^{16} - 9698 x^{14} + 89921 x^{12} - 522048 x^{10} + 2189920 x^{8} + \cdots + 7311616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.7
Root \(-3.26468 + 1.88486i\) of defining polynomial
Character \(\chi\) \(=\) 448.95
Dual form 448.3.o.b.415.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.565829 - 0.980045i) q^{3} +(3.20158 - 1.84843i) q^{5} +(2.72101 + 6.44951i) q^{7} +(3.85967 + 6.68515i) q^{9} +(-3.28683 + 5.69296i) q^{11} -1.88929i q^{13} -4.18359i q^{15} +(-0.399585 + 0.692102i) q^{17} +(14.6135 + 25.3113i) q^{19} +(7.86043 + 0.982611i) q^{21} +(-22.4205 + 12.9445i) q^{23} +(-5.66658 + 9.81480i) q^{25} +18.9206 q^{27} -38.2608i q^{29} +(-6.26083 - 3.61469i) q^{31} +(3.71957 + 6.44249i) q^{33} +(20.6330 + 15.6190i) q^{35} +(56.7282 - 32.7520i) q^{37} +(-1.85159 - 1.06901i) q^{39} +55.0502 q^{41} +22.3313 q^{43} +(24.7141 + 14.2687i) q^{45} +(-16.3276 + 9.42672i) q^{47} +(-34.1923 + 35.0983i) q^{49} +(0.452194 + 0.783223i) q^{51} +(0.264740 + 0.152848i) q^{53} +24.3020i q^{55} +33.0750 q^{57} +(-27.0974 + 46.9340i) q^{59} +(28.4960 - 16.4522i) q^{61} +(-32.6137 + 43.0833i) q^{63} +(-3.49223 - 6.04871i) q^{65} +(-4.74132 + 8.21221i) q^{67} +29.2974i q^{69} -33.4413i q^{71} +(47.2993 - 81.9248i) q^{73} +(6.41263 + 11.1070i) q^{75} +(-45.6603 - 5.70787i) q^{77} +(-7.35280 + 4.24514i) q^{79} +(-24.0313 + 41.6234i) q^{81} +77.8103 q^{83} +2.95443i q^{85} +(-37.4973 - 21.6491i) q^{87} +(23.8785 + 41.3588i) q^{89} +(12.1850 - 5.14076i) q^{91} +(-7.08512 + 4.09060i) q^{93} +(93.5727 + 54.0242i) q^{95} -125.723 q^{97} -50.7444 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 28 q^{9} + 46 q^{17} - 114 q^{21} + 36 q^{25} + 94 q^{33} + 114 q^{37} - 160 q^{41} - 708 q^{45} - 92 q^{49} - 6 q^{53} + 308 q^{57} + 90 q^{61} + 212 q^{65} + 314 q^{73} - 198 q^{77} - 322 q^{81}+ \cdots - 224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.565829 0.980045i 0.188610 0.326682i −0.756177 0.654367i \(-0.772935\pi\)
0.944787 + 0.327685i \(0.106269\pi\)
\(4\) 0 0
\(5\) 3.20158 1.84843i 0.640317 0.369687i −0.144420 0.989516i \(-0.546132\pi\)
0.784736 + 0.619830i \(0.212798\pi\)
\(6\) 0 0
\(7\) 2.72101 + 6.44951i 0.388715 + 0.921358i
\(8\) 0 0
\(9\) 3.85967 + 6.68515i 0.428853 + 0.742795i
\(10\) 0 0
\(11\) −3.28683 + 5.69296i −0.298803 + 0.517542i −0.975862 0.218386i \(-0.929921\pi\)
0.677059 + 0.735928i \(0.263254\pi\)
\(12\) 0 0
\(13\) 1.88929i 0.145330i −0.997356 0.0726650i \(-0.976850\pi\)
0.997356 0.0726650i \(-0.0231504\pi\)
\(14\) 0 0
\(15\) 4.18359i 0.278906i
\(16\) 0 0
\(17\) −0.399585 + 0.692102i −0.0235050 + 0.0407119i −0.877539 0.479506i \(-0.840816\pi\)
0.854034 + 0.520218i \(0.174149\pi\)
\(18\) 0 0
\(19\) 14.6135 + 25.3113i 0.769132 + 1.33218i 0.938034 + 0.346542i \(0.112644\pi\)
−0.168903 + 0.985633i \(0.554022\pi\)
\(20\) 0 0
\(21\) 7.86043 + 0.982611i 0.374306 + 0.0467910i
\(22\) 0 0
\(23\) −22.4205 + 12.9445i −0.974803 + 0.562803i −0.900697 0.434447i \(-0.856944\pi\)
−0.0741061 + 0.997250i \(0.523610\pi\)
\(24\) 0 0
\(25\) −5.66658 + 9.81480i −0.226663 + 0.392592i
\(26\) 0 0
\(27\) 18.9206 0.700763
\(28\) 0 0
\(29\) 38.2608i 1.31934i −0.751557 0.659669i \(-0.770697\pi\)
0.751557 0.659669i \(-0.229303\pi\)
\(30\) 0 0
\(31\) −6.26083 3.61469i −0.201962 0.116603i 0.395608 0.918419i \(-0.370534\pi\)
−0.597570 + 0.801816i \(0.703867\pi\)
\(32\) 0 0
\(33\) 3.71957 + 6.44249i 0.112714 + 0.195227i
\(34\) 0 0
\(35\) 20.6330 + 15.6190i 0.589515 + 0.446258i
\(36\) 0 0
\(37\) 56.7282 32.7520i 1.53319 0.885190i 0.533983 0.845495i \(-0.320695\pi\)
0.999212 0.0396949i \(-0.0126386\pi\)
\(38\) 0 0
\(39\) −1.85159 1.06901i −0.0474766 0.0274106i
\(40\) 0 0
\(41\) 55.0502 1.34269 0.671344 0.741146i \(-0.265717\pi\)
0.671344 + 0.741146i \(0.265717\pi\)
\(42\) 0 0
\(43\) 22.3313 0.519332 0.259666 0.965699i \(-0.416388\pi\)
0.259666 + 0.965699i \(0.416388\pi\)
\(44\) 0 0
\(45\) 24.7141 + 14.2687i 0.549203 + 0.317083i
\(46\) 0 0
\(47\) −16.3276 + 9.42672i −0.347395 + 0.200569i −0.663537 0.748143i \(-0.730946\pi\)
0.316142 + 0.948712i \(0.397612\pi\)
\(48\) 0 0
\(49\) −34.1923 + 35.0983i −0.697801 + 0.716291i
\(50\) 0 0
\(51\) 0.452194 + 0.783223i 0.00886655 + 0.0153573i
\(52\) 0 0
\(53\) 0.264740 + 0.152848i 0.00499510 + 0.00288392i 0.502495 0.864580i \(-0.332415\pi\)
−0.497500 + 0.867464i \(0.665749\pi\)
\(54\) 0 0
\(55\) 24.3020i 0.441854i
\(56\) 0 0
\(57\) 33.0750 0.580263
\(58\) 0 0
\(59\) −27.0974 + 46.9340i −0.459277 + 0.795491i −0.998923 0.0464009i \(-0.985225\pi\)
0.539646 + 0.841892i \(0.318558\pi\)
\(60\) 0 0
\(61\) 28.4960 16.4522i 0.467148 0.269708i −0.247897 0.968786i \(-0.579739\pi\)
0.715045 + 0.699078i \(0.246406\pi\)
\(62\) 0 0
\(63\) −32.6137 + 43.0833i −0.517678 + 0.683862i
\(64\) 0 0
\(65\) −3.49223 6.04871i −0.0537266 0.0930571i
\(66\) 0 0
\(67\) −4.74132 + 8.21221i −0.0707660 + 0.122570i −0.899237 0.437461i \(-0.855878\pi\)
0.828471 + 0.560032i \(0.189211\pi\)
\(68\) 0 0
\(69\) 29.2974i 0.424600i
\(70\) 0 0
\(71\) 33.4413i 0.471004i −0.971874 0.235502i \(-0.924327\pi\)
0.971874 0.235502i \(-0.0756733\pi\)
\(72\) 0 0
\(73\) 47.2993 81.9248i 0.647936 1.12226i −0.335679 0.941976i \(-0.608966\pi\)
0.983615 0.180281i \(-0.0577008\pi\)
\(74\) 0 0
\(75\) 6.41263 + 11.1070i 0.0855017 + 0.148093i
\(76\) 0 0
\(77\) −45.6603 5.70787i −0.592991 0.0741282i
\(78\) 0 0
\(79\) −7.35280 + 4.24514i −0.0930734 + 0.0537359i −0.545814 0.837906i \(-0.683780\pi\)
0.452741 + 0.891642i \(0.350446\pi\)
\(80\) 0 0
\(81\) −24.0313 + 41.6234i −0.296682 + 0.513869i
\(82\) 0 0
\(83\) 77.8103 0.937473 0.468737 0.883338i \(-0.344709\pi\)
0.468737 + 0.883338i \(0.344709\pi\)
\(84\) 0 0
\(85\) 2.95443i 0.0347580i
\(86\) 0 0
\(87\) −37.4973 21.6491i −0.431003 0.248840i
\(88\) 0 0
\(89\) 23.8785 + 41.3588i 0.268298 + 0.464705i 0.968422 0.249315i \(-0.0802055\pi\)
−0.700125 + 0.714021i \(0.746872\pi\)
\(90\) 0 0
\(91\) 12.1850 5.14076i 0.133901 0.0564919i
\(92\) 0 0
\(93\) −7.08512 + 4.09060i −0.0761841 + 0.0439849i
\(94\) 0 0
\(95\) 93.5727 + 54.0242i 0.984975 + 0.568676i
\(96\) 0 0
\(97\) −125.723 −1.29611 −0.648057 0.761592i \(-0.724418\pi\)
−0.648057 + 0.761592i \(0.724418\pi\)
\(98\) 0 0
\(99\) −50.7444 −0.512570
\(100\) 0 0
\(101\) −136.597 78.8646i −1.35245 0.780837i −0.363858 0.931454i \(-0.618541\pi\)
−0.988592 + 0.150617i \(0.951874\pi\)
\(102\) 0 0
\(103\) 99.3139 57.3389i 0.964212 0.556688i 0.0667453 0.997770i \(-0.478739\pi\)
0.897467 + 0.441082i \(0.145405\pi\)
\(104\) 0 0
\(105\) 26.9821 11.3836i 0.256972 0.108415i
\(106\) 0 0
\(107\) −91.3564 158.234i −0.853798 1.47882i −0.877755 0.479109i \(-0.840960\pi\)
0.0239572 0.999713i \(-0.492373\pi\)
\(108\) 0 0
\(109\) 62.0689 + 35.8355i 0.569440 + 0.328766i 0.756926 0.653501i \(-0.226701\pi\)
−0.187486 + 0.982267i \(0.560034\pi\)
\(110\) 0 0
\(111\) 74.1282i 0.667822i
\(112\) 0 0
\(113\) −141.669 −1.25371 −0.626855 0.779136i \(-0.715658\pi\)
−0.626855 + 0.779136i \(0.715658\pi\)
\(114\) 0 0
\(115\) −47.8540 + 82.8856i −0.416122 + 0.720744i
\(116\) 0 0
\(117\) 12.6302 7.29204i 0.107950 0.0623251i
\(118\) 0 0
\(119\) −5.55099 0.693915i −0.0466470 0.00583122i
\(120\) 0 0
\(121\) 38.8934 + 67.3654i 0.321433 + 0.556739i
\(122\) 0 0
\(123\) 31.1490 53.9517i 0.253244 0.438631i
\(124\) 0 0
\(125\) 134.319i 1.07455i
\(126\) 0 0
\(127\) 71.8695i 0.565902i −0.959134 0.282951i \(-0.908687\pi\)
0.959134 0.282951i \(-0.0913133\pi\)
\(128\) 0 0
\(129\) 12.6357 21.8856i 0.0979510 0.169656i
\(130\) 0 0
\(131\) −120.270 208.313i −0.918089 1.59018i −0.802315 0.596900i \(-0.796399\pi\)
−0.115773 0.993276i \(-0.536935\pi\)
\(132\) 0 0
\(133\) −123.482 + 163.122i −0.928437 + 1.22648i
\(134\) 0 0
\(135\) 60.5758 34.9735i 0.448710 0.259063i
\(136\) 0 0
\(137\) 67.8806 117.573i 0.495479 0.858195i −0.504507 0.863407i \(-0.668326\pi\)
0.999986 + 0.00521241i \(0.00165917\pi\)
\(138\) 0 0
\(139\) −37.1158 −0.267020 −0.133510 0.991047i \(-0.542625\pi\)
−0.133510 + 0.991047i \(0.542625\pi\)
\(140\) 0 0
\(141\) 21.3357i 0.151317i
\(142\) 0 0
\(143\) 10.7557 + 6.20978i 0.0752144 + 0.0434250i
\(144\) 0 0
\(145\) −70.7225 122.495i −0.487742 0.844793i
\(146\) 0 0
\(147\) 15.0509 + 53.3696i 0.102387 + 0.363058i
\(148\) 0 0
\(149\) −31.3945 + 18.1256i −0.210701 + 0.121648i −0.601637 0.798769i \(-0.705485\pi\)
0.390936 + 0.920418i \(0.372151\pi\)
\(150\) 0 0
\(151\) −12.8838 7.43844i −0.0853229 0.0492612i 0.456732 0.889605i \(-0.349020\pi\)
−0.542054 + 0.840343i \(0.682353\pi\)
\(152\) 0 0
\(153\) −6.16908 −0.0403208
\(154\) 0 0
\(155\) −26.7261 −0.172426
\(156\) 0 0
\(157\) −174.780 100.909i −1.11325 0.642734i −0.173579 0.984820i \(-0.555533\pi\)
−0.939669 + 0.342086i \(0.888867\pi\)
\(158\) 0 0
\(159\) 0.299595 0.172971i 0.00188425 0.00108787i
\(160\) 0 0
\(161\) −144.492 109.379i −0.897464 0.679373i
\(162\) 0 0
\(163\) −66.1378 114.554i −0.405753 0.702786i 0.588655 0.808384i \(-0.299657\pi\)
−0.994409 + 0.105599i \(0.966324\pi\)
\(164\) 0 0
\(165\) 23.8170 + 13.7508i 0.144346 + 0.0833380i
\(166\) 0 0
\(167\) 239.413i 1.43361i 0.697274 + 0.716805i \(0.254396\pi\)
−0.697274 + 0.716805i \(0.745604\pi\)
\(168\) 0 0
\(169\) 165.431 0.978879
\(170\) 0 0
\(171\) −112.807 + 195.387i −0.659688 + 1.14261i
\(172\) 0 0
\(173\) −139.852 + 80.7433i −0.808390 + 0.466724i −0.846397 0.532553i \(-0.821233\pi\)
0.0380063 + 0.999277i \(0.487899\pi\)
\(174\) 0 0
\(175\) −78.7194 9.84050i −0.449825 0.0562315i
\(176\) 0 0
\(177\) 30.6649 + 53.1132i 0.173248 + 0.300075i
\(178\) 0 0
\(179\) 124.034 214.834i 0.692929 1.20019i −0.277945 0.960597i \(-0.589653\pi\)
0.970874 0.239591i \(-0.0770133\pi\)
\(180\) 0 0
\(181\) 184.486i 1.01926i 0.860393 + 0.509631i \(0.170218\pi\)
−0.860393 + 0.509631i \(0.829782\pi\)
\(182\) 0 0
\(183\) 37.2365i 0.203478i
\(184\) 0 0
\(185\) 121.080 209.717i 0.654487 1.13360i
\(186\) 0 0
\(187\) −2.62674 4.54965i −0.0140468 0.0243297i
\(188\) 0 0
\(189\) 51.4830 + 122.028i 0.272397 + 0.645653i
\(190\) 0 0
\(191\) 321.742 185.758i 1.68452 0.972555i 0.725922 0.687777i \(-0.241413\pi\)
0.958593 0.284778i \(-0.0919200\pi\)
\(192\) 0 0
\(193\) −107.615 + 186.395i −0.557592 + 0.965778i 0.440105 + 0.897946i \(0.354941\pi\)
−0.997697 + 0.0678314i \(0.978392\pi\)
\(194\) 0 0
\(195\) −7.90401 −0.0405334
\(196\) 0 0
\(197\) 181.962i 0.923663i −0.886968 0.461831i \(-0.847193\pi\)
0.886968 0.461831i \(-0.152807\pi\)
\(198\) 0 0
\(199\) −149.053 86.0558i −0.749010 0.432441i 0.0763259 0.997083i \(-0.475681\pi\)
−0.825336 + 0.564642i \(0.809014\pi\)
\(200\) 0 0
\(201\) 5.36556 + 9.29342i 0.0266943 + 0.0462359i
\(202\) 0 0
\(203\) 246.763 104.108i 1.21558 0.512846i
\(204\) 0 0
\(205\) 176.248 101.757i 0.859745 0.496374i
\(206\) 0 0
\(207\) −173.071 99.9229i −0.836094 0.482719i
\(208\) 0 0
\(209\) −192.129 −0.919276
\(210\) 0 0
\(211\) −350.415 −1.66073 −0.830367 0.557217i \(-0.811869\pi\)
−0.830367 + 0.557217i \(0.811869\pi\)
\(212\) 0 0
\(213\) −32.7739 18.9220i −0.153868 0.0888358i
\(214\) 0 0
\(215\) 71.4954 41.2779i 0.332537 0.191990i
\(216\) 0 0
\(217\) 6.27723 50.2149i 0.0289273 0.231405i
\(218\) 0 0
\(219\) −53.5266 92.7109i −0.244414 0.423337i
\(220\) 0 0
\(221\) 1.30758 + 0.754932i 0.00591666 + 0.00341598i
\(222\) 0 0
\(223\) 188.995i 0.847510i 0.905777 + 0.423755i \(0.139288\pi\)
−0.905777 + 0.423755i \(0.860712\pi\)
\(224\) 0 0
\(225\) −87.4846 −0.388820
\(226\) 0 0
\(227\) −13.9566 + 24.1736i −0.0614829 + 0.106491i −0.895128 0.445808i \(-0.852916\pi\)
0.833646 + 0.552300i \(0.186250\pi\)
\(228\) 0 0
\(229\) 200.369 115.683i 0.874976 0.505167i 0.00597712 0.999982i \(-0.498097\pi\)
0.868998 + 0.494815i \(0.164764\pi\)
\(230\) 0 0
\(231\) −31.4299 + 41.5195i −0.136060 + 0.179738i
\(232\) 0 0
\(233\) 109.501 + 189.661i 0.469960 + 0.813994i 0.999410 0.0343468i \(-0.0109351\pi\)
−0.529450 + 0.848341i \(0.677602\pi\)
\(234\) 0 0
\(235\) −34.8494 + 60.3609i −0.148295 + 0.256855i
\(236\) 0 0
\(237\) 9.60809i 0.0405405i
\(238\) 0 0
\(239\) 108.752i 0.455030i −0.973775 0.227515i \(-0.926940\pi\)
0.973775 0.227515i \(-0.0730601\pi\)
\(240\) 0 0
\(241\) −74.3039 + 128.698i −0.308315 + 0.534017i −0.977994 0.208634i \(-0.933098\pi\)
0.669679 + 0.742651i \(0.266432\pi\)
\(242\) 0 0
\(243\) 112.338 + 194.575i 0.462296 + 0.800719i
\(244\) 0 0
\(245\) −44.5925 + 175.572i −0.182010 + 0.716621i
\(246\) 0 0
\(247\) 47.8204 27.6091i 0.193605 0.111778i
\(248\) 0 0
\(249\) 44.0273 76.2575i 0.176817 0.306255i
\(250\) 0 0
\(251\) 303.364 1.20862 0.604310 0.796749i \(-0.293449\pi\)
0.604310 + 0.796749i \(0.293449\pi\)
\(252\) 0 0
\(253\) 170.185i 0.672669i
\(254\) 0 0
\(255\) 2.89547 + 1.67170i 0.0113548 + 0.00655570i
\(256\) 0 0
\(257\) 43.9898 + 76.1925i 0.171166 + 0.296469i 0.938828 0.344387i \(-0.111913\pi\)
−0.767661 + 0.640856i \(0.778580\pi\)
\(258\) 0 0
\(259\) 365.592 + 276.750i 1.41155 + 1.06853i
\(260\) 0 0
\(261\) 255.779 147.674i 0.979997 0.565801i
\(262\) 0 0
\(263\) 109.743 + 63.3603i 0.417275 + 0.240914i 0.693911 0.720061i \(-0.255886\pi\)
−0.276636 + 0.960975i \(0.589220\pi\)
\(264\) 0 0
\(265\) 1.13012 0.00426459
\(266\) 0 0
\(267\) 54.0446 0.202414
\(268\) 0 0
\(269\) −430.764 248.702i −1.60135 0.924542i −0.991217 0.132245i \(-0.957781\pi\)
−0.610136 0.792297i \(-0.708885\pi\)
\(270\) 0 0
\(271\) −360.736 + 208.271i −1.33113 + 0.768528i −0.985473 0.169833i \(-0.945677\pi\)
−0.345656 + 0.938361i \(0.612344\pi\)
\(272\) 0 0
\(273\) 1.85644 14.8506i 0.00680013 0.0543979i
\(274\) 0 0
\(275\) −37.2502 64.5193i −0.135455 0.234615i
\(276\) 0 0
\(277\) 137.732 + 79.5197i 0.497228 + 0.287075i 0.727568 0.686035i \(-0.240650\pi\)
−0.230340 + 0.973110i \(0.573984\pi\)
\(278\) 0 0
\(279\) 55.8062i 0.200022i
\(280\) 0 0
\(281\) 349.562 1.24399 0.621997 0.783020i \(-0.286322\pi\)
0.621997 + 0.783020i \(0.286322\pi\)
\(282\) 0 0
\(283\) −243.870 + 422.396i −0.861732 + 1.49256i 0.00852309 + 0.999964i \(0.497287\pi\)
−0.870255 + 0.492601i \(0.836046\pi\)
\(284\) 0 0
\(285\) 105.892 61.1369i 0.371552 0.214516i
\(286\) 0 0
\(287\) 149.792 + 355.047i 0.521923 + 1.23710i
\(288\) 0 0
\(289\) 144.181 + 249.728i 0.498895 + 0.864112i
\(290\) 0 0
\(291\) −71.1378 + 123.214i −0.244460 + 0.423417i
\(292\) 0 0
\(293\) 124.718i 0.425658i −0.977089 0.212829i \(-0.931732\pi\)
0.977089 0.212829i \(-0.0682678\pi\)
\(294\) 0 0
\(295\) 200.351i 0.679155i
\(296\) 0 0
\(297\) −62.1888 + 107.714i −0.209390 + 0.362674i
\(298\) 0 0
\(299\) 24.4558 + 42.3588i 0.0817921 + 0.141668i
\(300\) 0 0
\(301\) 60.7635 + 144.026i 0.201872 + 0.478490i
\(302\) 0 0
\(303\) −154.582 + 89.2478i −0.510170 + 0.294547i
\(304\) 0 0
\(305\) 60.8216 105.346i 0.199415 0.345397i
\(306\) 0 0
\(307\) 429.152 1.39789 0.698945 0.715176i \(-0.253653\pi\)
0.698945 + 0.715176i \(0.253653\pi\)
\(308\) 0 0
\(309\) 129.776i 0.419987i
\(310\) 0 0
\(311\) −281.671 162.623i −0.905693 0.522902i −0.0266502 0.999645i \(-0.508484\pi\)
−0.879043 + 0.476743i \(0.841817\pi\)
\(312\) 0 0
\(313\) 51.3765 + 88.9867i 0.164142 + 0.284303i 0.936350 0.351067i \(-0.114181\pi\)
−0.772208 + 0.635370i \(0.780848\pi\)
\(314\) 0 0
\(315\) −24.7789 + 198.219i −0.0786630 + 0.629267i
\(316\) 0 0
\(317\) 345.808 199.652i 1.09088 0.629818i 0.157067 0.987588i \(-0.449796\pi\)
0.933810 + 0.357770i \(0.116463\pi\)
\(318\) 0 0
\(319\) 217.817 + 125.757i 0.682813 + 0.394222i
\(320\) 0 0
\(321\) −206.768 −0.644139
\(322\) 0 0
\(323\) −23.3574 −0.0723138
\(324\) 0 0
\(325\) 18.5430 + 10.7058i 0.0570554 + 0.0329409i
\(326\) 0 0
\(327\) 70.2408 40.5536i 0.214804 0.124017i
\(328\) 0 0
\(329\) −105.225 79.6546i −0.319833 0.242111i
\(330\) 0 0
\(331\) −28.7333 49.7675i −0.0868075 0.150355i 0.819352 0.573290i \(-0.194333\pi\)
−0.906160 + 0.422935i \(0.861000\pi\)
\(332\) 0 0
\(333\) 437.905 + 252.824i 1.31503 + 0.759233i
\(334\) 0 0
\(335\) 35.0561i 0.104645i
\(336\) 0 0
\(337\) 354.086 1.05070 0.525350 0.850886i \(-0.323934\pi\)
0.525350 + 0.850886i \(0.323934\pi\)
\(338\) 0 0
\(339\) −80.1606 + 138.842i −0.236462 + 0.409564i
\(340\) 0 0
\(341\) 41.1566 23.7618i 0.120694 0.0696827i
\(342\) 0 0
\(343\) −319.404 125.021i −0.931207 0.364491i
\(344\) 0 0
\(345\) 54.1544 + 93.7981i 0.156969 + 0.271879i
\(346\) 0 0
\(347\) 159.542 276.336i 0.459776 0.796356i −0.539172 0.842195i \(-0.681263\pi\)
0.998949 + 0.0458393i \(0.0145962\pi\)
\(348\) 0 0
\(349\) 151.395i 0.433796i 0.976194 + 0.216898i \(0.0695938\pi\)
−0.976194 + 0.216898i \(0.930406\pi\)
\(350\) 0 0
\(351\) 35.7465i 0.101842i
\(352\) 0 0
\(353\) 269.802 467.311i 0.764311 1.32383i −0.176298 0.984337i \(-0.556412\pi\)
0.940610 0.339489i \(-0.110254\pi\)
\(354\) 0 0
\(355\) −61.8140 107.065i −0.174124 0.301591i
\(356\) 0 0
\(357\) −3.82098 + 5.04758i −0.0107030 + 0.0141389i
\(358\) 0 0
\(359\) 99.2112 57.2796i 0.276354 0.159553i −0.355417 0.934708i \(-0.615661\pi\)
0.631772 + 0.775154i \(0.282328\pi\)
\(360\) 0 0
\(361\) −246.609 + 427.139i −0.683127 + 1.18321i
\(362\) 0 0
\(363\) 88.0282 0.242502
\(364\) 0 0
\(365\) 349.719i 0.958133i
\(366\) 0 0
\(367\) −462.804 267.200i −1.26105 0.728065i −0.287769 0.957700i \(-0.592913\pi\)
−0.973277 + 0.229635i \(0.926247\pi\)
\(368\) 0 0
\(369\) 212.476 + 368.019i 0.575816 + 0.997342i
\(370\) 0 0
\(371\) −0.265433 + 2.12334i −0.000715454 + 0.00572330i
\(372\) 0 0
\(373\) 446.370 257.712i 1.19670 0.690916i 0.236883 0.971538i \(-0.423874\pi\)
0.959818 + 0.280622i \(0.0905407\pi\)
\(374\) 0 0
\(375\) 131.639 + 76.0016i 0.351036 + 0.202671i
\(376\) 0 0
\(377\) −72.2856 −0.191739
\(378\) 0 0
\(379\) 127.845 0.337323 0.168661 0.985674i \(-0.446056\pi\)
0.168661 + 0.985674i \(0.446056\pi\)
\(380\) 0 0
\(381\) −70.4353 40.6659i −0.184870 0.106735i
\(382\) 0 0
\(383\) 196.198 113.275i 0.512265 0.295756i −0.221499 0.975161i \(-0.571095\pi\)
0.733764 + 0.679404i \(0.237762\pi\)
\(384\) 0 0
\(385\) −156.736 + 66.1259i −0.407106 + 0.171755i
\(386\) 0 0
\(387\) 86.1914 + 149.288i 0.222717 + 0.385757i
\(388\) 0 0
\(389\) −477.391 275.622i −1.22722 0.708539i −0.260776 0.965399i \(-0.583979\pi\)
−0.966448 + 0.256861i \(0.917312\pi\)
\(390\) 0 0
\(391\) 20.6897i 0.0529148i
\(392\) 0 0
\(393\) −272.208 −0.692642
\(394\) 0 0
\(395\) −15.6937 + 27.1823i −0.0397309 + 0.0688160i
\(396\) 0 0
\(397\) 200.760 115.909i 0.505692 0.291962i −0.225369 0.974273i \(-0.572359\pi\)
0.731061 + 0.682312i \(0.239025\pi\)
\(398\) 0 0
\(399\) 89.9972 + 213.317i 0.225557 + 0.534630i
\(400\) 0 0
\(401\) −271.319 469.939i −0.676607 1.17192i −0.975996 0.217786i \(-0.930116\pi\)
0.299390 0.954131i \(-0.403217\pi\)
\(402\) 0 0
\(403\) −6.82920 + 11.8285i −0.0169459 + 0.0293512i
\(404\) 0 0
\(405\) 177.681i 0.438718i
\(406\) 0 0
\(407\) 430.602i 1.05799i
\(408\) 0 0
\(409\) 105.418 182.589i 0.257745 0.446428i −0.707892 0.706320i \(-0.750354\pi\)
0.965638 + 0.259893i \(0.0836872\pi\)
\(410\) 0 0
\(411\) −76.8177 133.052i −0.186904 0.323728i
\(412\) 0 0
\(413\) −376.433 47.0569i −0.911460 0.113939i
\(414\) 0 0
\(415\) 249.116 143.827i 0.600280 0.346572i
\(416\) 0 0
\(417\) −21.0012 + 36.3751i −0.0503626 + 0.0872305i
\(418\) 0 0
\(419\) 369.614 0.882133 0.441066 0.897474i \(-0.354600\pi\)
0.441066 + 0.897474i \(0.354600\pi\)
\(420\) 0 0
\(421\) 710.526i 1.68771i 0.536572 + 0.843855i \(0.319719\pi\)
−0.536572 + 0.843855i \(0.680281\pi\)
\(422\) 0 0
\(423\) −126.038 72.7682i −0.297963 0.172029i
\(424\) 0 0
\(425\) −4.52856 7.84370i −0.0106554 0.0184558i
\(426\) 0 0
\(427\) 183.646 + 139.019i 0.430085 + 0.325571i
\(428\) 0 0
\(429\) 12.1717 7.02735i 0.0283723 0.0163808i
\(430\) 0 0
\(431\) −549.117 317.033i −1.27405 0.735575i −0.298305 0.954471i \(-0.596421\pi\)
−0.975748 + 0.218896i \(0.929755\pi\)
\(432\) 0 0
\(433\) 389.086 0.898581 0.449291 0.893386i \(-0.351677\pi\)
0.449291 + 0.893386i \(0.351677\pi\)
\(434\) 0 0
\(435\) −160.067 −0.367971
\(436\) 0 0
\(437\) −655.283 378.328i −1.49950 0.865739i
\(438\) 0 0
\(439\) 93.9735 54.2556i 0.214063 0.123589i −0.389135 0.921181i \(-0.627226\pi\)
0.603198 + 0.797591i \(0.293893\pi\)
\(440\) 0 0
\(441\) −366.608 93.1125i −0.831312 0.211140i
\(442\) 0 0
\(443\) −259.449 449.380i −0.585665 1.01440i −0.994792 0.101924i \(-0.967500\pi\)
0.409128 0.912477i \(-0.365833\pi\)
\(444\) 0 0
\(445\) 152.898 + 88.2757i 0.343591 + 0.198372i
\(446\) 0 0
\(447\) 41.0240i 0.0917763i
\(448\) 0 0
\(449\) 357.190 0.795524 0.397762 0.917489i \(-0.369787\pi\)
0.397762 + 0.917489i \(0.369787\pi\)
\(450\) 0 0
\(451\) −180.941 + 313.399i −0.401199 + 0.694898i
\(452\) 0 0
\(453\) −14.5800 + 8.41777i −0.0321854 + 0.0185823i
\(454\) 0 0
\(455\) 29.5089 38.9817i 0.0648546 0.0856741i
\(456\) 0 0
\(457\) −222.274 384.991i −0.486377 0.842430i 0.513500 0.858090i \(-0.328349\pi\)
−0.999877 + 0.0156592i \(0.995015\pi\)
\(458\) 0 0
\(459\) −7.56039 + 13.0950i −0.0164714 + 0.0285294i
\(460\) 0 0
\(461\) 876.733i 1.90181i 0.309487 + 0.950904i \(0.399843\pi\)
−0.309487 + 0.950904i \(0.600157\pi\)
\(462\) 0 0
\(463\) 794.872i 1.71679i −0.512993 0.858393i \(-0.671463\pi\)
0.512993 0.858393i \(-0.328537\pi\)
\(464\) 0 0
\(465\) −15.1224 + 26.1928i −0.0325213 + 0.0563285i
\(466\) 0 0
\(467\) −198.249 343.378i −0.424517 0.735285i 0.571858 0.820353i \(-0.306223\pi\)
−0.996375 + 0.0850674i \(0.972889\pi\)
\(468\) 0 0
\(469\) −65.8659 8.23372i −0.140439 0.0175559i
\(470\) 0 0
\(471\) −197.791 + 114.195i −0.419939 + 0.242452i
\(472\) 0 0
\(473\) −73.3991 + 127.131i −0.155178 + 0.268776i
\(474\) 0 0
\(475\) −331.234 −0.697335
\(476\) 0 0
\(477\) 2.35977i 0.00494711i
\(478\) 0 0
\(479\) 697.779 + 402.863i 1.45674 + 0.841049i 0.998849 0.0479591i \(-0.0152717\pi\)
0.457891 + 0.889008i \(0.348605\pi\)
\(480\) 0 0
\(481\) −61.8781 107.176i −0.128645 0.222819i
\(482\) 0 0
\(483\) −188.954 + 79.7185i −0.391209 + 0.165049i
\(484\) 0 0
\(485\) −402.513 + 232.391i −0.829923 + 0.479157i
\(486\) 0 0
\(487\) 693.543 + 400.417i 1.42411 + 0.822212i 0.996647 0.0818195i \(-0.0260731\pi\)
0.427466 + 0.904032i \(0.359406\pi\)
\(488\) 0 0
\(489\) −149.691 −0.306116
\(490\) 0 0
\(491\) −627.714 −1.27844 −0.639220 0.769024i \(-0.720743\pi\)
−0.639220 + 0.769024i \(0.720743\pi\)
\(492\) 0 0
\(493\) 26.4804 + 15.2884i 0.0537127 + 0.0310111i
\(494\) 0 0
\(495\) −162.463 + 93.7978i −0.328207 + 0.189491i
\(496\) 0 0
\(497\) 215.680 90.9938i 0.433963 0.183086i
\(498\) 0 0
\(499\) −330.214 571.948i −0.661752 1.14619i −0.980155 0.198233i \(-0.936480\pi\)
0.318402 0.947956i \(-0.396854\pi\)
\(500\) 0 0
\(501\) 234.635 + 135.467i 0.468334 + 0.270393i
\(502\) 0 0
\(503\) 178.302i 0.354477i −0.984168 0.177239i \(-0.943284\pi\)
0.984168 0.177239i \(-0.0567164\pi\)
\(504\) 0 0
\(505\) −583.104 −1.15466
\(506\) 0 0
\(507\) 93.6054 162.129i 0.184626 0.319782i
\(508\) 0 0
\(509\) −356.288 + 205.703i −0.699976 + 0.404131i −0.807339 0.590089i \(-0.799093\pi\)
0.107362 + 0.994220i \(0.465759\pi\)
\(510\) 0 0
\(511\) 657.076 + 82.1393i 1.28586 + 0.160742i
\(512\) 0 0
\(513\) 276.496 + 478.905i 0.538979 + 0.933538i
\(514\) 0 0
\(515\) 211.974 367.150i 0.411601 0.712913i
\(516\) 0 0
\(517\) 123.936i 0.239722i
\(518\) 0 0
\(519\) 182.748i 0.352115i
\(520\) 0 0
\(521\) −112.479 + 194.820i −0.215891 + 0.373934i −0.953548 0.301242i \(-0.902599\pi\)
0.737657 + 0.675176i \(0.235932\pi\)
\(522\) 0 0
\(523\) −0.861075 1.49143i −0.00164641 0.00285167i 0.865201 0.501425i \(-0.167191\pi\)
−0.866847 + 0.498573i \(0.833857\pi\)
\(524\) 0 0
\(525\) −54.1859 + 71.5805i −0.103211 + 0.136344i
\(526\) 0 0
\(527\) 5.00347 2.88876i 0.00949426 0.00548151i
\(528\) 0 0
\(529\) 70.6185 122.315i 0.133494 0.231219i
\(530\) 0 0
\(531\) −418.348 −0.787849
\(532\) 0 0
\(533\) 104.006i 0.195133i
\(534\) 0 0
\(535\) −584.970 337.733i −1.09340 0.631276i
\(536\) 0 0
\(537\) −140.364 243.118i −0.261386 0.452734i
\(538\) 0 0
\(539\) −87.4290 310.018i −0.162206 0.575172i
\(540\) 0 0
\(541\) −302.222 + 174.488i −0.558636 + 0.322529i −0.752598 0.658480i \(-0.771200\pi\)
0.193962 + 0.981009i \(0.437866\pi\)
\(542\) 0 0
\(543\) 180.805 + 104.388i 0.332974 + 0.192243i
\(544\) 0 0
\(545\) 264.958 0.486162
\(546\) 0 0
\(547\) 269.286 0.492296 0.246148 0.969232i \(-0.420835\pi\)
0.246148 + 0.969232i \(0.420835\pi\)
\(548\) 0 0
\(549\) 219.971 + 127.000i 0.400675 + 0.231330i
\(550\) 0 0
\(551\) 968.431 559.124i 1.75759 1.01474i
\(552\) 0 0
\(553\) −47.3860 35.8709i −0.0856890 0.0648659i
\(554\) 0 0
\(555\) −137.021 237.328i −0.246885 0.427617i
\(556\) 0 0
\(557\) −523.095 302.009i −0.939128 0.542206i −0.0494415 0.998777i \(-0.515744\pi\)
−0.889687 + 0.456571i \(0.849077\pi\)
\(558\) 0 0
\(559\) 42.1902i 0.0754744i
\(560\) 0 0
\(561\) −5.94515 −0.0105974
\(562\) 0 0
\(563\) 140.572 243.477i 0.249683 0.432464i −0.713755 0.700396i \(-0.753007\pi\)
0.963438 + 0.267932i \(0.0863401\pi\)
\(564\) 0 0
\(565\) −453.566 + 261.866i −0.802771 + 0.463480i
\(566\) 0 0
\(567\) −333.839 41.7324i −0.588782 0.0736020i
\(568\) 0 0
\(569\) −40.9170 70.8703i −0.0719104 0.124552i 0.827828 0.560982i \(-0.189576\pi\)
−0.899739 + 0.436429i \(0.856243\pi\)
\(570\) 0 0
\(571\) −154.965 + 268.407i −0.271392 + 0.470065i −0.969219 0.246202i \(-0.920817\pi\)
0.697826 + 0.716267i \(0.254151\pi\)
\(572\) 0 0
\(573\) 420.429i 0.733734i
\(574\) 0 0
\(575\) 293.403i 0.510267i
\(576\) 0 0
\(577\) 177.870 308.079i 0.308266 0.533933i −0.669717 0.742616i \(-0.733585\pi\)
0.977983 + 0.208684i \(0.0669179\pi\)
\(578\) 0 0
\(579\) 121.784 + 210.936i 0.210335 + 0.364310i
\(580\) 0 0
\(581\) 211.722 + 501.838i 0.364410 + 0.863748i
\(582\) 0 0
\(583\) −1.74031 + 1.00477i −0.00298510 + 0.00172345i
\(584\) 0 0
\(585\) 26.9577 46.6921i 0.0460816 0.0798156i
\(586\) 0 0
\(587\) 363.215 0.618764 0.309382 0.950938i \(-0.399878\pi\)
0.309382 + 0.950938i \(0.399878\pi\)
\(588\) 0 0
\(589\) 211.293i 0.358732i
\(590\) 0 0
\(591\) −178.330 102.959i −0.301744 0.174212i
\(592\) 0 0
\(593\) −238.107 412.414i −0.401530 0.695471i 0.592381 0.805658i \(-0.298188\pi\)
−0.993911 + 0.110187i \(0.964855\pi\)
\(594\) 0 0
\(595\) −19.0546 + 8.03902i −0.0320246 + 0.0135110i
\(596\) 0 0
\(597\) −168.677 + 97.3858i −0.282541 + 0.163125i
\(598\) 0 0
\(599\) −102.017 58.8994i −0.170312 0.0983295i 0.412421 0.910993i \(-0.364683\pi\)
−0.582733 + 0.812664i \(0.698017\pi\)
\(600\) 0 0
\(601\) −1117.79 −1.85989 −0.929945 0.367699i \(-0.880146\pi\)
−0.929945 + 0.367699i \(0.880146\pi\)
\(602\) 0 0
\(603\) −73.1999 −0.121393
\(604\) 0 0
\(605\) 249.041 + 143.784i 0.411638 + 0.237659i
\(606\) 0 0
\(607\) −523.639 + 302.323i −0.862668 + 0.498061i −0.864905 0.501936i \(-0.832621\pi\)
0.00223707 + 0.999997i \(0.499288\pi\)
\(608\) 0 0
\(609\) 37.5955 300.746i 0.0617331 0.493836i
\(610\) 0 0
\(611\) 17.8098 + 30.8475i 0.0291486 + 0.0504869i
\(612\) 0 0
\(613\) −229.518 132.512i −0.374418 0.216170i 0.300969 0.953634i \(-0.402690\pi\)
−0.675387 + 0.737464i \(0.736023\pi\)
\(614\) 0 0
\(615\) 230.308i 0.374484i
\(616\) 0 0
\(617\) −255.786 −0.414564 −0.207282 0.978281i \(-0.566462\pi\)
−0.207282 + 0.978281i \(0.566462\pi\)
\(618\) 0 0
\(619\) 233.792 404.940i 0.377693 0.654184i −0.613033 0.790057i \(-0.710051\pi\)
0.990726 + 0.135873i \(0.0433840\pi\)
\(620\) 0 0
\(621\) −424.209 + 244.917i −0.683106 + 0.394391i
\(622\) 0 0
\(623\) −201.770 + 266.542i −0.323869 + 0.427836i
\(624\) 0 0
\(625\) 106.615 + 184.663i 0.170584 + 0.295461i
\(626\) 0 0
\(627\) −108.712 + 188.295i −0.173384 + 0.300310i
\(628\) 0 0
\(629\) 52.3490i 0.0832257i
\(630\) 0 0
\(631\) 95.0377i 0.150614i −0.997160 0.0753072i \(-0.976006\pi\)
0.997160 0.0753072i \(-0.0239937\pi\)
\(632\) 0 0
\(633\) −198.275 + 343.422i −0.313230 + 0.542531i
\(634\) 0 0
\(635\) −132.846 230.096i −0.209206 0.362356i
\(636\) 0 0
\(637\) 66.3108 + 64.5991i 0.104099 + 0.101411i
\(638\) 0 0
\(639\) 223.560 129.072i 0.349859 0.201991i
\(640\) 0 0
\(641\) 277.514 480.669i 0.432940 0.749873i −0.564185 0.825648i \(-0.690810\pi\)
0.997125 + 0.0757747i \(0.0241430\pi\)
\(642\) 0 0
\(643\) −830.144 −1.29105 −0.645524 0.763740i \(-0.723361\pi\)
−0.645524 + 0.763740i \(0.723361\pi\)
\(644\) 0 0
\(645\) 93.4249i 0.144845i
\(646\) 0 0
\(647\) 390.816 + 225.637i 0.604043 + 0.348744i 0.770630 0.637282i \(-0.219942\pi\)
−0.166588 + 0.986027i \(0.553275\pi\)
\(648\) 0 0
\(649\) −178.129 308.528i −0.274467 0.475391i
\(650\) 0 0
\(651\) −45.6610 34.5650i −0.0701398 0.0530952i
\(652\) 0 0
\(653\) −199.901 + 115.413i −0.306127 + 0.176743i −0.645192 0.764020i \(-0.723223\pi\)
0.339065 + 0.940763i \(0.389889\pi\)
\(654\) 0 0
\(655\) −770.106 444.621i −1.17573 0.678811i
\(656\) 0 0
\(657\) 730.240 1.11148
\(658\) 0 0
\(659\) 300.628 0.456189 0.228094 0.973639i \(-0.426751\pi\)
0.228094 + 0.973639i \(0.426751\pi\)
\(660\) 0 0
\(661\) 573.915 + 331.350i 0.868253 + 0.501286i 0.866767 0.498713i \(-0.166194\pi\)
0.00148565 + 0.999999i \(0.499527\pi\)
\(662\) 0 0
\(663\) 1.47973 0.854325i 0.00223188 0.00128858i
\(664\) 0 0
\(665\) −93.8177 + 750.498i −0.141079 + 1.12857i
\(666\) 0 0
\(667\) 495.265 + 857.825i 0.742527 + 1.28609i
\(668\) 0 0
\(669\) 185.223 + 106.939i 0.276866 + 0.159849i
\(670\) 0 0
\(671\) 216.302i 0.322358i
\(672\) 0 0
\(673\) 590.494 0.877405 0.438703 0.898632i \(-0.355438\pi\)
0.438703 + 0.898632i \(0.355438\pi\)
\(674\) 0 0
\(675\) −107.215 + 185.702i −0.158837 + 0.275114i
\(676\) 0 0
\(677\) 750.444 433.269i 1.10848 0.639984i 0.170048 0.985436i \(-0.445608\pi\)
0.938437 + 0.345452i \(0.112274\pi\)
\(678\) 0 0
\(679\) −342.093 810.852i −0.503819 1.19419i
\(680\) 0 0
\(681\) 15.7941 + 27.3562i 0.0231925 + 0.0401707i
\(682\) 0 0
\(683\) −8.89548 + 15.4074i −0.0130241 + 0.0225585i −0.872464 0.488678i \(-0.837479\pi\)
0.859440 + 0.511237i \(0.170812\pi\)
\(684\) 0 0
\(685\) 501.892i 0.732689i
\(686\) 0 0
\(687\) 261.828i 0.381118i
\(688\) 0 0
\(689\) 0.288774 0.500171i 0.000419120 0.000725937i
\(690\) 0 0
\(691\) 176.728 + 306.101i 0.255756 + 0.442983i 0.965101 0.261879i \(-0.0843422\pi\)
−0.709344 + 0.704862i \(0.751009\pi\)
\(692\) 0 0
\(693\) −138.076 327.277i −0.199244 0.472261i
\(694\) 0 0
\(695\) −118.829 + 68.6061i −0.170977 + 0.0987138i
\(696\) 0 0
\(697\) −21.9973 + 38.1004i −0.0315599 + 0.0546634i
\(698\) 0 0
\(699\) 247.835 0.354556
\(700\) 0 0
\(701\) 441.991i 0.630516i 0.949006 + 0.315258i \(0.102091\pi\)
−0.949006 + 0.315258i \(0.897909\pi\)
\(702\) 0 0
\(703\) 1658.00 + 957.244i 2.35846 + 1.36166i
\(704\) 0 0
\(705\) 39.4376 + 68.3079i 0.0559398 + 0.0968906i
\(706\) 0 0
\(707\) 136.955 1095.58i 0.193713 1.54961i
\(708\) 0 0
\(709\) 385.131 222.355i 0.543202 0.313618i −0.203173 0.979143i \(-0.565126\pi\)
0.746376 + 0.665525i \(0.231792\pi\)
\(710\) 0 0
\(711\) −56.7588 32.7697i −0.0798295 0.0460896i
\(712\) 0 0
\(713\) 187.161 0.262498
\(714\) 0 0
\(715\) 45.9135 0.0642147
\(716\) 0 0
\(717\) −106.582 61.5352i −0.148650 0.0858232i
\(718\) 0 0
\(719\) −1231.69 + 711.118i −1.71306 + 0.989037i −0.782698 + 0.622401i \(0.786157\pi\)
−0.930365 + 0.366636i \(0.880510\pi\)
\(720\) 0 0
\(721\) 640.041 + 484.506i 0.887713 + 0.671992i
\(722\) 0 0
\(723\) 84.0866 + 145.642i 0.116302 + 0.201442i
\(724\) 0 0
\(725\) 375.522 + 216.808i 0.517961 + 0.299045i
\(726\) 0 0
\(727\) 778.491i 1.07083i 0.844590 + 0.535413i \(0.179844\pi\)
−0.844590 + 0.535413i \(0.820156\pi\)
\(728\) 0 0
\(729\) −178.307 −0.244591
\(730\) 0 0
\(731\) −8.92324 + 15.4555i −0.0122069 + 0.0211430i
\(732\) 0 0
\(733\) 261.732 151.111i 0.357070 0.206154i −0.310725 0.950500i \(-0.600572\pi\)
0.667795 + 0.744346i \(0.267238\pi\)
\(734\) 0 0
\(735\) 146.837 + 143.046i 0.199778 + 0.194621i
\(736\) 0 0
\(737\) −31.1679 53.9844i −0.0422902 0.0732488i
\(738\) 0 0
\(739\) −11.6714 + 20.2155i −0.0157935 + 0.0273551i −0.873814 0.486260i \(-0.838361\pi\)
0.858021 + 0.513615i \(0.171694\pi\)
\(740\) 0 0
\(741\) 62.4882i 0.0843295i
\(742\) 0 0
\(743\) 946.890i 1.27442i 0.770692 + 0.637208i \(0.219911\pi\)
−0.770692 + 0.637208i \(0.780089\pi\)
\(744\) 0 0
\(745\) −67.0080 + 116.061i −0.0899437 + 0.155787i
\(746\) 0 0
\(747\) 300.322 + 520.174i 0.402038 + 0.696350i
\(748\) 0 0
\(749\) 771.950 1019.76i 1.03064 1.36149i
\(750\) 0 0
\(751\) −63.4721 + 36.6456i −0.0845167 + 0.0487958i −0.541663 0.840596i \(-0.682205\pi\)
0.457146 + 0.889392i \(0.348872\pi\)
\(752\) 0 0
\(753\) 171.652 297.310i 0.227957 0.394834i
\(754\) 0 0
\(755\) −54.9979 −0.0728449
\(756\) 0 0
\(757\) 817.472i 1.07988i −0.841702 0.539942i \(-0.818446\pi\)
0.841702 0.539942i \(-0.181554\pi\)
\(758\) 0 0
\(759\) −166.789 96.2958i −0.219749 0.126872i
\(760\) 0 0
\(761\) 484.282 + 838.801i 0.636376 + 1.10224i 0.986222 + 0.165428i \(0.0529007\pi\)
−0.349846 + 0.936807i \(0.613766\pi\)
\(762\) 0 0
\(763\) −62.2315 + 497.823i −0.0815616 + 0.652454i
\(764\) 0 0
\(765\) −19.7508 + 11.4031i −0.0258181 + 0.0149061i
\(766\) 0 0
\(767\) 88.6719 + 51.1947i 0.115609 + 0.0667467i
\(768\) 0 0
\(769\) 512.038 0.665849 0.332925 0.942953i \(-0.391965\pi\)
0.332925 + 0.942953i \(0.391965\pi\)
\(770\) 0 0
\(771\) 99.5628 0.129135
\(772\) 0 0
\(773\) 537.444 + 310.294i 0.695271 + 0.401415i 0.805584 0.592482i \(-0.201852\pi\)
−0.110313 + 0.993897i \(0.535185\pi\)
\(774\) 0 0
\(775\) 70.9550 40.9659i 0.0915548 0.0528592i
\(776\) 0 0
\(777\) 478.090 201.703i 0.615303 0.259592i
\(778\) 0 0
\(779\) 804.476 + 1393.39i 1.03270 + 1.78870i
\(780\) 0 0
\(781\) 190.380 + 109.916i 0.243764 + 0.140737i
\(782\) 0 0
\(783\) 723.916i 0.924542i
\(784\) 0 0
\(785\) −746.096 −0.950441
\(786\) 0 0
\(787\) 254.651 441.068i 0.323572 0.560442i −0.657651 0.753323i \(-0.728450\pi\)
0.981222 + 0.192881i \(0.0617830\pi\)
\(788\) 0 0
\(789\) 124.192 71.7022i 0.157404 0.0908774i
\(790\) 0 0
\(791\) −385.483 913.697i −0.487336 1.15512i
\(792\) 0 0
\(793\) −31.0829 53.8372i −0.0391966 0.0678906i
\(794\) 0 0
\(795\) 0.639453 1.10756i 0.000804343 0.00139316i
\(796\) 0 0
\(797\) 739.232i 0.927519i −0.885961 0.463759i \(-0.846500\pi\)
0.885961 0.463759i \(-0.153500\pi\)
\(798\) 0 0
\(799\) 15.0671i 0.0188575i
\(800\) 0 0
\(801\) −184.327 + 319.263i −0.230121 + 0.398580i
\(802\) 0 0
\(803\) 310.930 + 538.546i 0.387210 + 0.670668i
\(804\) 0 0
\(805\) −664.782 83.1026i −0.825816 0.103233i
\(806\) 0 0
\(807\) −487.478 + 281.445i −0.604061 + 0.348755i
\(808\) 0 0
\(809\) 64.1469 111.106i 0.0792915 0.137337i −0.823653 0.567094i \(-0.808068\pi\)
0.902944 + 0.429757i \(0.141401\pi\)
\(810\) 0 0
\(811\) −791.144 −0.975517 −0.487759 0.872979i \(-0.662185\pi\)
−0.487759 + 0.872979i \(0.662185\pi\)
\(812\) 0 0
\(813\) 471.383i 0.579807i
\(814\) 0 0
\(815\) −423.491 244.503i −0.519621 0.300003i
\(816\) 0 0
\(817\) 326.338 + 565.234i 0.399434 + 0.691841i
\(818\) 0 0
\(819\) 81.3969 + 61.6168i 0.0993857 + 0.0752342i
\(820\) 0 0
\(821\) −794.776 + 458.864i −0.968058 + 0.558909i −0.898644 0.438679i \(-0.855446\pi\)
−0.0694147 + 0.997588i \(0.522113\pi\)
\(822\) 0 0
\(823\) −60.6374 35.0090i −0.0736785 0.0425383i 0.462708 0.886511i \(-0.346878\pi\)
−0.536387 + 0.843972i \(0.680211\pi\)
\(824\) 0 0
\(825\) −84.3090 −0.102193
\(826\) 0 0
\(827\) 1014.27 1.22644 0.613221 0.789911i \(-0.289873\pi\)
0.613221 + 0.789911i \(0.289873\pi\)
\(828\) 0 0
\(829\) 564.615 + 325.981i 0.681080 + 0.393222i 0.800262 0.599651i \(-0.204694\pi\)
−0.119182 + 0.992872i \(0.538027\pi\)
\(830\) 0 0
\(831\) 155.866 89.9892i 0.187564 0.108290i
\(832\) 0 0
\(833\) −10.6289 37.6893i −0.0127598 0.0452453i
\(834\) 0 0
\(835\) 442.539 + 766.500i 0.529987 + 0.917964i
\(836\) 0 0
\(837\) −118.459 68.3921i −0.141528 0.0817110i
\(838\) 0 0
\(839\) 905.246i 1.07896i 0.841999 + 0.539479i \(0.181379\pi\)
−0.841999 + 0.539479i \(0.818621\pi\)
\(840\) 0 0
\(841\) −622.887 −0.740650
\(842\) 0 0
\(843\) 197.792 342.587i 0.234629 0.406390i
\(844\) 0 0
\(845\) 529.640 305.788i 0.626793 0.361879i
\(846\) 0 0
\(847\) −328.644 + 434.145i −0.388010 + 0.512568i
\(848\) 0 0
\(849\) 275.978 + 478.008i 0.325062 + 0.563024i
\(850\) 0 0
\(851\) −847.915 + 1468.63i −0.996375 + 1.72577i
\(852\) 0 0
\(853\) 956.190i 1.12097i −0.828164 0.560486i \(-0.810614\pi\)
0.828164 0.560486i \(-0.189386\pi\)
\(854\) 0 0
\(855\) 834.063i 0.975513i
\(856\) 0 0
\(857\) −270.837 + 469.103i −0.316029 + 0.547378i −0.979656 0.200686i \(-0.935683\pi\)
0.663627 + 0.748064i \(0.269016\pi\)
\(858\) 0 0
\(859\) −20.0712 34.7644i −0.0233658 0.0404708i 0.854106 0.520099i \(-0.174105\pi\)
−0.877472 + 0.479628i \(0.840772\pi\)
\(860\) 0 0
\(861\) 432.718 + 54.0930i 0.502576 + 0.0628257i
\(862\) 0 0
\(863\) −24.6998 + 14.2604i −0.0286209 + 0.0165243i −0.514242 0.857645i \(-0.671927\pi\)
0.485621 + 0.874169i \(0.338593\pi\)
\(864\) 0 0
\(865\) −298.497 + 517.013i −0.345084 + 0.597703i
\(866\) 0 0
\(867\) 326.326 0.376386
\(868\) 0 0
\(869\) 55.8123i 0.0642259i
\(870\) 0 0
\(871\) 15.5152 + 8.95773i 0.0178131 + 0.0102844i
\(872\) 0 0
\(873\) −485.250 840.478i −0.555842 0.962747i
\(874\) 0 0
\(875\) −866.291 + 365.483i −0.990047 + 0.417694i
\(876\) 0 0
\(877\) −448.601 + 259.000i −0.511518 + 0.295325i −0.733457 0.679736i \(-0.762095\pi\)
0.221940 + 0.975060i \(0.428761\pi\)
\(878\) 0 0
\(879\) −122.229 70.5690i −0.139055 0.0802833i
\(880\) 0 0
\(881\) −958.207 −1.08764 −0.543818 0.839203i \(-0.683022\pi\)
−0.543818 + 0.839203i \(0.683022\pi\)
\(882\) 0 0
\(883\) 1650.96 1.86972 0.934859 0.355019i \(-0.115525\pi\)
0.934859 + 0.355019i \(0.115525\pi\)
\(884\) 0 0
\(885\) 196.353 + 113.364i 0.221867 + 0.128095i
\(886\) 0 0
\(887\) 1274.68 735.939i 1.43707 0.829694i 0.439427 0.898278i \(-0.355181\pi\)
0.997645 + 0.0685839i \(0.0218481\pi\)
\(888\) 0 0
\(889\) 463.523 195.557i 0.521398 0.219975i
\(890\) 0 0
\(891\) −157.974 273.618i −0.177299 0.307091i
\(892\) 0 0
\(893\) −477.206 275.515i −0.534385 0.308527i
\(894\) 0 0
\(895\) 917.077i 1.02467i
\(896\) 0 0
\(897\) 55.3513 0.0617071
\(898\) 0 0
\(899\) −138.301 + 239.544i −0.153839 + 0.266456i
\(900\) 0 0
\(901\) −0.211573 + 0.122151i −0.000234820 + 0.000135573i
\(902\) 0 0
\(903\) 175.533 + 21.9429i 0.194389 + 0.0243000i
\(904\) 0 0
\(905\) 341.011 + 590.648i 0.376808 + 0.652650i
\(906\) 0 0
\(907\) 463.777 803.285i 0.511331 0.885651i −0.488583 0.872517i \(-0.662486\pi\)
0.999914 0.0131332i \(-0.00418056\pi\)
\(908\) 0 0
\(909\) 1217.57i 1.33946i
\(910\) 0 0
\(911\) 1168.02i 1.28213i −0.767488 0.641063i \(-0.778494\pi\)
0.767488 0.641063i \(-0.221506\pi\)
\(912\) 0 0
\(913\) −255.749 + 442.971i −0.280120 + 0.485182i
\(914\) 0 0
\(915\) −68.8293 119.216i −0.0752232 0.130290i
\(916\) 0 0
\(917\) 1016.26 1342.50i 1.10825 1.46401i
\(918\) 0 0
\(919\) −1286.49 + 742.755i −1.39988 + 0.808221i −0.994380 0.105874i \(-0.966236\pi\)
−0.405501 + 0.914095i \(0.632903\pi\)
\(920\) 0 0
\(921\) 242.827 420.588i 0.263656 0.456665i
\(922\) 0 0
\(923\) −63.1802 −0.0684509
\(924\) 0 0
\(925\) 742.368i 0.802560i
\(926\) 0 0
\(927\) 766.638 + 442.619i 0.827010 + 0.477475i
\(928\) 0 0
\(929\) −57.3779 99.3815i −0.0617631 0.106977i 0.833490 0.552534i \(-0.186339\pi\)
−0.895254 + 0.445557i \(0.853006\pi\)
\(930\) 0 0
\(931\) −1388.05 352.543i −1.49093 0.378671i
\(932\) 0 0
\(933\) −318.755 + 184.033i −0.341645 + 0.197249i
\(934\) 0 0
\(935\) −16.8195 9.71072i −0.0179887 0.0103858i
\(936\) 0 0
\(937\) 1712.72 1.82787 0.913936 0.405858i \(-0.133027\pi\)
0.913936 + 0.405858i \(0.133027\pi\)
\(938\) 0 0
\(939\) 116.281 0.123835
\(940\) 0 0
\(941\) 1267.32 + 731.690i 1.34678 + 0.777566i 0.987793 0.155774i \(-0.0497873\pi\)
0.358992 + 0.933341i \(0.383121\pi\)
\(942\) 0 0
\(943\) −1234.25 + 712.596i −1.30886 + 0.755669i
\(944\) 0 0
\(945\) 390.389 + 295.521i 0.413110 + 0.312721i
\(946\) 0 0
\(947\) 340.899 + 590.454i 0.359978 + 0.623500i 0.987957 0.154731i \(-0.0494510\pi\)
−0.627979 + 0.778230i \(0.716118\pi\)
\(948\) 0 0
\(949\) −154.780 89.3620i −0.163098 0.0941644i
\(950\) 0 0
\(951\) 451.876i 0.475159i
\(952\) 0 0
\(953\) 817.928 0.858266 0.429133 0.903241i \(-0.358819\pi\)
0.429133 + 0.903241i \(0.358819\pi\)
\(954\) 0 0
\(955\) 686.723 1189.44i 0.719082 1.24549i
\(956\) 0 0
\(957\) 246.495 142.314i 0.257570 0.148708i
\(958\) 0 0
\(959\) 942.990 + 117.881i 0.983305 + 0.122920i
\(960\) 0 0
\(961\) −454.368 786.988i −0.472807 0.818927i
\(962\) 0 0
\(963\) 705.212 1221.46i 0.732307 1.26839i
\(964\) 0 0
\(965\) 795.679i 0.824538i
\(966\) 0 0
\(967\) 1096.98i 1.13442i 0.823573 + 0.567210i \(0.191977\pi\)
−0.823573 + 0.567210i \(0.808023\pi\)
\(968\) 0 0
\(969\) −13.2163 + 22.8913i −0.0136391 + 0.0236236i
\(970\) 0 0
\(971\) −349.701 605.700i −0.360145 0.623790i 0.627839 0.778343i \(-0.283940\pi\)
−0.987984 + 0.154553i \(0.950606\pi\)
\(972\) 0 0
\(973\) −100.992 239.378i −0.103795 0.246021i
\(974\) 0 0
\(975\) 20.9843 12.1153i 0.0215224 0.0124260i
\(976\) 0 0
\(977\) 288.393 499.511i 0.295182 0.511270i −0.679845 0.733356i \(-0.737953\pi\)
0.975027 + 0.222085i \(0.0712864\pi\)
\(978\) 0 0
\(979\) −313.939 −0.320673
\(980\) 0 0
\(981\) 553.254i 0.563969i
\(982\) 0 0
\(983\) −706.812 408.078i −0.719036 0.415135i 0.0953621 0.995443i \(-0.469599\pi\)
−0.814398 + 0.580307i \(0.802932\pi\)
\(984\) 0 0
\(985\) −336.344 582.565i −0.341466 0.591436i
\(986\) 0 0
\(987\) −137.604 + 58.0544i −0.139417 + 0.0588191i
\(988\) 0 0
\(989\) −500.677 + 289.066i −0.506246 + 0.292281i
\(990\) 0 0
\(991\) −110.376 63.7255i −0.111378 0.0643042i 0.443276 0.896385i \(-0.353816\pi\)
−0.554654 + 0.832081i \(0.687149\pi\)
\(992\) 0 0
\(993\) −65.0325 −0.0654909
\(994\) 0 0
\(995\) −636.274 −0.639472
\(996\) 0 0
\(997\) −92.1637 53.2107i −0.0924410 0.0533708i 0.453067 0.891477i \(-0.350330\pi\)
−0.545508 + 0.838106i \(0.683663\pi\)
\(998\) 0 0
\(999\) 1073.33 619.688i 1.07441 0.620308i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.o.b.95.7 yes 20
4.3 odd 2 inner 448.3.o.b.95.4 yes 20
7.2 even 3 448.3.o.a.415.7 yes 20
8.3 odd 2 448.3.o.a.95.7 yes 20
8.5 even 2 448.3.o.a.95.4 20
28.23 odd 6 448.3.o.a.415.4 yes 20
56.37 even 6 inner 448.3.o.b.415.4 yes 20
56.51 odd 6 inner 448.3.o.b.415.7 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.3.o.a.95.4 20 8.5 even 2
448.3.o.a.95.7 yes 20 8.3 odd 2
448.3.o.a.415.4 yes 20 28.23 odd 6
448.3.o.a.415.7 yes 20 7.2 even 3
448.3.o.b.95.4 yes 20 4.3 odd 2 inner
448.3.o.b.95.7 yes 20 1.1 even 1 trivial
448.3.o.b.415.4 yes 20 56.37 even 6 inner
448.3.o.b.415.7 yes 20 56.51 odd 6 inner