Properties

Label 448.3.o.b.95.5
Level $448$
Weight $3$
Character 448.95
Analytic conductor $12.207$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(95,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.95"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 34 x^{18} + 755 x^{16} - 9698 x^{14} + 89921 x^{12} - 522048 x^{10} + 2189920 x^{8} + \cdots + 7311616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.5
Root \(1.96054 - 1.13192i\) of defining polynomial
Character \(\chi\) \(=\) 448.95
Dual form 448.3.o.b.415.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.459807 + 0.796409i) q^{3} +(-7.80113 + 4.50398i) q^{5} +(6.78682 - 1.71436i) q^{7} +(4.07716 + 7.06184i) q^{9} +(-6.32702 + 10.9587i) q^{11} -16.1125i q^{13} -8.28385i q^{15} +(-0.984338 + 1.70492i) q^{17} +(0.216902 + 0.375684i) q^{19} +(-1.75530 + 6.19336i) q^{21} +(-34.6927 + 20.0298i) q^{23} +(28.0717 - 48.6217i) q^{25} -15.7753 q^{27} -40.7786i q^{29} +(-40.7424 - 23.5226i) q^{31} +(-5.81841 - 10.0778i) q^{33} +(-45.2234 + 43.9417i) q^{35} +(-27.5719 + 15.9186i) q^{37} +(12.8321 + 7.40863i) q^{39} -52.2116 q^{41} +14.1020 q^{43} +(-63.6128 - 36.7269i) q^{45} +(29.9037 - 17.2649i) q^{47} +(43.1219 - 23.2701i) q^{49} +(-0.905211 - 1.56787i) q^{51} +(-11.2463 - 6.49306i) q^{53} -113.987i q^{55} -0.398931 q^{57} +(-7.30775 + 12.6574i) q^{59} +(21.1429 - 12.2069i) q^{61} +(39.7775 + 40.9378i) q^{63} +(72.5704 + 125.696i) q^{65} +(-39.7900 + 68.9184i) q^{67} -36.8394i q^{69} +28.2994i q^{71} +(25.3528 - 43.9124i) q^{73} +(25.8151 + 44.7131i) q^{75} +(-24.1532 + 85.2216i) q^{77} +(-70.2147 + 40.5385i) q^{79} +(-29.4408 + 50.9930i) q^{81} +77.5181 q^{83} -17.7338i q^{85} +(32.4764 + 18.7503i) q^{87} +(-65.4595 - 113.379i) q^{89} +(-27.6226 - 109.353i) q^{91} +(37.4673 - 21.6317i) q^{93} +(-3.38415 - 1.95384i) q^{95} -7.27222 q^{97} -103.185 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 28 q^{9} + 46 q^{17} - 114 q^{21} + 36 q^{25} + 94 q^{33} + 114 q^{37} - 160 q^{41} - 708 q^{45} - 92 q^{49} - 6 q^{53} + 308 q^{57} + 90 q^{61} + 212 q^{65} + 314 q^{73} - 198 q^{77} - 322 q^{81}+ \cdots - 224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.459807 + 0.796409i −0.153269 + 0.265470i −0.932427 0.361357i \(-0.882313\pi\)
0.779158 + 0.626827i \(0.215647\pi\)
\(4\) 0 0
\(5\) −7.80113 + 4.50398i −1.56023 + 0.900797i −0.562992 + 0.826462i \(0.690350\pi\)
−0.997233 + 0.0743347i \(0.976317\pi\)
\(6\) 0 0
\(7\) 6.78682 1.71436i 0.969546 0.244908i
\(8\) 0 0
\(9\) 4.07716 + 7.06184i 0.453017 + 0.784649i
\(10\) 0 0
\(11\) −6.32702 + 10.9587i −0.575183 + 0.996247i 0.420838 + 0.907136i \(0.361736\pi\)
−0.996022 + 0.0891111i \(0.971597\pi\)
\(12\) 0 0
\(13\) 16.1125i 1.23942i −0.784830 0.619711i \(-0.787250\pi\)
0.784830 0.619711i \(-0.212750\pi\)
\(14\) 0 0
\(15\) 8.28385i 0.552257i
\(16\) 0 0
\(17\) −0.984338 + 1.70492i −0.0579023 + 0.100290i −0.893524 0.449016i \(-0.851775\pi\)
0.835621 + 0.549306i \(0.185108\pi\)
\(18\) 0 0
\(19\) 0.216902 + 0.375684i 0.0114159 + 0.0197729i 0.871677 0.490081i \(-0.163033\pi\)
−0.860261 + 0.509854i \(0.829699\pi\)
\(20\) 0 0
\(21\) −1.75530 + 6.19336i −0.0835855 + 0.294922i
\(22\) 0 0
\(23\) −34.6927 + 20.0298i −1.50838 + 0.870862i −0.508425 + 0.861107i \(0.669772\pi\)
−0.999952 + 0.00975527i \(0.996895\pi\)
\(24\) 0 0
\(25\) 28.0717 48.6217i 1.12287 1.94487i
\(26\) 0 0
\(27\) −15.7753 −0.584272
\(28\) 0 0
\(29\) 40.7786i 1.40616i −0.711111 0.703079i \(-0.751808\pi\)
0.711111 0.703079i \(-0.248192\pi\)
\(30\) 0 0
\(31\) −40.7424 23.5226i −1.31427 0.758795i −0.331470 0.943466i \(-0.607545\pi\)
−0.982800 + 0.184671i \(0.940878\pi\)
\(32\) 0 0
\(33\) −5.81841 10.0778i −0.176315 0.305387i
\(34\) 0 0
\(35\) −45.2234 + 43.9417i −1.29210 + 1.25548i
\(36\) 0 0
\(37\) −27.5719 + 15.9186i −0.745185 + 0.430233i −0.823952 0.566660i \(-0.808235\pi\)
0.0787663 + 0.996893i \(0.474902\pi\)
\(38\) 0 0
\(39\) 12.8321 + 7.40863i 0.329029 + 0.189965i
\(40\) 0 0
\(41\) −52.2116 −1.27345 −0.636727 0.771089i \(-0.719712\pi\)
−0.636727 + 0.771089i \(0.719712\pi\)
\(42\) 0 0
\(43\) 14.1020 0.327954 0.163977 0.986464i \(-0.447568\pi\)
0.163977 + 0.986464i \(0.447568\pi\)
\(44\) 0 0
\(45\) −63.6128 36.7269i −1.41362 0.816153i
\(46\) 0 0
\(47\) 29.9037 17.2649i 0.636249 0.367339i −0.146919 0.989149i \(-0.546936\pi\)
0.783168 + 0.621810i \(0.213602\pi\)
\(48\) 0 0
\(49\) 43.1219 23.2701i 0.880040 0.474900i
\(50\) 0 0
\(51\) −0.905211 1.56787i −0.0177492 0.0307426i
\(52\) 0 0
\(53\) −11.2463 6.49306i −0.212195 0.122511i 0.390136 0.920757i \(-0.372428\pi\)
−0.602331 + 0.798246i \(0.705761\pi\)
\(54\) 0 0
\(55\) 113.987i 2.07249i
\(56\) 0 0
\(57\) −0.398931 −0.00699879
\(58\) 0 0
\(59\) −7.30775 + 12.6574i −0.123860 + 0.214532i −0.921287 0.388884i \(-0.872861\pi\)
0.797427 + 0.603416i \(0.206194\pi\)
\(60\) 0 0
\(61\) 21.1429 12.2069i 0.346605 0.200112i −0.316584 0.948564i \(-0.602536\pi\)
0.663189 + 0.748452i \(0.269203\pi\)
\(62\) 0 0
\(63\) 39.7775 + 40.9378i 0.631388 + 0.649806i
\(64\) 0 0
\(65\) 72.5704 + 125.696i 1.11647 + 1.93378i
\(66\) 0 0
\(67\) −39.7900 + 68.9184i −0.593881 + 1.02863i 0.399823 + 0.916592i \(0.369072\pi\)
−0.993704 + 0.112040i \(0.964262\pi\)
\(68\) 0 0
\(69\) 36.8394i 0.533904i
\(70\) 0 0
\(71\) 28.2994i 0.398584i 0.979940 + 0.199292i \(0.0638642\pi\)
−0.979940 + 0.199292i \(0.936136\pi\)
\(72\) 0 0
\(73\) 25.3528 43.9124i 0.347299 0.601540i −0.638469 0.769647i \(-0.720432\pi\)
0.985769 + 0.168107i \(0.0537655\pi\)
\(74\) 0 0
\(75\) 25.8151 + 44.7131i 0.344202 + 0.596175i
\(76\) 0 0
\(77\) −24.1532 + 85.2216i −0.313678 + 1.10677i
\(78\) 0 0
\(79\) −70.2147 + 40.5385i −0.888793 + 0.513145i −0.873548 0.486739i \(-0.838186\pi\)
−0.0152457 + 0.999884i \(0.504853\pi\)
\(80\) 0 0
\(81\) −29.4408 + 50.9930i −0.363467 + 0.629543i
\(82\) 0 0
\(83\) 77.5181 0.933953 0.466977 0.884270i \(-0.345343\pi\)
0.466977 + 0.884270i \(0.345343\pi\)
\(84\) 0 0
\(85\) 17.7338i 0.208633i
\(86\) 0 0
\(87\) 32.4764 + 18.7503i 0.373292 + 0.215520i
\(88\) 0 0
\(89\) −65.4595 113.379i −0.735500 1.27392i −0.954504 0.298199i \(-0.903614\pi\)
0.219004 0.975724i \(-0.429719\pi\)
\(90\) 0 0
\(91\) −27.6226 109.353i −0.303545 1.20168i
\(92\) 0 0
\(93\) 37.4673 21.6317i 0.402874 0.232599i
\(94\) 0 0
\(95\) −3.38415 1.95384i −0.0356227 0.0205668i
\(96\) 0 0
\(97\) −7.27222 −0.0749713 −0.0374857 0.999297i \(-0.511935\pi\)
−0.0374857 + 0.999297i \(0.511935\pi\)
\(98\) 0 0
\(99\) −103.185 −1.04227
\(100\) 0 0
\(101\) −11.0636 6.38756i −0.109540 0.0632431i 0.444229 0.895913i \(-0.353478\pi\)
−0.553769 + 0.832670i \(0.686811\pi\)
\(102\) 0 0
\(103\) −82.0565 + 47.3753i −0.796665 + 0.459955i −0.842304 0.539003i \(-0.818801\pi\)
0.0456390 + 0.998958i \(0.485468\pi\)
\(104\) 0 0
\(105\) −14.2015 56.2210i −0.135252 0.535438i
\(106\) 0 0
\(107\) 16.9208 + 29.3076i 0.158138 + 0.273903i 0.934197 0.356757i \(-0.116118\pi\)
−0.776059 + 0.630660i \(0.782784\pi\)
\(108\) 0 0
\(109\) 114.203 + 65.9353i 1.04774 + 0.604911i 0.922015 0.387155i \(-0.126542\pi\)
0.125722 + 0.992066i \(0.459875\pi\)
\(110\) 0 0
\(111\) 29.2780i 0.263765i
\(112\) 0 0
\(113\) −43.8639 −0.388176 −0.194088 0.980984i \(-0.562175\pi\)
−0.194088 + 0.980984i \(0.562175\pi\)
\(114\) 0 0
\(115\) 180.428 312.510i 1.56894 2.71748i
\(116\) 0 0
\(117\) 113.784 65.6931i 0.972511 0.561480i
\(118\) 0 0
\(119\) −3.75768 + 13.2585i −0.0315771 + 0.111416i
\(120\) 0 0
\(121\) −19.5623 33.8829i −0.161672 0.280024i
\(122\) 0 0
\(123\) 24.0073 41.5818i 0.195181 0.338063i
\(124\) 0 0
\(125\) 280.539i 2.24432i
\(126\) 0 0
\(127\) 92.1089i 0.725267i 0.931932 + 0.362634i \(0.118122\pi\)
−0.931932 + 0.362634i \(0.881878\pi\)
\(128\) 0 0
\(129\) −6.48419 + 11.2310i −0.0502651 + 0.0870617i
\(130\) 0 0
\(131\) −10.7488 18.6174i −0.0820518 0.142118i 0.822079 0.569373i \(-0.192814\pi\)
−0.904131 + 0.427255i \(0.859481\pi\)
\(132\) 0 0
\(133\) 2.11613 + 2.17786i 0.0159108 + 0.0163749i
\(134\) 0 0
\(135\) 123.065 71.0519i 0.911596 0.526310i
\(136\) 0 0
\(137\) −32.8022 + 56.8150i −0.239432 + 0.414708i −0.960551 0.278102i \(-0.910295\pi\)
0.721119 + 0.692811i \(0.243628\pi\)
\(138\) 0 0
\(139\) −213.452 −1.53563 −0.767813 0.640674i \(-0.778655\pi\)
−0.767813 + 0.640674i \(0.778655\pi\)
\(140\) 0 0
\(141\) 31.7541i 0.225206i
\(142\) 0 0
\(143\) 176.572 + 101.944i 1.23477 + 0.712895i
\(144\) 0 0
\(145\) 183.666 + 318.119i 1.26666 + 2.19392i
\(146\) 0 0
\(147\) −1.29524 + 45.0424i −0.00881119 + 0.306411i
\(148\) 0 0
\(149\) 115.093 66.4490i 0.772436 0.445966i −0.0613069 0.998119i \(-0.519527\pi\)
0.833743 + 0.552153i \(0.186194\pi\)
\(150\) 0 0
\(151\) 50.1819 + 28.9725i 0.332331 + 0.191871i 0.656875 0.753999i \(-0.271878\pi\)
−0.324545 + 0.945870i \(0.605211\pi\)
\(152\) 0 0
\(153\) −16.0532 −0.104923
\(154\) 0 0
\(155\) 423.782 2.73408
\(156\) 0 0
\(157\) −83.1606 48.0128i −0.529685 0.305814i 0.211203 0.977442i \(-0.432262\pi\)
−0.740888 + 0.671628i \(0.765595\pi\)
\(158\) 0 0
\(159\) 10.3423 5.97111i 0.0650457 0.0375541i
\(160\) 0 0
\(161\) −201.115 + 195.415i −1.24916 + 1.21376i
\(162\) 0 0
\(163\) 147.278 + 255.092i 0.903543 + 1.56498i 0.822861 + 0.568242i \(0.192376\pi\)
0.0806819 + 0.996740i \(0.474290\pi\)
\(164\) 0 0
\(165\) 90.7803 + 52.4120i 0.550184 + 0.317649i
\(166\) 0 0
\(167\) 153.695i 0.920331i 0.887833 + 0.460166i \(0.152210\pi\)
−0.887833 + 0.460166i \(0.847790\pi\)
\(168\) 0 0
\(169\) −90.6122 −0.536167
\(170\) 0 0
\(171\) −1.76868 + 3.06345i −0.0103432 + 0.0179149i
\(172\) 0 0
\(173\) −29.3569 + 16.9492i −0.169693 + 0.0979724i −0.582441 0.812873i \(-0.697902\pi\)
0.412748 + 0.910845i \(0.364569\pi\)
\(174\) 0 0
\(175\) 107.163 378.112i 0.612359 2.16064i
\(176\) 0 0
\(177\) −6.72030 11.6399i −0.0379678 0.0657622i
\(178\) 0 0
\(179\) 100.243 173.627i 0.560018 0.969980i −0.437476 0.899230i \(-0.644127\pi\)
0.997494 0.0707502i \(-0.0225393\pi\)
\(180\) 0 0
\(181\) 162.562i 0.898132i 0.893499 + 0.449066i \(0.148243\pi\)
−0.893499 + 0.449066i \(0.851757\pi\)
\(182\) 0 0
\(183\) 22.4512i 0.122684i
\(184\) 0 0
\(185\) 143.394 248.366i 0.775105 1.34252i
\(186\) 0 0
\(187\) −12.4559 21.5742i −0.0666088 0.115370i
\(188\) 0 0
\(189\) −107.064 + 27.0446i −0.566478 + 0.143093i
\(190\) 0 0
\(191\) −39.8493 + 23.0070i −0.208635 + 0.120455i −0.600677 0.799492i \(-0.705102\pi\)
0.392042 + 0.919947i \(0.371769\pi\)
\(192\) 0 0
\(193\) −58.2777 + 100.940i −0.301957 + 0.523004i −0.976579 0.215159i \(-0.930973\pi\)
0.674622 + 0.738163i \(0.264306\pi\)
\(194\) 0 0
\(195\) −133.473 −0.684479
\(196\) 0 0
\(197\) 17.7289i 0.0899943i 0.998987 + 0.0449971i \(0.0143279\pi\)
−0.998987 + 0.0449971i \(0.985672\pi\)
\(198\) 0 0
\(199\) 133.182 + 76.8926i 0.669256 + 0.386395i 0.795795 0.605567i \(-0.207053\pi\)
−0.126539 + 0.991962i \(0.540387\pi\)
\(200\) 0 0
\(201\) −36.5914 63.3782i −0.182047 0.315315i
\(202\) 0 0
\(203\) −69.9092 276.757i −0.344380 1.36334i
\(204\) 0 0
\(205\) 407.310 235.160i 1.98688 1.14712i
\(206\) 0 0
\(207\) −282.895 163.329i −1.36664 0.789031i
\(208\) 0 0
\(209\) −5.48936 −0.0262649
\(210\) 0 0
\(211\) −182.410 −0.864502 −0.432251 0.901753i \(-0.642281\pi\)
−0.432251 + 0.901753i \(0.642281\pi\)
\(212\) 0 0
\(213\) −22.5379 13.0123i −0.105812 0.0610905i
\(214\) 0 0
\(215\) −110.012 + 63.5152i −0.511682 + 0.295419i
\(216\) 0 0
\(217\) −316.838 89.7968i −1.46008 0.413810i
\(218\) 0 0
\(219\) 23.3148 + 40.3825i 0.106460 + 0.184395i
\(220\) 0 0
\(221\) 27.4706 + 15.8601i 0.124301 + 0.0717653i
\(222\) 0 0
\(223\) 316.251i 1.41817i 0.705124 + 0.709084i \(0.250891\pi\)
−0.705124 + 0.709084i \(0.749109\pi\)
\(224\) 0 0
\(225\) 457.811 2.03472
\(226\) 0 0
\(227\) 131.749 228.195i 0.580391 1.00527i −0.415042 0.909802i \(-0.636233\pi\)
0.995433 0.0954639i \(-0.0304334\pi\)
\(228\) 0 0
\(229\) −225.621 + 130.262i −0.985246 + 0.568832i −0.903850 0.427850i \(-0.859271\pi\)
−0.0813959 + 0.996682i \(0.525938\pi\)
\(230\) 0 0
\(231\) −56.7655 58.4213i −0.245738 0.252906i
\(232\) 0 0
\(233\) −139.311 241.294i −0.597902 1.03560i −0.993130 0.117014i \(-0.962668\pi\)
0.395228 0.918583i \(-0.370666\pi\)
\(234\) 0 0
\(235\) −155.522 + 269.372i −0.661795 + 1.14626i
\(236\) 0 0
\(237\) 74.5594i 0.314597i
\(238\) 0 0
\(239\) 139.808i 0.584970i 0.956270 + 0.292485i \(0.0944821\pi\)
−0.956270 + 0.292485i \(0.905518\pi\)
\(240\) 0 0
\(241\) 49.5884 85.8896i 0.205761 0.356388i −0.744614 0.667495i \(-0.767366\pi\)
0.950375 + 0.311107i \(0.100700\pi\)
\(242\) 0 0
\(243\) −98.0632 169.850i −0.403552 0.698973i
\(244\) 0 0
\(245\) −231.592 + 375.754i −0.945272 + 1.53369i
\(246\) 0 0
\(247\) 6.05321 3.49482i 0.0245069 0.0141491i
\(248\) 0 0
\(249\) −35.6433 + 61.7361i −0.143146 + 0.247936i
\(250\) 0 0
\(251\) −232.634 −0.926829 −0.463414 0.886142i \(-0.653376\pi\)
−0.463414 + 0.886142i \(0.653376\pi\)
\(252\) 0 0
\(253\) 506.916i 2.00362i
\(254\) 0 0
\(255\) 14.1233 + 8.15411i 0.0553856 + 0.0319769i
\(256\) 0 0
\(257\) −77.0149 133.394i −0.299669 0.519042i 0.676391 0.736543i \(-0.263543\pi\)
−0.976060 + 0.217501i \(0.930210\pi\)
\(258\) 0 0
\(259\) −159.835 + 155.305i −0.617124 + 0.599633i
\(260\) 0 0
\(261\) 287.972 166.261i 1.10334 0.637014i
\(262\) 0 0
\(263\) −331.143 191.185i −1.25910 0.726941i −0.286199 0.958170i \(-0.592392\pi\)
−0.972899 + 0.231230i \(0.925725\pi\)
\(264\) 0 0
\(265\) 116.979 0.441429
\(266\) 0 0
\(267\) 120.395 0.450917
\(268\) 0 0
\(269\) −301.543 174.096i −1.12098 0.647197i −0.179328 0.983789i \(-0.557392\pi\)
−0.941651 + 0.336592i \(0.890726\pi\)
\(270\) 0 0
\(271\) 153.069 88.3745i 0.564831 0.326105i −0.190251 0.981735i \(-0.560930\pi\)
0.755082 + 0.655630i \(0.227597\pi\)
\(272\) 0 0
\(273\) 99.7904 + 28.2822i 0.365533 + 0.103598i
\(274\) 0 0
\(275\) 355.221 + 615.260i 1.29171 + 2.23731i
\(276\) 0 0
\(277\) −276.470 159.620i −0.998088 0.576247i −0.0904063 0.995905i \(-0.528817\pi\)
−0.907682 + 0.419658i \(0.862150\pi\)
\(278\) 0 0
\(279\) 383.622i 1.37499i
\(280\) 0 0
\(281\) 216.962 0.772107 0.386053 0.922476i \(-0.373838\pi\)
0.386053 + 0.922476i \(0.373838\pi\)
\(282\) 0 0
\(283\) −107.240 + 185.745i −0.378940 + 0.656344i −0.990908 0.134539i \(-0.957045\pi\)
0.611968 + 0.790883i \(0.290378\pi\)
\(284\) 0 0
\(285\) 3.11211 1.79678i 0.0109197 0.00630449i
\(286\) 0 0
\(287\) −354.351 + 89.5095i −1.23467 + 0.311880i
\(288\) 0 0
\(289\) 142.562 + 246.925i 0.493295 + 0.854411i
\(290\) 0 0
\(291\) 3.34381 5.79166i 0.0114908 0.0199026i
\(292\) 0 0
\(293\) 397.846i 1.35784i 0.734214 + 0.678918i \(0.237551\pi\)
−0.734214 + 0.678918i \(0.762449\pi\)
\(294\) 0 0
\(295\) 131.656i 0.446291i
\(296\) 0 0
\(297\) 99.8108 172.877i 0.336063 0.582079i
\(298\) 0 0
\(299\) 322.730 + 558.985i 1.07937 + 1.86952i
\(300\) 0 0
\(301\) 95.7078 24.1759i 0.317966 0.0803186i
\(302\) 0 0
\(303\) 10.1742 5.87408i 0.0335782 0.0193864i
\(304\) 0 0
\(305\) −109.959 + 190.455i −0.360521 + 0.624441i
\(306\) 0 0
\(307\) −369.153 −1.20245 −0.601227 0.799078i \(-0.705321\pi\)
−0.601227 + 0.799078i \(0.705321\pi\)
\(308\) 0 0
\(309\) 87.1340i 0.281987i
\(310\) 0 0
\(311\) 399.700 + 230.767i 1.28521 + 0.742015i 0.977796 0.209561i \(-0.0672035\pi\)
0.307412 + 0.951576i \(0.400537\pi\)
\(312\) 0 0
\(313\) 134.221 + 232.478i 0.428822 + 0.742741i 0.996769 0.0803240i \(-0.0255955\pi\)
−0.567947 + 0.823065i \(0.692262\pi\)
\(314\) 0 0
\(315\) −494.692 140.204i −1.57045 0.445091i
\(316\) 0 0
\(317\) −327.713 + 189.205i −1.03379 + 0.596861i −0.918069 0.396420i \(-0.870252\pi\)
−0.115725 + 0.993281i \(0.536919\pi\)
\(318\) 0 0
\(319\) 446.881 + 258.007i 1.40088 + 0.808799i
\(320\) 0 0
\(321\) −31.1211 −0.0969506
\(322\) 0 0
\(323\) −0.854018 −0.00264402
\(324\) 0 0
\(325\) −783.416 452.305i −2.41051 1.39171i
\(326\) 0 0
\(327\) −105.023 + 60.6350i −0.321171 + 0.185428i
\(328\) 0 0
\(329\) 173.353 168.440i 0.526909 0.511974i
\(330\) 0 0
\(331\) −151.150 261.799i −0.456646 0.790934i 0.542135 0.840291i \(-0.317616\pi\)
−0.998781 + 0.0493573i \(0.984283\pi\)
\(332\) 0 0
\(333\) −224.829 129.805i −0.675164 0.389806i
\(334\) 0 0
\(335\) 716.855i 2.13986i
\(336\) 0 0
\(337\) −171.204 −0.508025 −0.254013 0.967201i \(-0.581750\pi\)
−0.254013 + 0.967201i \(0.581750\pi\)
\(338\) 0 0
\(339\) 20.1689 34.9336i 0.0594954 0.103049i
\(340\) 0 0
\(341\) 515.556 297.656i 1.51189 0.872892i
\(342\) 0 0
\(343\) 252.768 231.857i 0.736932 0.675967i
\(344\) 0 0
\(345\) 165.924 + 287.389i 0.480939 + 0.833011i
\(346\) 0 0
\(347\) −163.843 + 283.785i −0.472170 + 0.817823i −0.999493 0.0318422i \(-0.989863\pi\)
0.527323 + 0.849665i \(0.323196\pi\)
\(348\) 0 0
\(349\) 26.2785i 0.0752964i −0.999291 0.0376482i \(-0.988013\pi\)
0.999291 0.0376482i \(-0.0119866\pi\)
\(350\) 0 0
\(351\) 254.180i 0.724159i
\(352\) 0 0
\(353\) 112.342 194.583i 0.318250 0.551225i −0.661873 0.749616i \(-0.730238\pi\)
0.980123 + 0.198391i \(0.0635715\pi\)
\(354\) 0 0
\(355\) −127.460 220.768i −0.359043 0.621881i
\(356\) 0 0
\(357\) −8.83140 9.08901i −0.0247378 0.0254594i
\(358\) 0 0
\(359\) −585.508 + 338.043i −1.63094 + 0.941624i −0.647137 + 0.762374i \(0.724034\pi\)
−0.983804 + 0.179250i \(0.942633\pi\)
\(360\) 0 0
\(361\) 180.406 312.472i 0.499739 0.865574i
\(362\) 0 0
\(363\) 35.9795 0.0991170
\(364\) 0 0
\(365\) 456.755i 1.25138i
\(366\) 0 0
\(367\) −412.555 238.189i −1.12413 0.649015i −0.181676 0.983358i \(-0.558152\pi\)
−0.942451 + 0.334343i \(0.891486\pi\)
\(368\) 0 0
\(369\) −212.875 368.710i −0.576897 0.999215i
\(370\) 0 0
\(371\) −87.4582 24.7870i −0.235736 0.0668114i
\(372\) 0 0
\(373\) 206.693 119.334i 0.554138 0.319932i −0.196652 0.980473i \(-0.563007\pi\)
0.750789 + 0.660542i \(0.229673\pi\)
\(374\) 0 0
\(375\) −223.424 128.994i −0.595797 0.343984i
\(376\) 0 0
\(377\) −657.045 −1.74282
\(378\) 0 0
\(379\) 361.641 0.954198 0.477099 0.878850i \(-0.341688\pi\)
0.477099 + 0.878850i \(0.341688\pi\)
\(380\) 0 0
\(381\) −73.3564 42.3523i −0.192536 0.111161i
\(382\) 0 0
\(383\) −30.9081 + 17.8448i −0.0807000 + 0.0465921i −0.539807 0.841789i \(-0.681503\pi\)
0.459107 + 0.888381i \(0.348169\pi\)
\(384\) 0 0
\(385\) −195.415 773.610i −0.507571 2.00938i
\(386\) 0 0
\(387\) 57.4961 + 99.5861i 0.148569 + 0.257328i
\(388\) 0 0
\(389\) 415.411 + 239.838i 1.06789 + 0.616549i 0.927605 0.373562i \(-0.121864\pi\)
0.140289 + 0.990111i \(0.455197\pi\)
\(390\) 0 0
\(391\) 78.8645i 0.201699i
\(392\) 0 0
\(393\) 19.7695 0.0503040
\(394\) 0 0
\(395\) 365.169 632.491i 0.924479 1.60124i
\(396\) 0 0
\(397\) −97.0586 + 56.0368i −0.244480 + 0.141151i −0.617234 0.786780i \(-0.711747\pi\)
0.372754 + 0.927930i \(0.378414\pi\)
\(398\) 0 0
\(399\) −2.70747 + 0.683911i −0.00678565 + 0.00171406i
\(400\) 0 0
\(401\) 38.7177 + 67.0610i 0.0965528 + 0.167234i 0.910256 0.414047i \(-0.135885\pi\)
−0.813703 + 0.581281i \(0.802552\pi\)
\(402\) 0 0
\(403\) −379.008 + 656.461i −0.940467 + 1.62894i
\(404\) 0 0
\(405\) 530.403i 1.30964i
\(406\) 0 0
\(407\) 402.869i 0.989851i
\(408\) 0 0
\(409\) −146.009 + 252.895i −0.356990 + 0.618325i −0.987456 0.157892i \(-0.949530\pi\)
0.630466 + 0.776217i \(0.282864\pi\)
\(410\) 0 0
\(411\) −30.1653 52.2479i −0.0733949 0.127124i
\(412\) 0 0
\(413\) −27.8971 + 98.4316i −0.0675474 + 0.238333i
\(414\) 0 0
\(415\) −604.729 + 349.140i −1.45718 + 0.841302i
\(416\) 0 0
\(417\) 98.1467 169.995i 0.235364 0.407662i
\(418\) 0 0
\(419\) 274.205 0.654427 0.327214 0.944950i \(-0.393890\pi\)
0.327214 + 0.944950i \(0.393890\pi\)
\(420\) 0 0
\(421\) 588.325i 1.39745i −0.715392 0.698724i \(-0.753752\pi\)
0.715392 0.698724i \(-0.246248\pi\)
\(422\) 0 0
\(423\) 243.844 + 140.783i 0.576464 + 0.332821i
\(424\) 0 0
\(425\) 55.2642 + 95.7204i 0.130033 + 0.225224i
\(426\) 0 0
\(427\) 122.566 119.092i 0.287040 0.278905i
\(428\) 0 0
\(429\) −162.378 + 93.7490i −0.378504 + 0.218529i
\(430\) 0 0
\(431\) 411.785 + 237.744i 0.955418 + 0.551611i 0.894760 0.446547i \(-0.147347\pi\)
0.0606585 + 0.998159i \(0.480680\pi\)
\(432\) 0 0
\(433\) 26.3299 0.0608081 0.0304041 0.999538i \(-0.490321\pi\)
0.0304041 + 0.999538i \(0.490321\pi\)
\(434\) 0 0
\(435\) −337.804 −0.776560
\(436\) 0 0
\(437\) −15.0498 8.68900i −0.0344389 0.0198833i
\(438\) 0 0
\(439\) −307.812 + 177.715i −0.701165 + 0.404818i −0.807781 0.589482i \(-0.799332\pi\)
0.106616 + 0.994300i \(0.465998\pi\)
\(440\) 0 0
\(441\) 340.145 + 209.644i 0.771303 + 0.475384i
\(442\) 0 0
\(443\) −19.6235 33.9889i −0.0442969 0.0767244i 0.843027 0.537871i \(-0.180771\pi\)
−0.887324 + 0.461147i \(0.847438\pi\)
\(444\) 0 0
\(445\) 1021.32 + 589.657i 2.29509 + 1.32507i
\(446\) 0 0
\(447\) 122.215i 0.273411i
\(448\) 0 0
\(449\) −298.951 −0.665814 −0.332907 0.942960i \(-0.608030\pi\)
−0.332907 + 0.942960i \(0.608030\pi\)
\(450\) 0 0
\(451\) 330.344 572.173i 0.732470 1.26868i
\(452\) 0 0
\(453\) −46.1480 + 26.6435i −0.101872 + 0.0588158i
\(454\) 0 0
\(455\) 708.010 + 728.662i 1.55607 + 1.60145i
\(456\) 0 0
\(457\) 417.480 + 723.096i 0.913523 + 1.58227i 0.809050 + 0.587740i \(0.199982\pi\)
0.104473 + 0.994528i \(0.466684\pi\)
\(458\) 0 0
\(459\) 15.5283 26.8957i 0.0338306 0.0585964i
\(460\) 0 0
\(461\) 365.921i 0.793755i 0.917872 + 0.396877i \(0.129906\pi\)
−0.917872 + 0.396877i \(0.870094\pi\)
\(462\) 0 0
\(463\) 528.067i 1.14053i −0.821460 0.570266i \(-0.806840\pi\)
0.821460 0.570266i \(-0.193160\pi\)
\(464\) 0 0
\(465\) −194.858 + 337.504i −0.419049 + 0.725815i
\(466\) 0 0
\(467\) 436.603 + 756.218i 0.934910 + 1.61931i 0.774795 + 0.632213i \(0.217853\pi\)
0.160115 + 0.987098i \(0.448813\pi\)
\(468\) 0 0
\(469\) −151.897 + 535.951i −0.323874 + 1.14275i
\(470\) 0 0
\(471\) 76.4756 44.1532i 0.162369 0.0937435i
\(472\) 0 0
\(473\) −89.2236 + 154.540i −0.188633 + 0.326723i
\(474\) 0 0
\(475\) 24.3552 0.0512741
\(476\) 0 0
\(477\) 105.893i 0.221998i
\(478\) 0 0
\(479\) 223.400 + 128.980i 0.466388 + 0.269269i 0.714727 0.699404i \(-0.246551\pi\)
−0.248338 + 0.968673i \(0.579884\pi\)
\(480\) 0 0
\(481\) 256.488 + 444.251i 0.533240 + 0.923599i
\(482\) 0 0
\(483\) −63.1559 250.022i −0.130758 0.517645i
\(484\) 0 0
\(485\) 56.7315 32.7539i 0.116972 0.0675339i
\(486\) 0 0
\(487\) 403.470 + 232.944i 0.828481 + 0.478324i 0.853332 0.521367i \(-0.174578\pi\)
−0.0248512 + 0.999691i \(0.507911\pi\)
\(488\) 0 0
\(489\) −270.877 −0.553940
\(490\) 0 0
\(491\) 265.442 0.540615 0.270307 0.962774i \(-0.412875\pi\)
0.270307 + 0.962774i \(0.412875\pi\)
\(492\) 0 0
\(493\) 69.5244 + 40.1399i 0.141023 + 0.0814198i
\(494\) 0 0
\(495\) 804.959 464.743i 1.62618 0.938875i
\(496\) 0 0
\(497\) 48.5154 + 192.063i 0.0976165 + 0.386445i
\(498\) 0 0
\(499\) −349.630 605.578i −0.700662 1.21358i −0.968234 0.250044i \(-0.919555\pi\)
0.267572 0.963538i \(-0.413779\pi\)
\(500\) 0 0
\(501\) −122.404 70.6701i −0.244320 0.141058i
\(502\) 0 0
\(503\) 155.162i 0.308473i 0.988034 + 0.154237i \(0.0492918\pi\)
−0.988034 + 0.154237i \(0.950708\pi\)
\(504\) 0 0
\(505\) 115.078 0.227877
\(506\) 0 0
\(507\) 41.6641 72.1643i 0.0821777 0.142336i
\(508\) 0 0
\(509\) −111.931 + 64.6236i −0.219904 + 0.126962i −0.605906 0.795536i \(-0.707189\pi\)
0.386002 + 0.922498i \(0.373856\pi\)
\(510\) 0 0
\(511\) 96.7836 341.490i 0.189400 0.668277i
\(512\) 0 0
\(513\) −3.42169 5.92655i −0.00666997 0.0115527i
\(514\) 0 0
\(515\) 426.755 739.162i 0.828651 1.43527i
\(516\) 0 0
\(517\) 436.942i 0.845148i
\(518\) 0 0
\(519\) 31.1735i 0.0600645i
\(520\) 0 0
\(521\) −211.232 + 365.865i −0.405436 + 0.702236i −0.994372 0.105944i \(-0.966214\pi\)
0.588936 + 0.808179i \(0.299547\pi\)
\(522\) 0 0
\(523\) −253.739 439.488i −0.485160 0.840321i 0.514695 0.857373i \(-0.327905\pi\)
−0.999855 + 0.0170520i \(0.994572\pi\)
\(524\) 0 0
\(525\) 251.857 + 259.204i 0.479728 + 0.493722i
\(526\) 0 0
\(527\) 80.2086 46.3085i 0.152198 0.0878718i
\(528\) 0 0
\(529\) 537.888 931.649i 1.01680 1.76115i
\(530\) 0 0
\(531\) −119.179 −0.224443
\(532\) 0 0
\(533\) 841.259i 1.57835i
\(534\) 0 0
\(535\) −264.002 152.422i −0.493462 0.284900i
\(536\) 0 0
\(537\) 92.1851 + 159.669i 0.171667 + 0.297336i
\(538\) 0 0
\(539\) −17.8228 + 619.791i −0.0330664 + 1.14989i
\(540\) 0 0
\(541\) 296.986 171.465i 0.548958 0.316941i −0.199744 0.979848i \(-0.564011\pi\)
0.748701 + 0.662907i \(0.230678\pi\)
\(542\) 0 0
\(543\) −129.466 74.7470i −0.238427 0.137656i
\(544\) 0 0
\(545\) −1187.89 −2.17961
\(546\) 0 0
\(547\) 936.416 1.71191 0.855956 0.517049i \(-0.172970\pi\)
0.855956 + 0.517049i \(0.172970\pi\)
\(548\) 0 0
\(549\) 172.406 + 99.5385i 0.314036 + 0.181309i
\(550\) 0 0
\(551\) 15.3199 8.84494i 0.0278038 0.0160525i
\(552\) 0 0
\(553\) −407.037 + 395.501i −0.736053 + 0.715191i
\(554\) 0 0
\(555\) 131.867 + 228.401i 0.237599 + 0.411533i
\(556\) 0 0
\(557\) −526.381 303.906i −0.945029 0.545613i −0.0534960 0.998568i \(-0.517036\pi\)
−0.891533 + 0.452955i \(0.850370\pi\)
\(558\) 0 0
\(559\) 227.218i 0.406473i
\(560\) 0 0
\(561\) 22.9091 0.0408362
\(562\) 0 0
\(563\) −133.544 + 231.305i −0.237200 + 0.410843i −0.959910 0.280309i \(-0.909563\pi\)
0.722710 + 0.691152i \(0.242896\pi\)
\(564\) 0 0
\(565\) 342.188 197.562i 0.605643 0.349668i
\(566\) 0 0
\(567\) −112.389 + 396.552i −0.198217 + 0.699387i
\(568\) 0 0
\(569\) 8.55667 + 14.8206i 0.0150381 + 0.0260467i 0.873447 0.486920i \(-0.161880\pi\)
−0.858408 + 0.512967i \(0.828546\pi\)
\(570\) 0 0
\(571\) 396.662 687.038i 0.694679 1.20322i −0.275610 0.961270i \(-0.588880\pi\)
0.970289 0.241950i \(-0.0777868\pi\)
\(572\) 0 0
\(573\) 42.3151i 0.0738483i
\(574\) 0 0
\(575\) 2249.09i 3.91146i
\(576\) 0 0
\(577\) 475.169 823.017i 0.823517 1.42637i −0.0795304 0.996832i \(-0.525342\pi\)
0.903047 0.429541i \(-0.141325\pi\)
\(578\) 0 0
\(579\) −53.5929 92.8256i −0.0925612 0.160321i
\(580\) 0 0
\(581\) 526.102 132.894i 0.905511 0.228733i
\(582\) 0 0
\(583\) 142.311 82.1634i 0.244102 0.140932i
\(584\) 0 0
\(585\) −591.761 + 1024.96i −1.01156 + 1.75207i
\(586\) 0 0
\(587\) 189.969 0.323626 0.161813 0.986821i \(-0.448266\pi\)
0.161813 + 0.986821i \(0.448266\pi\)
\(588\) 0 0
\(589\) 20.4084i 0.0346492i
\(590\) 0 0
\(591\) −14.1194 8.15185i −0.0238907 0.0137933i
\(592\) 0 0
\(593\) −401.904 696.117i −0.677746 1.17389i −0.975658 0.219298i \(-0.929623\pi\)
0.297912 0.954593i \(-0.403710\pi\)
\(594\) 0 0
\(595\) −30.4021 120.356i −0.0510959 0.202279i
\(596\) 0 0
\(597\) −122.476 + 70.7115i −0.205152 + 0.118445i
\(598\) 0 0
\(599\) −575.459 332.241i −0.960699 0.554660i −0.0643112 0.997930i \(-0.520485\pi\)
−0.896388 + 0.443270i \(0.853818\pi\)
\(600\) 0 0
\(601\) 809.705 1.34726 0.673632 0.739067i \(-0.264733\pi\)
0.673632 + 0.739067i \(0.264733\pi\)
\(602\) 0 0
\(603\) −648.921 −1.07615
\(604\) 0 0
\(605\) 305.216 + 176.216i 0.504489 + 0.291267i
\(606\) 0 0
\(607\) −206.564 + 119.260i −0.340304 + 0.196474i −0.660406 0.750909i \(-0.729616\pi\)
0.320103 + 0.947383i \(0.396283\pi\)
\(608\) 0 0
\(609\) 252.556 + 71.5785i 0.414707 + 0.117535i
\(610\) 0 0
\(611\) −278.181 481.823i −0.455287 0.788581i
\(612\) 0 0
\(613\) 634.610 + 366.392i 1.03525 + 0.597703i 0.918485 0.395456i \(-0.129413\pi\)
0.116768 + 0.993159i \(0.462747\pi\)
\(614\) 0 0
\(615\) 432.513i 0.703274i
\(616\) 0 0
\(617\) 367.893 0.596261 0.298130 0.954525i \(-0.403637\pi\)
0.298130 + 0.954525i \(0.403637\pi\)
\(618\) 0 0
\(619\) −84.9132 + 147.074i −0.137178 + 0.237599i −0.926427 0.376474i \(-0.877137\pi\)
0.789249 + 0.614073i \(0.210470\pi\)
\(620\) 0 0
\(621\) 547.288 315.977i 0.881302 0.508820i
\(622\) 0 0
\(623\) −638.634 657.263i −1.02510 1.05500i
\(624\) 0 0
\(625\) −561.752 972.982i −0.898803 1.55677i
\(626\) 0 0
\(627\) 2.52404 4.37177i 0.00402559 0.00697252i
\(628\) 0 0
\(629\) 62.6772i 0.0996458i
\(630\) 0 0
\(631\) 1128.49i 1.78841i −0.447654 0.894207i \(-0.647740\pi\)
0.447654 0.894207i \(-0.352260\pi\)
\(632\) 0 0
\(633\) 83.8733 145.273i 0.132501 0.229499i
\(634\) 0 0
\(635\) −414.857 718.554i −0.653318 1.13158i
\(636\) 0 0
\(637\) −374.939 694.802i −0.588602 1.09074i
\(638\) 0 0
\(639\) −199.846 + 115.381i −0.312748 + 0.180565i
\(640\) 0 0
\(641\) −454.911 + 787.929i −0.709690 + 1.22922i 0.255282 + 0.966867i \(0.417832\pi\)
−0.964972 + 0.262352i \(0.915502\pi\)
\(642\) 0 0
\(643\) 426.353 0.663068 0.331534 0.943443i \(-0.392434\pi\)
0.331534 + 0.943443i \(0.392434\pi\)
\(644\) 0 0
\(645\) 116.819i 0.181114i
\(646\) 0 0
\(647\) 89.3712 + 51.5985i 0.138132 + 0.0797503i 0.567473 0.823392i \(-0.307921\pi\)
−0.429342 + 0.903142i \(0.641254\pi\)
\(648\) 0 0
\(649\) −92.4725 160.167i −0.142485 0.246791i
\(650\) 0 0
\(651\) 217.199 211.043i 0.333639 0.324183i
\(652\) 0 0
\(653\) 353.462 204.071i 0.541289 0.312513i −0.204312 0.978906i \(-0.565496\pi\)
0.745601 + 0.666392i \(0.232162\pi\)
\(654\) 0 0
\(655\) 167.705 + 96.8247i 0.256039 + 0.147824i
\(656\) 0 0
\(657\) 413.470 0.629330
\(658\) 0 0
\(659\) 484.221 0.734781 0.367391 0.930067i \(-0.380251\pi\)
0.367391 + 0.930067i \(0.380251\pi\)
\(660\) 0 0
\(661\) 1023.59 + 590.970i 1.54855 + 0.894054i 0.998253 + 0.0590827i \(0.0188176\pi\)
0.550294 + 0.834971i \(0.314516\pi\)
\(662\) 0 0
\(663\) −25.2623 + 14.5852i −0.0381030 + 0.0219988i
\(664\) 0 0
\(665\) −26.3172 7.45872i −0.0395748 0.0112161i
\(666\) 0 0
\(667\) 816.788 + 1414.72i 1.22457 + 2.12102i
\(668\) 0 0
\(669\) −251.865 145.414i −0.376480 0.217361i
\(670\) 0 0
\(671\) 308.932i 0.460405i
\(672\) 0 0
\(673\) −557.182 −0.827908 −0.413954 0.910298i \(-0.635853\pi\)
−0.413954 + 0.910298i \(0.635853\pi\)
\(674\) 0 0
\(675\) −442.841 + 767.023i −0.656061 + 1.13633i
\(676\) 0 0
\(677\) −1053.55 + 608.266i −1.55620 + 0.898473i −0.558586 + 0.829447i \(0.688656\pi\)
−0.997615 + 0.0690260i \(0.978011\pi\)
\(678\) 0 0
\(679\) −49.3553 + 12.4672i −0.0726881 + 0.0183611i
\(680\) 0 0
\(681\) 121.158 + 209.852i 0.177912 + 0.308152i
\(682\) 0 0
\(683\) 119.229 206.511i 0.174567 0.302359i −0.765444 0.643502i \(-0.777481\pi\)
0.940011 + 0.341143i \(0.110814\pi\)
\(684\) 0 0
\(685\) 590.962i 0.862718i
\(686\) 0 0
\(687\) 239.582i 0.348737i
\(688\) 0 0
\(689\) −104.619 + 181.206i −0.151842 + 0.262999i
\(690\) 0 0
\(691\) −229.499 397.504i −0.332126 0.575259i 0.650803 0.759247i \(-0.274433\pi\)
−0.982928 + 0.183988i \(0.941099\pi\)
\(692\) 0 0
\(693\) −700.298 + 176.896i −1.01053 + 0.255261i
\(694\) 0 0
\(695\) 1665.17 961.385i 2.39592 1.38329i
\(696\) 0 0
\(697\) 51.3939 89.0169i 0.0737359 0.127714i
\(698\) 0 0
\(699\) 256.225 0.366559
\(700\) 0 0
\(701\) 854.640i 1.21917i −0.792720 0.609586i \(-0.791336\pi\)
0.792720 0.609586i \(-0.208664\pi\)
\(702\) 0 0
\(703\) −11.9608 6.90554i −0.0170139 0.00982297i
\(704\) 0 0
\(705\) −143.020 247.718i −0.202865 0.351373i
\(706\) 0 0
\(707\) −86.0371 24.3843i −0.121693 0.0344898i
\(708\) 0 0
\(709\) −715.777 + 413.254i −1.00956 + 0.582869i −0.911062 0.412269i \(-0.864736\pi\)
−0.0984958 + 0.995137i \(0.531403\pi\)
\(710\) 0 0
\(711\) −572.552 330.563i −0.805277 0.464927i
\(712\) 0 0
\(713\) 1884.62 2.64322
\(714\) 0 0
\(715\) −1836.62 −2.56869
\(716\) 0 0
\(717\) −111.344 64.2846i −0.155292 0.0896577i
\(718\) 0 0
\(719\) 633.214 365.586i 0.880687 0.508465i 0.00980210 0.999952i \(-0.496880\pi\)
0.870885 + 0.491487i \(0.163547\pi\)
\(720\) 0 0
\(721\) −475.684 + 462.202i −0.659756 + 0.641057i
\(722\) 0 0
\(723\) 45.6022 + 78.9853i 0.0630735 + 0.109247i
\(724\) 0 0
\(725\) −1982.72 1144.73i −2.73479 1.57893i
\(726\) 0 0
\(727\) 96.7088i 0.133024i 0.997786 + 0.0665122i \(0.0211871\pi\)
−0.997786 + 0.0665122i \(0.978813\pi\)
\(728\) 0 0
\(729\) −349.574 −0.479525
\(730\) 0 0
\(731\) −13.8811 + 24.0428i −0.0189892 + 0.0328903i
\(732\) 0 0
\(733\) −954.726 + 551.211i −1.30249 + 0.751993i −0.980831 0.194862i \(-0.937574\pi\)
−0.321660 + 0.946855i \(0.604241\pi\)
\(734\) 0 0
\(735\) −192.766 357.216i −0.262267 0.486008i
\(736\) 0 0
\(737\) −503.504 872.095i −0.683181 1.18330i
\(738\) 0 0
\(739\) −734.977 + 1273.02i −0.994556 + 1.72262i −0.407034 + 0.913413i \(0.633437\pi\)
−0.587522 + 0.809208i \(0.699896\pi\)
\(740\) 0 0
\(741\) 6.42777i 0.00867445i
\(742\) 0 0
\(743\) 143.647i 0.193333i 0.995317 + 0.0966666i \(0.0308181\pi\)
−0.995317 + 0.0966666i \(0.969182\pi\)
\(744\) 0 0
\(745\) −598.570 + 1036.75i −0.803450 + 1.39162i
\(746\) 0 0
\(747\) 316.053 + 547.421i 0.423097 + 0.732825i
\(748\) 0 0
\(749\) 165.082 + 169.897i 0.220403 + 0.226832i
\(750\) 0 0
\(751\) 906.936 523.619i 1.20764 0.697230i 0.245395 0.969423i \(-0.421082\pi\)
0.962243 + 0.272194i \(0.0877491\pi\)
\(752\) 0 0
\(753\) 106.967 185.272i 0.142054 0.246045i
\(754\) 0 0
\(755\) −521.967 −0.691348
\(756\) 0 0
\(757\) 673.016i 0.889057i 0.895765 + 0.444529i \(0.146629\pi\)
−0.895765 + 0.444529i \(0.853371\pi\)
\(758\) 0 0
\(759\) 403.712 + 233.083i 0.531900 + 0.307093i
\(760\) 0 0
\(761\) 409.427 + 709.148i 0.538011 + 0.931863i 0.999011 + 0.0444627i \(0.0141576\pi\)
−0.461000 + 0.887400i \(0.652509\pi\)
\(762\) 0 0
\(763\) 888.114 + 251.706i 1.16398 + 0.329890i
\(764\) 0 0
\(765\) 125.233 72.3034i 0.163703 0.0945142i
\(766\) 0 0
\(767\) 203.942 + 117.746i 0.265896 + 0.153515i
\(768\) 0 0
\(769\) 1510.85 1.96470 0.982350 0.187051i \(-0.0598931\pi\)
0.982350 + 0.187051i \(0.0598931\pi\)
\(770\) 0 0
\(771\) 141.648 0.183720
\(772\) 0 0
\(773\) 227.670 + 131.445i 0.294528 + 0.170046i 0.639982 0.768390i \(-0.278942\pi\)
−0.345454 + 0.938436i \(0.612275\pi\)
\(774\) 0 0
\(775\) −2287.42 + 1320.64i −2.95151 + 1.70405i
\(776\) 0 0
\(777\) −50.1929 198.704i −0.0645984 0.255733i
\(778\) 0 0
\(779\) −11.3248 19.6151i −0.0145376 0.0251798i
\(780\) 0 0
\(781\) −310.125 179.051i −0.397088 0.229259i
\(782\) 0 0
\(783\) 643.296i 0.821579i
\(784\) 0 0
\(785\) 864.995 1.10190
\(786\) 0 0
\(787\) −645.623 + 1118.25i −0.820360 + 1.42091i 0.0850545 + 0.996376i \(0.472894\pi\)
−0.905414 + 0.424529i \(0.860440\pi\)
\(788\) 0 0
\(789\) 304.523 175.817i 0.385961 0.222835i
\(790\) 0 0
\(791\) −297.697 + 75.1985i −0.376355 + 0.0950677i
\(792\) 0 0
\(793\) −196.683 340.665i −0.248024 0.429590i
\(794\) 0 0
\(795\) −53.7875 + 93.1628i −0.0676573 + 0.117186i
\(796\) 0 0
\(797\) 806.212i 1.01156i 0.862663 + 0.505779i \(0.168795\pi\)
−0.862663 + 0.505779i \(0.831205\pi\)
\(798\) 0 0
\(799\) 67.9781i 0.0850789i
\(800\) 0 0
\(801\) 533.777 924.528i 0.666388 1.15422i
\(802\) 0 0
\(803\) 320.816 + 555.669i 0.399522 + 0.691992i
\(804\) 0 0
\(805\) 688.778 2430.27i 0.855624 3.01897i
\(806\) 0 0
\(807\) 277.303 160.101i 0.343622 0.198390i
\(808\) 0 0
\(809\) 411.773 713.212i 0.508990 0.881597i −0.490956 0.871185i \(-0.663352\pi\)
0.999946 0.0104122i \(-0.00331437\pi\)
\(810\) 0 0
\(811\) −750.028 −0.924818 −0.462409 0.886667i \(-0.653015\pi\)
−0.462409 + 0.886667i \(0.653015\pi\)
\(812\) 0 0
\(813\) 162.541i 0.199927i
\(814\) 0 0
\(815\) −2297.86 1326.67i −2.81946 1.62782i
\(816\) 0 0
\(817\) 3.05875 + 5.29790i 0.00374387 + 0.00648458i
\(818\) 0 0
\(819\) 659.609 640.914i 0.805383 0.782557i
\(820\) 0 0
\(821\) −133.081 + 76.8345i −0.162097 + 0.0935865i −0.578854 0.815431i \(-0.696500\pi\)
0.416757 + 0.909018i \(0.363166\pi\)
\(822\) 0 0
\(823\) −110.552 63.8271i −0.134328 0.0775542i 0.431330 0.902194i \(-0.358044\pi\)
−0.565658 + 0.824640i \(0.691378\pi\)
\(824\) 0 0
\(825\) −653.332 −0.791917
\(826\) 0 0
\(827\) −1284.48 −1.55319 −0.776593 0.630003i \(-0.783054\pi\)
−0.776593 + 0.630003i \(0.783054\pi\)
\(828\) 0 0
\(829\) −455.604 263.043i −0.549582 0.317302i 0.199371 0.979924i \(-0.436110\pi\)
−0.748954 + 0.662622i \(0.769443\pi\)
\(830\) 0 0
\(831\) 254.246 146.789i 0.305952 0.176641i
\(832\) 0 0
\(833\) −2.77281 + 96.4253i −0.00332871 + 0.115757i
\(834\) 0 0
\(835\) −692.241 1199.00i −0.829031 1.43592i
\(836\) 0 0
\(837\) 642.725 + 371.077i 0.767891 + 0.443342i
\(838\) 0 0
\(839\) 840.139i 1.00136i −0.865633 0.500679i \(-0.833084\pi\)
0.865633 0.500679i \(-0.166916\pi\)
\(840\) 0 0
\(841\) −821.894 −0.977282
\(842\) 0 0
\(843\) −99.7606 + 172.790i −0.118340 + 0.204971i
\(844\) 0 0
\(845\) 706.877 408.116i 0.836541 0.482977i
\(846\) 0 0
\(847\) −190.853 196.420i −0.225328 0.231901i
\(848\) 0 0
\(849\) −98.6195 170.814i −0.116160 0.201194i
\(850\) 0 0
\(851\) 637.694 1104.52i 0.749347 1.29791i
\(852\) 0 0
\(853\) 1105.89i 1.29648i −0.761438 0.648238i \(-0.775506\pi\)
0.761438 0.648238i \(-0.224494\pi\)
\(854\) 0 0
\(855\) 31.8645i 0.0372684i
\(856\) 0 0
\(857\) 714.946 1238.32i 0.834242 1.44495i −0.0604036 0.998174i \(-0.519239\pi\)
0.894646 0.446776i \(-0.147428\pi\)
\(858\) 0 0
\(859\) −217.390 376.531i −0.253073 0.438336i 0.711297 0.702892i \(-0.248108\pi\)
−0.964370 + 0.264556i \(0.914775\pi\)
\(860\) 0 0
\(861\) 91.6469 323.365i 0.106442 0.375570i
\(862\) 0 0
\(863\) −494.623 + 285.571i −0.573144 + 0.330905i −0.758404 0.651785i \(-0.774021\pi\)
0.185260 + 0.982690i \(0.440687\pi\)
\(864\) 0 0
\(865\) 152.678 264.446i 0.176506 0.305718i
\(866\) 0 0
\(867\) −262.204 −0.302427
\(868\) 0 0
\(869\) 1025.95i 1.18061i
\(870\) 0 0
\(871\) 1110.45 + 641.116i 1.27491 + 0.736069i
\(872\) 0 0
\(873\) −29.6500 51.3552i −0.0339633 0.0588262i
\(874\) 0 0
\(875\) 480.945 + 1903.97i 0.549652 + 2.17597i
\(876\) 0 0
\(877\) −1331.28 + 768.617i −1.51800 + 0.876417i −0.518222 + 0.855246i \(0.673406\pi\)
−0.999776 + 0.0211705i \(0.993261\pi\)
\(878\) 0 0
\(879\) −316.848 182.932i −0.360464 0.208114i
\(880\) 0 0
\(881\) −197.073 −0.223692 −0.111846 0.993726i \(-0.535676\pi\)
−0.111846 + 0.993726i \(0.535676\pi\)
\(882\) 0 0
\(883\) 866.299 0.981086 0.490543 0.871417i \(-0.336798\pi\)
0.490543 + 0.871417i \(0.336798\pi\)
\(884\) 0 0
\(885\) 104.852 + 60.5363i 0.118477 + 0.0684026i
\(886\) 0 0
\(887\) −687.583 + 396.976i −0.775178 + 0.447549i −0.834719 0.550677i \(-0.814370\pi\)
0.0595407 + 0.998226i \(0.481036\pi\)
\(888\) 0 0
\(889\) 157.908 + 625.127i 0.177624 + 0.703180i
\(890\) 0 0
\(891\) −372.545 645.267i −0.418120 0.724205i
\(892\) 0 0
\(893\) 12.9723 + 7.48957i 0.0145267 + 0.00838698i
\(894\) 0 0
\(895\) 1805.98i 2.01785i
\(896\) 0 0
\(897\) −593.574 −0.661732
\(898\) 0 0
\(899\) −959.220 + 1661.42i −1.06699 + 1.84807i
\(900\) 0 0
\(901\) 22.1404 12.7827i 0.0245731 0.0141873i
\(902\) 0 0
\(903\) −24.7532 + 87.3387i −0.0274122 + 0.0967206i
\(904\) 0 0
\(905\) −732.176 1268.17i −0.809034 1.40129i
\(906\) 0 0
\(907\) −25.7540 + 44.6072i −0.0283947 + 0.0491811i −0.879874 0.475208i \(-0.842373\pi\)
0.851479 + 0.524389i \(0.175706\pi\)
\(908\) 0 0
\(909\) 104.172i 0.114601i
\(910\) 0 0
\(911\) 720.775i 0.791191i −0.918425 0.395595i \(-0.870538\pi\)
0.918425 0.395595i \(-0.129462\pi\)
\(912\) 0 0
\(913\) −490.458 + 849.499i −0.537194 + 0.930448i
\(914\) 0 0
\(915\) −101.120 175.145i −0.110513 0.191415i
\(916\) 0 0
\(917\) −104.867 107.926i −0.114359 0.117695i
\(918\) 0 0
\(919\) −550.058 + 317.576i −0.598539 + 0.345567i −0.768467 0.639890i \(-0.778980\pi\)
0.169927 + 0.985457i \(0.445647\pi\)
\(920\) 0 0
\(921\) 169.739 293.997i 0.184299 0.319215i
\(922\) 0 0
\(923\) 455.974 0.494013
\(924\) 0 0
\(925\) 1787.45i 1.93238i
\(926\) 0 0
\(927\) −669.114 386.313i −0.721806 0.416735i
\(928\) 0 0
\(929\) 378.206 + 655.072i 0.407111 + 0.705137i 0.994565 0.104121i \(-0.0332029\pi\)
−0.587454 + 0.809258i \(0.699870\pi\)
\(930\) 0 0
\(931\) 18.0954 + 11.1529i 0.0194366 + 0.0119795i
\(932\) 0 0
\(933\) −367.569 + 212.216i −0.393965 + 0.227456i
\(934\) 0 0
\(935\) 194.339 + 112.202i 0.207850 + 0.120002i
\(936\) 0 0
\(937\) −671.863 −0.717036 −0.358518 0.933523i \(-0.616718\pi\)
−0.358518 + 0.933523i \(0.616718\pi\)
\(938\) 0 0
\(939\) −246.863 −0.262900
\(940\) 0 0
\(941\) 799.260 + 461.453i 0.849373 + 0.490386i 0.860439 0.509553i \(-0.170189\pi\)
−0.0110660 + 0.999939i \(0.503522\pi\)
\(942\) 0 0
\(943\) 1811.36 1045.79i 1.92085 1.10900i
\(944\) 0 0
\(945\) 713.415 693.195i 0.754936 0.733539i
\(946\) 0 0
\(947\) −378.533 655.639i −0.399718 0.692332i 0.593973 0.804485i \(-0.297559\pi\)
−0.993691 + 0.112153i \(0.964225\pi\)
\(948\) 0 0
\(949\) −707.538 408.497i −0.745562 0.430450i
\(950\) 0 0
\(951\) 347.991i 0.365921i
\(952\) 0 0
\(953\) 394.200 0.413641 0.206821 0.978379i \(-0.433688\pi\)
0.206821 + 0.978379i \(0.433688\pi\)
\(954\) 0 0
\(955\) 207.246 358.961i 0.217012 0.375875i
\(956\) 0 0
\(957\) −410.958 + 237.267i −0.429423 + 0.247927i
\(958\) 0 0
\(959\) −125.221 + 441.828i −0.130575 + 0.460718i
\(960\) 0 0
\(961\) 626.129 + 1084.49i 0.651539 + 1.12850i
\(962\) 0 0
\(963\) −137.977 + 238.984i −0.143279 + 0.248166i
\(964\) 0 0
\(965\) 1049.93i 1.08801i
\(966\) 0 0
\(967\) 1194.61i 1.23538i −0.786423 0.617689i \(-0.788069\pi\)
0.786423 0.617689i \(-0.211931\pi\)
\(968\) 0 0
\(969\) 0.392683 0.680147i 0.000405246 0.000701906i
\(970\) 0 0
\(971\) −414.714 718.305i −0.427099 0.739758i 0.569514 0.821981i \(-0.307131\pi\)
−0.996614 + 0.0822233i \(0.973798\pi\)
\(972\) 0 0
\(973\) −1448.66 + 365.934i −1.48886 + 0.376088i
\(974\) 0 0
\(975\) 720.440 415.946i 0.738913 0.426611i
\(976\) 0 0
\(977\) −58.5535 + 101.418i −0.0599319 + 0.103805i −0.894435 0.447199i \(-0.852422\pi\)
0.834503 + 0.551004i \(0.185755\pi\)
\(978\) 0 0
\(979\) 1656.65 1.69219
\(980\) 0 0
\(981\) 1075.31i 1.09614i
\(982\) 0 0
\(983\) −251.017 144.925i −0.255358 0.147431i 0.366857 0.930277i \(-0.380434\pi\)
−0.622215 + 0.782846i \(0.713767\pi\)
\(984\) 0 0
\(985\) −79.8505 138.305i −0.0810665 0.140411i
\(986\) 0 0
\(987\) 54.4379 + 215.509i 0.0551549 + 0.218348i
\(988\) 0 0
\(989\) −489.236 + 282.461i −0.494678 + 0.285602i
\(990\) 0 0
\(991\) 467.933 + 270.161i 0.472182 + 0.272615i 0.717153 0.696916i \(-0.245445\pi\)
−0.244970 + 0.969531i \(0.578778\pi\)
\(992\) 0 0
\(993\) 277.999 0.279958
\(994\) 0 0
\(995\) −1385.29 −1.39225
\(996\) 0 0
\(997\) 665.146 + 384.022i 0.667148 + 0.385178i 0.794995 0.606616i \(-0.207473\pi\)
−0.127847 + 0.991794i \(0.540807\pi\)
\(998\) 0 0
\(999\) 434.955 251.122i 0.435391 0.251373i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.o.b.95.5 yes 20
4.3 odd 2 inner 448.3.o.b.95.6 yes 20
7.2 even 3 448.3.o.a.415.5 yes 20
8.3 odd 2 448.3.o.a.95.5 20
8.5 even 2 448.3.o.a.95.6 yes 20
28.23 odd 6 448.3.o.a.415.6 yes 20
56.37 even 6 inner 448.3.o.b.415.6 yes 20
56.51 odd 6 inner 448.3.o.b.415.5 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.3.o.a.95.5 20 8.3 odd 2
448.3.o.a.95.6 yes 20 8.5 even 2
448.3.o.a.415.5 yes 20 7.2 even 3
448.3.o.a.415.6 yes 20 28.23 odd 6
448.3.o.b.95.5 yes 20 1.1 even 1 trivial
448.3.o.b.95.6 yes 20 4.3 odd 2 inner
448.3.o.b.415.5 yes 20 56.51 odd 6 inner
448.3.o.b.415.6 yes 20 56.37 even 6 inner