Properties

Label 448.3.o.b.95.1
Level $448$
Weight $3$
Character 448.95
Analytic conductor $12.207$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(95,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.95"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 34 x^{18} + 755 x^{16} - 9698 x^{14} + 89921 x^{12} - 522048 x^{10} + 2189920 x^{8} + \cdots + 7311616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.1
Root \(1.31764 - 0.760743i\) of defining polynomial
Character \(\chi\) \(=\) 448.95
Dual form 448.3.o.b.415.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.75361 + 4.76940i) q^{3} +(4.79340 - 2.76747i) q^{5} +(-4.79446 + 5.10031i) q^{7} +(-10.6648 - 18.4719i) q^{9} +(7.54807 - 13.0736i) q^{11} -11.8687i q^{13} +30.4821i q^{15} +(2.62597 - 4.54831i) q^{17} +(-14.5507 - 25.2026i) q^{19} +(-11.1233 - 36.9110i) q^{21} +(4.42361 - 2.55397i) q^{23} +(2.81777 - 4.88051i) q^{25} +67.9015 q^{27} +28.2517i q^{29} +(-41.5036 - 23.9621i) q^{31} +(41.5689 + 71.9995i) q^{33} +(-8.86681 + 37.7163i) q^{35} +(27.0470 - 15.6156i) q^{37} +(56.6065 + 32.6818i) q^{39} +10.3413 q^{41} +47.2232 q^{43} +(-102.241 - 59.0288i) q^{45} +(14.4460 - 8.34039i) q^{47} +(-3.02629 - 48.9065i) q^{49} +(14.4618 + 25.0486i) q^{51} +(-16.1897 - 9.34712i) q^{53} -83.5562i q^{55} +160.268 q^{57} +(34.4268 - 59.6290i) q^{59} +(18.4819 - 10.6705i) q^{61} +(145.344 + 34.1693i) q^{63} +(-32.8462 - 56.8913i) q^{65} +(9.93291 - 17.2043i) q^{67} +28.1306i q^{69} +127.543i q^{71} +(-9.54079 + 16.5251i) q^{73} +(15.5181 + 26.8781i) q^{75} +(30.4907 + 101.179i) q^{77} +(3.20338 - 1.84947i) q^{79} +(-90.9915 + 157.602i) q^{81} +5.08000 q^{83} -29.0692i q^{85} +(-134.744 - 77.7943i) q^{87} +(-51.5261 - 89.2458i) q^{89} +(60.5340 + 56.9040i) q^{91} +(228.570 - 131.965i) q^{93} +(-139.495 - 80.5372i) q^{95} -62.3085 q^{97} -321.994 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 28 q^{9} + 46 q^{17} - 114 q^{21} + 36 q^{25} + 94 q^{33} + 114 q^{37} - 160 q^{41} - 708 q^{45} - 92 q^{49} - 6 q^{53} + 308 q^{57} + 90 q^{61} + 212 q^{65} + 314 q^{73} - 198 q^{77} - 322 q^{81}+ \cdots - 224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.75361 + 4.76940i −0.917871 + 1.58980i −0.115228 + 0.993339i \(0.536760\pi\)
−0.802643 + 0.596460i \(0.796573\pi\)
\(4\) 0 0
\(5\) 4.79340 2.76747i 0.958679 0.553494i 0.0629130 0.998019i \(-0.479961\pi\)
0.895766 + 0.444525i \(0.146628\pi\)
\(6\) 0 0
\(7\) −4.79446 + 5.10031i −0.684923 + 0.728615i
\(8\) 0 0
\(9\) −10.6648 18.4719i −1.18497 2.05243i
\(10\) 0 0
\(11\) 7.54807 13.0736i 0.686188 1.18851i −0.286873 0.957969i \(-0.592616\pi\)
0.973062 0.230545i \(-0.0740508\pi\)
\(12\) 0 0
\(13\) 11.8687i 0.912976i −0.889730 0.456488i \(-0.849107\pi\)
0.889730 0.456488i \(-0.150893\pi\)
\(14\) 0 0
\(15\) 30.4821i 2.03214i
\(16\) 0 0
\(17\) 2.62597 4.54831i 0.154469 0.267548i −0.778397 0.627773i \(-0.783967\pi\)
0.932865 + 0.360225i \(0.117300\pi\)
\(18\) 0 0
\(19\) −14.5507 25.2026i −0.765826 1.32645i −0.939809 0.341702i \(-0.888997\pi\)
0.173982 0.984749i \(-0.444337\pi\)
\(20\) 0 0
\(21\) −11.1233 36.9110i −0.529681 1.75766i
\(22\) 0 0
\(23\) 4.42361 2.55397i 0.192331 0.111042i −0.400742 0.916191i \(-0.631248\pi\)
0.593073 + 0.805149i \(0.297914\pi\)
\(24\) 0 0
\(25\) 2.81777 4.88051i 0.112711 0.195221i
\(26\) 0 0
\(27\) 67.9015 2.51487
\(28\) 0 0
\(29\) 28.2517i 0.974197i 0.873347 + 0.487099i \(0.161945\pi\)
−0.873347 + 0.487099i \(0.838055\pi\)
\(30\) 0 0
\(31\) −41.5036 23.9621i −1.33883 0.772971i −0.352192 0.935928i \(-0.614564\pi\)
−0.986633 + 0.162957i \(0.947897\pi\)
\(32\) 0 0
\(33\) 41.5689 + 71.9995i 1.25966 + 2.18180i
\(34\) 0 0
\(35\) −8.86681 + 37.7163i −0.253337 + 1.07761i
\(36\) 0 0
\(37\) 27.0470 15.6156i 0.730999 0.422042i −0.0877887 0.996139i \(-0.527980\pi\)
0.818787 + 0.574097i \(0.194647\pi\)
\(38\) 0 0
\(39\) 56.6065 + 32.6818i 1.45145 + 0.837994i
\(40\) 0 0
\(41\) 10.3413 0.252227 0.126113 0.992016i \(-0.459750\pi\)
0.126113 + 0.992016i \(0.459750\pi\)
\(42\) 0 0
\(43\) 47.2232 1.09821 0.549107 0.835752i \(-0.314968\pi\)
0.549107 + 0.835752i \(0.314968\pi\)
\(44\) 0 0
\(45\) −102.241 59.0288i −2.27202 1.31175i
\(46\) 0 0
\(47\) 14.4460 8.34039i 0.307361 0.177455i −0.338384 0.941008i \(-0.609880\pi\)
0.645745 + 0.763553i \(0.276547\pi\)
\(48\) 0 0
\(49\) −3.02629 48.9065i −0.0617611 0.998091i
\(50\) 0 0
\(51\) 14.4618 + 25.0486i 0.283565 + 0.491149i
\(52\) 0 0
\(53\) −16.1897 9.34712i −0.305466 0.176361i 0.339430 0.940631i \(-0.389766\pi\)
−0.644896 + 0.764271i \(0.723099\pi\)
\(54\) 0 0
\(55\) 83.5562i 1.51920i
\(56\) 0 0
\(57\) 160.268 2.81172
\(58\) 0 0
\(59\) 34.4268 59.6290i 0.583506 1.01066i −0.411554 0.911385i \(-0.635014\pi\)
0.995060 0.0992764i \(-0.0316528\pi\)
\(60\) 0 0
\(61\) 18.4819 10.6705i 0.302981 0.174926i −0.340800 0.940136i \(-0.610698\pi\)
0.643781 + 0.765209i \(0.277365\pi\)
\(62\) 0 0
\(63\) 145.344 + 34.1693i 2.30705 + 0.542369i
\(64\) 0 0
\(65\) −32.8462 56.8913i −0.505327 0.875251i
\(66\) 0 0
\(67\) 9.93291 17.2043i 0.148252 0.256781i −0.782329 0.622865i \(-0.785969\pi\)
0.930582 + 0.366084i \(0.119302\pi\)
\(68\) 0 0
\(69\) 28.1306i 0.407690i
\(70\) 0 0
\(71\) 127.543i 1.79638i 0.439606 + 0.898191i \(0.355118\pi\)
−0.439606 + 0.898191i \(0.644882\pi\)
\(72\) 0 0
\(73\) −9.54079 + 16.5251i −0.130696 + 0.226372i −0.923945 0.382525i \(-0.875054\pi\)
0.793249 + 0.608897i \(0.208388\pi\)
\(74\) 0 0
\(75\) 15.5181 + 26.8781i 0.206908 + 0.358374i
\(76\) 0 0
\(77\) 30.4907 + 101.179i 0.395983 + 1.31401i
\(78\) 0 0
\(79\) 3.20338 1.84947i 0.0405492 0.0234111i −0.479588 0.877494i \(-0.659214\pi\)
0.520138 + 0.854083i \(0.325881\pi\)
\(80\) 0 0
\(81\) −90.9915 + 157.602i −1.12335 + 1.94570i
\(82\) 0 0
\(83\) 5.08000 0.0612048 0.0306024 0.999532i \(-0.490257\pi\)
0.0306024 + 0.999532i \(0.490257\pi\)
\(84\) 0 0
\(85\) 29.0692i 0.341990i
\(86\) 0 0
\(87\) −134.744 77.7943i −1.54878 0.894187i
\(88\) 0 0
\(89\) −51.5261 89.2458i −0.578945 1.00276i −0.995601 0.0936979i \(-0.970131\pi\)
0.416656 0.909064i \(-0.363202\pi\)
\(90\) 0 0
\(91\) 60.5340 + 56.9040i 0.665209 + 0.625318i
\(92\) 0 0
\(93\) 228.570 131.965i 2.45774 1.41898i
\(94\) 0 0
\(95\) −139.495 80.5372i −1.46836 0.847760i
\(96\) 0 0
\(97\) −62.3085 −0.642355 −0.321178 0.947019i \(-0.604079\pi\)
−0.321178 + 0.947019i \(0.604079\pi\)
\(98\) 0 0
\(99\) −321.994 −3.25246
\(100\) 0 0
\(101\) −3.96546 2.28946i −0.0392620 0.0226679i 0.480241 0.877137i \(-0.340549\pi\)
−0.519503 + 0.854469i \(0.673883\pi\)
\(102\) 0 0
\(103\) −174.134 + 100.536i −1.69062 + 0.976082i −0.736611 + 0.676317i \(0.763575\pi\)
−0.954013 + 0.299765i \(0.903092\pi\)
\(104\) 0 0
\(105\) −155.468 146.145i −1.48065 1.39186i
\(106\) 0 0
\(107\) −86.9183 150.547i −0.812321 1.40698i −0.911236 0.411885i \(-0.864871\pi\)
0.0989153 0.995096i \(-0.468463\pi\)
\(108\) 0 0
\(109\) −97.9049 56.5254i −0.898210 0.518582i −0.0215911 0.999767i \(-0.506873\pi\)
−0.876619 + 0.481185i \(0.840207\pi\)
\(110\) 0 0
\(111\) 171.997i 1.54952i
\(112\) 0 0
\(113\) 110.448 0.977415 0.488708 0.872448i \(-0.337468\pi\)
0.488708 + 0.872448i \(0.337468\pi\)
\(114\) 0 0
\(115\) 14.1361 24.4844i 0.122922 0.212908i
\(116\) 0 0
\(117\) −219.237 + 126.577i −1.87382 + 1.08185i
\(118\) 0 0
\(119\) 10.6077 + 35.2000i 0.0891403 + 0.295798i
\(120\) 0 0
\(121\) −53.4468 92.5726i −0.441709 0.765063i
\(122\) 0 0
\(123\) −28.4759 + 49.3217i −0.231511 + 0.400990i
\(124\) 0 0
\(125\) 107.181i 0.857449i
\(126\) 0 0
\(127\) 126.454i 0.995697i −0.867264 0.497849i \(-0.834124\pi\)
0.867264 0.497849i \(-0.165876\pi\)
\(128\) 0 0
\(129\) −130.034 + 225.226i −1.00802 + 1.74594i
\(130\) 0 0
\(131\) −11.1981 19.3957i −0.0854816 0.148058i 0.820115 0.572199i \(-0.193910\pi\)
−0.905596 + 0.424141i \(0.860576\pi\)
\(132\) 0 0
\(133\) 198.304 + 46.6196i 1.49100 + 0.350523i
\(134\) 0 0
\(135\) 325.479 187.915i 2.41095 1.39196i
\(136\) 0 0
\(137\) 84.0808 145.632i 0.613729 1.06301i −0.376877 0.926263i \(-0.623002\pi\)
0.990606 0.136746i \(-0.0436645\pi\)
\(138\) 0 0
\(139\) −41.4804 −0.298420 −0.149210 0.988806i \(-0.547673\pi\)
−0.149210 + 0.988806i \(0.547673\pi\)
\(140\) 0 0
\(141\) 91.8649i 0.651524i
\(142\) 0 0
\(143\) −155.167 89.5857i −1.08508 0.626474i
\(144\) 0 0
\(145\) 78.1857 + 135.422i 0.539212 + 0.933943i
\(146\) 0 0
\(147\) 241.588 + 120.236i 1.64345 + 0.817931i
\(148\) 0 0
\(149\) −136.931 + 79.0574i −0.919002 + 0.530586i −0.883317 0.468777i \(-0.844695\pi\)
−0.0356857 + 0.999363i \(0.511362\pi\)
\(150\) 0 0
\(151\) 72.2919 + 41.7378i 0.478755 + 0.276409i 0.719897 0.694081i \(-0.244189\pi\)
−0.241143 + 0.970490i \(0.577522\pi\)
\(152\) 0 0
\(153\) −112.021 −0.732166
\(154\) 0 0
\(155\) −265.257 −1.71134
\(156\) 0 0
\(157\) 26.4511 + 15.2716i 0.168478 + 0.0972711i 0.581868 0.813283i \(-0.302322\pi\)
−0.413390 + 0.910554i \(0.635655\pi\)
\(158\) 0 0
\(159\) 89.1603 51.4767i 0.560756 0.323753i
\(160\) 0 0
\(161\) −8.18277 + 34.8067i −0.0508247 + 0.216191i
\(162\) 0 0
\(163\) 12.8470 + 22.2516i 0.0788157 + 0.136513i 0.902739 0.430188i \(-0.141553\pi\)
−0.823924 + 0.566701i \(0.808219\pi\)
\(164\) 0 0
\(165\) 398.513 + 230.081i 2.41523 + 1.39443i
\(166\) 0 0
\(167\) 300.278i 1.79807i −0.437872 0.899037i \(-0.644268\pi\)
0.437872 0.899037i \(-0.355732\pi\)
\(168\) 0 0
\(169\) 28.1342 0.166474
\(170\) 0 0
\(171\) −310.360 + 537.559i −1.81497 + 3.14362i
\(172\) 0 0
\(173\) 142.145 82.0674i 0.821647 0.474378i −0.0293370 0.999570i \(-0.509340\pi\)
0.850984 + 0.525191i \(0.176006\pi\)
\(174\) 0 0
\(175\) 11.3825 + 37.7709i 0.0650426 + 0.215834i
\(176\) 0 0
\(177\) 189.596 + 328.391i 1.07117 + 1.85531i
\(178\) 0 0
\(179\) 73.2978 126.955i 0.409485 0.709248i −0.585347 0.810783i \(-0.699042\pi\)
0.994832 + 0.101534i \(0.0323752\pi\)
\(180\) 0 0
\(181\) 72.4205i 0.400113i 0.979784 + 0.200057i \(0.0641126\pi\)
−0.979784 + 0.200057i \(0.935887\pi\)
\(182\) 0 0
\(183\) 117.530i 0.642239i
\(184\) 0 0
\(185\) 86.4312 149.703i 0.467196 0.809206i
\(186\) 0 0
\(187\) −39.6420 68.6620i −0.211989 0.367177i
\(188\) 0 0
\(189\) −325.551 + 346.318i −1.72249 + 1.83237i
\(190\) 0 0
\(191\) 161.562 93.2777i 0.845872 0.488365i −0.0133836 0.999910i \(-0.504260\pi\)
0.859256 + 0.511546i \(0.170927\pi\)
\(192\) 0 0
\(193\) −10.6056 + 18.3694i −0.0549511 + 0.0951781i −0.892192 0.451655i \(-0.850834\pi\)
0.837241 + 0.546834i \(0.184167\pi\)
\(194\) 0 0
\(195\) 361.783 1.85530
\(196\) 0 0
\(197\) 15.0736i 0.0765156i −0.999268 0.0382578i \(-0.987819\pi\)
0.999268 0.0382578i \(-0.0121808\pi\)
\(198\) 0 0
\(199\) 6.56821 + 3.79216i 0.0330061 + 0.0190561i 0.516412 0.856340i \(-0.327267\pi\)
−0.483406 + 0.875396i \(0.660601\pi\)
\(200\) 0 0
\(201\) 54.7028 + 94.7480i 0.272153 + 0.471383i
\(202\) 0 0
\(203\) −144.092 135.452i −0.709815 0.667250i
\(204\) 0 0
\(205\) 49.5699 28.6192i 0.241804 0.139606i
\(206\) 0 0
\(207\) −94.3535 54.4750i −0.455814 0.263164i
\(208\) 0 0
\(209\) −439.319 −2.10201
\(210\) 0 0
\(211\) 220.505 1.04505 0.522524 0.852624i \(-0.324990\pi\)
0.522524 + 0.852624i \(0.324990\pi\)
\(212\) 0 0
\(213\) −608.304 351.204i −2.85589 1.64885i
\(214\) 0 0
\(215\) 226.359 130.689i 1.05283 0.607854i
\(216\) 0 0
\(217\) 321.201 96.7957i 1.48019 0.446063i
\(218\) 0 0
\(219\) −52.5433 91.0077i −0.239924 0.415560i
\(220\) 0 0
\(221\) −53.9825 31.1668i −0.244265 0.141026i
\(222\) 0 0
\(223\) 223.596i 1.00267i 0.865252 + 0.501337i \(0.167158\pi\)
−0.865252 + 0.501337i \(0.832842\pi\)
\(224\) 0 0
\(225\) −120.203 −0.534236
\(226\) 0 0
\(227\) 5.82995 10.0978i 0.0256826 0.0444836i −0.852898 0.522077i \(-0.825157\pi\)
0.878581 + 0.477593i \(0.158491\pi\)
\(228\) 0 0
\(229\) 174.370 100.673i 0.761441 0.439618i −0.0683717 0.997660i \(-0.521780\pi\)
0.829813 + 0.558042i \(0.188447\pi\)
\(230\) 0 0
\(231\) −566.520 133.184i −2.45247 0.576556i
\(232\) 0 0
\(233\) 92.5278 + 160.263i 0.397115 + 0.687824i 0.993369 0.114973i \(-0.0366780\pi\)
−0.596253 + 0.802796i \(0.703345\pi\)
\(234\) 0 0
\(235\) 46.1636 79.9576i 0.196441 0.340245i
\(236\) 0 0
\(237\) 20.3709i 0.0859533i
\(238\) 0 0
\(239\) 20.4580i 0.0855985i −0.999084 0.0427993i \(-0.986372\pi\)
0.999084 0.0427993i \(-0.0136276\pi\)
\(240\) 0 0
\(241\) 202.142 350.120i 0.838762 1.45278i −0.0521674 0.998638i \(-0.516613\pi\)
0.890930 0.454141i \(-0.150054\pi\)
\(242\) 0 0
\(243\) −195.554 338.709i −0.804749 1.39387i
\(244\) 0 0
\(245\) −149.853 226.053i −0.611646 0.922665i
\(246\) 0 0
\(247\) −299.121 + 172.698i −1.21102 + 0.699181i
\(248\) 0 0
\(249\) −13.9884 + 24.2285i −0.0561781 + 0.0973034i
\(250\) 0 0
\(251\) −180.653 −0.719735 −0.359868 0.933003i \(-0.617178\pi\)
−0.359868 + 0.933003i \(0.617178\pi\)
\(252\) 0 0
\(253\) 77.1103i 0.304784i
\(254\) 0 0
\(255\) 138.642 + 80.0452i 0.543696 + 0.313903i
\(256\) 0 0
\(257\) −119.512 207.001i −0.465027 0.805450i 0.534176 0.845373i \(-0.320622\pi\)
−0.999203 + 0.0399235i \(0.987289\pi\)
\(258\) 0 0
\(259\) −50.0314 + 212.816i −0.193171 + 0.821683i
\(260\) 0 0
\(261\) 521.863 301.298i 1.99948 1.15440i
\(262\) 0 0
\(263\) 269.493 + 155.592i 1.02469 + 0.591604i 0.915459 0.402412i \(-0.131828\pi\)
0.109230 + 0.994016i \(0.465161\pi\)
\(264\) 0 0
\(265\) −103.471 −0.390458
\(266\) 0 0
\(267\) 567.532 2.12559
\(268\) 0 0
\(269\) −197.013 113.746i −0.732391 0.422846i 0.0869052 0.996217i \(-0.472302\pi\)
−0.819296 + 0.573370i \(0.805636\pi\)
\(270\) 0 0
\(271\) −355.387 + 205.183i −1.31139 + 0.757132i −0.982327 0.187175i \(-0.940067\pi\)
−0.329065 + 0.944307i \(0.606734\pi\)
\(272\) 0 0
\(273\) −438.085 + 132.019i −1.60471 + 0.483586i
\(274\) 0 0
\(275\) −42.5374 73.6769i −0.154681 0.267916i
\(276\) 0 0
\(277\) 333.624 + 192.618i 1.20442 + 0.695372i 0.961535 0.274683i \(-0.0885730\pi\)
0.242885 + 0.970055i \(0.421906\pi\)
\(278\) 0 0
\(279\) 1022.20i 3.66380i
\(280\) 0 0
\(281\) −498.190 −1.77292 −0.886459 0.462808i \(-0.846842\pi\)
−0.886459 + 0.462808i \(0.846842\pi\)
\(282\) 0 0
\(283\) −139.441 + 241.519i −0.492724 + 0.853423i −0.999965 0.00838102i \(-0.997332\pi\)
0.507241 + 0.861804i \(0.330666\pi\)
\(284\) 0 0
\(285\) 768.228 443.537i 2.69554 1.55627i
\(286\) 0 0
\(287\) −49.5809 + 52.7438i −0.172756 + 0.183776i
\(288\) 0 0
\(289\) 130.709 + 226.394i 0.452279 + 0.783370i
\(290\) 0 0
\(291\) 171.573 297.174i 0.589599 1.02122i
\(292\) 0 0
\(293\) 558.513i 1.90619i 0.302676 + 0.953093i \(0.402120\pi\)
−0.302676 + 0.953093i \(0.597880\pi\)
\(294\) 0 0
\(295\) 381.101i 1.29187i
\(296\) 0 0
\(297\) 512.525 887.720i 1.72567 2.98896i
\(298\) 0 0
\(299\) −30.3123 52.5024i −0.101379 0.175593i
\(300\) 0 0
\(301\) −226.410 + 240.853i −0.752191 + 0.800175i
\(302\) 0 0
\(303\) 21.8387 12.6086i 0.0720749 0.0416125i
\(304\) 0 0
\(305\) 59.0606 102.296i 0.193641 0.335397i
\(306\) 0 0
\(307\) 156.861 0.510948 0.255474 0.966816i \(-0.417768\pi\)
0.255474 + 0.966816i \(0.417768\pi\)
\(308\) 0 0
\(309\) 1107.35i 3.58367i
\(310\) 0 0
\(311\) 1.92734 + 1.11275i 0.00619724 + 0.00357798i 0.503095 0.864231i \(-0.332194\pi\)
−0.496898 + 0.867809i \(0.665528\pi\)
\(312\) 0 0
\(313\) −38.7116 67.0505i −0.123679 0.214219i 0.797537 0.603271i \(-0.206136\pi\)
−0.921216 + 0.389052i \(0.872803\pi\)
\(314\) 0 0
\(315\) 791.255 238.449i 2.51192 0.756980i
\(316\) 0 0
\(317\) −417.406 + 240.989i −1.31674 + 0.760219i −0.983202 0.182518i \(-0.941575\pi\)
−0.333536 + 0.942737i \(0.608242\pi\)
\(318\) 0 0
\(319\) 369.353 + 213.246i 1.15785 + 0.668483i
\(320\) 0 0
\(321\) 957.357 2.98242
\(322\) 0 0
\(323\) −152.839 −0.473185
\(324\) 0 0
\(325\) −57.9253 33.4432i −0.178232 0.102902i
\(326\) 0 0
\(327\) 539.184 311.298i 1.64888 0.951982i
\(328\) 0 0
\(329\) −26.7221 + 113.667i −0.0812223 + 0.345491i
\(330\) 0 0
\(331\) −203.579 352.609i −0.615042 1.06528i −0.990377 0.138395i \(-0.955806\pi\)
0.375335 0.926889i \(-0.377528\pi\)
\(332\) 0 0
\(333\) −576.899 333.073i −1.73243 1.00022i
\(334\) 0 0
\(335\) 109.956i 0.328227i
\(336\) 0 0
\(337\) 152.439 0.452341 0.226170 0.974088i \(-0.427379\pi\)
0.226170 + 0.974088i \(0.427379\pi\)
\(338\) 0 0
\(339\) −304.131 + 526.770i −0.897141 + 1.55389i
\(340\) 0 0
\(341\) −626.544 + 361.735i −1.83737 + 1.06081i
\(342\) 0 0
\(343\) 263.947 + 219.045i 0.769526 + 0.638615i
\(344\) 0 0
\(345\) 77.8505 + 134.841i 0.225654 + 0.390844i
\(346\) 0 0
\(347\) 78.8246 136.528i 0.227160 0.393453i −0.729805 0.683655i \(-0.760389\pi\)
0.956965 + 0.290202i \(0.0937226\pi\)
\(348\) 0 0
\(349\) 638.146i 1.82850i −0.405153 0.914249i \(-0.632782\pi\)
0.405153 0.914249i \(-0.367218\pi\)
\(350\) 0 0
\(351\) 805.902i 2.29602i
\(352\) 0 0
\(353\) −121.308 + 210.111i −0.343647 + 0.595215i −0.985107 0.171942i \(-0.944996\pi\)
0.641460 + 0.767157i \(0.278329\pi\)
\(354\) 0 0
\(355\) 352.972 + 611.365i 0.994286 + 1.72215i
\(356\) 0 0
\(357\) −197.092 46.3348i −0.552079 0.129789i
\(358\) 0 0
\(359\) −267.399 + 154.383i −0.744843 + 0.430036i −0.823828 0.566840i \(-0.808166\pi\)
0.0789843 + 0.996876i \(0.474832\pi\)
\(360\) 0 0
\(361\) −242.946 + 420.795i −0.672980 + 1.16564i
\(362\) 0 0
\(363\) 588.687 1.62173
\(364\) 0 0
\(365\) 105.615i 0.289357i
\(366\) 0 0
\(367\) 359.908 + 207.793i 0.980676 + 0.566194i 0.902474 0.430744i \(-0.141749\pi\)
0.0782019 + 0.996938i \(0.475082\pi\)
\(368\) 0 0
\(369\) −110.287 191.023i −0.298882 0.517679i
\(370\) 0 0
\(371\) 125.294 37.7580i 0.337720 0.101774i
\(372\) 0 0
\(373\) −40.2824 + 23.2570i −0.107996 + 0.0623513i −0.553025 0.833165i \(-0.686527\pi\)
0.445029 + 0.895516i \(0.353193\pi\)
\(374\) 0 0
\(375\) −511.189 295.135i −1.36317 0.787027i
\(376\) 0 0
\(377\) 335.311 0.889419
\(378\) 0 0
\(379\) 206.049 0.543664 0.271832 0.962345i \(-0.412371\pi\)
0.271832 + 0.962345i \(0.412371\pi\)
\(380\) 0 0
\(381\) 603.107 + 348.204i 1.58296 + 0.913921i
\(382\) 0 0
\(383\) 357.877 206.620i 0.934404 0.539478i 0.0462024 0.998932i \(-0.485288\pi\)
0.888202 + 0.459454i \(0.151955\pi\)
\(384\) 0 0
\(385\) 426.163 + 400.607i 1.10692 + 1.04054i
\(386\) 0 0
\(387\) −503.624 872.302i −1.30135 2.25401i
\(388\) 0 0
\(389\) 140.809 + 81.2961i 0.361977 + 0.208988i 0.669948 0.742408i \(-0.266317\pi\)
−0.307971 + 0.951396i \(0.599650\pi\)
\(390\) 0 0
\(391\) 26.8266i 0.0686103i
\(392\) 0 0
\(393\) 123.341 0.313844
\(394\) 0 0
\(395\) 10.2367 17.7305i 0.0259158 0.0448874i
\(396\) 0 0
\(397\) −119.975 + 69.2674i −0.302203 + 0.174477i −0.643432 0.765503i \(-0.722490\pi\)
0.341229 + 0.939980i \(0.389157\pi\)
\(398\) 0 0
\(399\) −768.399 + 817.416i −1.92581 + 2.04866i
\(400\) 0 0
\(401\) 232.520 + 402.736i 0.579850 + 1.00433i 0.995496 + 0.0948029i \(0.0302221\pi\)
−0.415646 + 0.909526i \(0.636445\pi\)
\(402\) 0 0
\(403\) −284.399 + 492.593i −0.705704 + 1.22232i
\(404\) 0 0
\(405\) 1007.26i 2.48707i
\(406\) 0 0
\(407\) 471.470i 1.15840i
\(408\) 0 0
\(409\) −210.416 + 364.451i −0.514464 + 0.891078i 0.485395 + 0.874295i \(0.338676\pi\)
−0.999859 + 0.0167832i \(0.994657\pi\)
\(410\) 0 0
\(411\) 463.052 + 802.030i 1.12665 + 1.95141i
\(412\) 0 0
\(413\) 139.068 + 461.477i 0.336727 + 1.11738i
\(414\) 0 0
\(415\) 24.3505 14.0587i 0.0586758 0.0338765i
\(416\) 0 0
\(417\) 114.221 197.837i 0.273911 0.474428i
\(418\) 0 0
\(419\) 233.514 0.557313 0.278657 0.960391i \(-0.410111\pi\)
0.278657 + 0.960391i \(0.410111\pi\)
\(420\) 0 0
\(421\) 599.421i 1.42380i −0.702280 0.711901i \(-0.747834\pi\)
0.702280 0.711901i \(-0.252166\pi\)
\(422\) 0 0
\(423\) −308.126 177.897i −0.728430 0.420560i
\(424\) 0 0
\(425\) −14.7987 25.6322i −0.0348206 0.0603110i
\(426\) 0 0
\(427\) −34.1877 + 145.423i −0.0800648 + 0.340568i
\(428\) 0 0
\(429\) 854.540 493.369i 1.99193 1.15004i
\(430\) 0 0
\(431\) 365.445 + 210.990i 0.847900 + 0.489535i 0.859942 0.510392i \(-0.170500\pi\)
−0.0120420 + 0.999927i \(0.503833\pi\)
\(432\) 0 0
\(433\) −459.611 −1.06146 −0.530729 0.847542i \(-0.678082\pi\)
−0.530729 + 0.847542i \(0.678082\pi\)
\(434\) 0 0
\(435\) −861.173 −1.97971
\(436\) 0 0
\(437\) −128.733 74.3242i −0.294584 0.170078i
\(438\) 0 0
\(439\) 331.615 191.458i 0.755386 0.436122i −0.0722505 0.997387i \(-0.523018\pi\)
0.827637 + 0.561264i \(0.189685\pi\)
\(440\) 0 0
\(441\) −871.121 + 577.477i −1.97533 + 1.30947i
\(442\) 0 0
\(443\) −243.261 421.340i −0.549121 0.951106i −0.998335 0.0576815i \(-0.981629\pi\)
0.449214 0.893424i \(-0.351704\pi\)
\(444\) 0 0
\(445\) −493.970 285.194i −1.11005 0.640885i
\(446\) 0 0
\(447\) 870.773i 1.94804i
\(448\) 0 0
\(449\) −552.028 −1.22946 −0.614730 0.788738i \(-0.710735\pi\)
−0.614730 + 0.788738i \(0.710735\pi\)
\(450\) 0 0
\(451\) 78.0568 135.198i 0.173075 0.299775i
\(452\) 0 0
\(453\) −398.128 + 229.859i −0.878870 + 0.507416i
\(454\) 0 0
\(455\) 447.643 + 105.237i 0.983832 + 0.231291i
\(456\) 0 0
\(457\) 275.133 + 476.545i 0.602042 + 1.04277i 0.992511 + 0.122152i \(0.0389794\pi\)
−0.390469 + 0.920616i \(0.627687\pi\)
\(458\) 0 0
\(459\) 178.307 308.837i 0.388469 0.672848i
\(460\) 0 0
\(461\) 3.42045i 0.00741963i −0.999993 0.00370982i \(-0.998819\pi\)
0.999993 0.00370982i \(-0.00118087\pi\)
\(462\) 0 0
\(463\) 194.634i 0.420376i −0.977661 0.210188i \(-0.932592\pi\)
0.977661 0.210188i \(-0.0674076\pi\)
\(464\) 0 0
\(465\) 730.416 1265.12i 1.57079 2.72068i
\(466\) 0 0
\(467\) −259.821 450.024i −0.556363 0.963649i −0.997796 0.0663545i \(-0.978863\pi\)
0.441433 0.897294i \(-0.354470\pi\)
\(468\) 0 0
\(469\) 40.1243 + 133.146i 0.0855529 + 0.283894i
\(470\) 0 0
\(471\) −145.672 + 84.1039i −0.309283 + 0.178565i
\(472\) 0 0
\(473\) 356.444 617.379i 0.753581 1.30524i
\(474\) 0 0
\(475\) −164.002 −0.345267
\(476\) 0 0
\(477\) 398.739i 0.835932i
\(478\) 0 0
\(479\) 302.357 + 174.566i 0.631225 + 0.364438i 0.781227 0.624248i \(-0.214594\pi\)
−0.150001 + 0.988686i \(0.547928\pi\)
\(480\) 0 0
\(481\) −185.336 321.012i −0.385315 0.667384i
\(482\) 0 0
\(483\) −143.475 134.871i −0.297049 0.279236i
\(484\) 0 0
\(485\) −298.669 + 172.437i −0.615813 + 0.355540i
\(486\) 0 0
\(487\) 460.337 + 265.776i 0.945250 + 0.545740i 0.891602 0.452820i \(-0.149582\pi\)
0.0536479 + 0.998560i \(0.482915\pi\)
\(488\) 0 0
\(489\) −141.502 −0.289370
\(490\) 0 0
\(491\) −338.337 −0.689077 −0.344539 0.938772i \(-0.611965\pi\)
−0.344539 + 0.938772i \(0.611965\pi\)
\(492\) 0 0
\(493\) 128.498 + 74.1882i 0.260644 + 0.150483i
\(494\) 0 0
\(495\) −1543.44 + 891.107i −3.11807 + 1.80022i
\(496\) 0 0
\(497\) −650.509 611.500i −1.30887 1.23038i
\(498\) 0 0
\(499\) 261.677 + 453.237i 0.524402 + 0.908291i 0.999596 + 0.0284100i \(0.00904439\pi\)
−0.475194 + 0.879881i \(0.657622\pi\)
\(500\) 0 0
\(501\) 1432.15 + 826.851i 2.85858 + 1.65040i
\(502\) 0 0
\(503\) 302.320i 0.601035i 0.953776 + 0.300517i \(0.0971593\pi\)
−0.953776 + 0.300517i \(0.902841\pi\)
\(504\) 0 0
\(505\) −25.3440 −0.0501862
\(506\) 0 0
\(507\) −77.4706 + 134.183i −0.152802 + 0.264661i
\(508\) 0 0
\(509\) 82.4340 47.5933i 0.161953 0.0935036i −0.416833 0.908983i \(-0.636860\pi\)
0.578786 + 0.815480i \(0.303527\pi\)
\(510\) 0 0
\(511\) −38.5403 127.890i −0.0754214 0.250274i
\(512\) 0 0
\(513\) −988.014 1711.29i −1.92595 3.33585i
\(514\) 0 0
\(515\) −556.463 + 963.822i −1.08051 + 1.87150i
\(516\) 0 0
\(517\) 251.816i 0.487071i
\(518\) 0 0
\(519\) 903.928i 1.74167i
\(520\) 0 0
\(521\) −361.975 + 626.958i −0.694769 + 1.20337i 0.275490 + 0.961304i \(0.411160\pi\)
−0.970259 + 0.242071i \(0.922173\pi\)
\(522\) 0 0
\(523\) −469.684 813.517i −0.898058 1.55548i −0.829974 0.557802i \(-0.811645\pi\)
−0.0680840 0.997680i \(-0.521689\pi\)
\(524\) 0 0
\(525\) −211.487 49.7190i −0.402833 0.0947028i
\(526\) 0 0
\(527\) −217.974 + 125.848i −0.413613 + 0.238800i
\(528\) 0 0
\(529\) −251.454 + 435.532i −0.475339 + 0.823312i
\(530\) 0 0
\(531\) −1468.62 −2.76576
\(532\) 0 0
\(533\) 122.738i 0.230277i
\(534\) 0 0
\(535\) −833.268 481.087i −1.55751 0.899229i
\(536\) 0 0
\(537\) 403.667 + 699.172i 0.751708 + 1.30200i
\(538\) 0 0
\(539\) −662.228 329.585i −1.22862 0.611475i
\(540\) 0 0
\(541\) 593.877 342.875i 1.09774 0.633780i 0.162113 0.986772i \(-0.448169\pi\)
0.935626 + 0.352992i \(0.114836\pi\)
\(542\) 0 0
\(543\) −345.402 199.418i −0.636100 0.367252i
\(544\) 0 0
\(545\) −625.729 −1.14813
\(546\) 0 0
\(547\) 589.026 1.07683 0.538415 0.842680i \(-0.319023\pi\)
0.538415 + 0.842680i \(0.319023\pi\)
\(548\) 0 0
\(549\) −394.209 227.597i −0.718050 0.414566i
\(550\) 0 0
\(551\) 712.015 411.082i 1.29222 0.746066i
\(552\) 0 0
\(553\) −5.92561 + 25.2055i −0.0107154 + 0.0455795i
\(554\) 0 0
\(555\) 475.996 + 824.449i 0.857650 + 1.48549i
\(556\) 0 0
\(557\) 120.475 + 69.5566i 0.216294 + 0.124877i 0.604233 0.796808i \(-0.293480\pi\)
−0.387939 + 0.921685i \(0.626813\pi\)
\(558\) 0 0
\(559\) 560.477i 1.00264i
\(560\) 0 0
\(561\) 436.635 0.778316
\(562\) 0 0
\(563\) −240.961 + 417.357i −0.427995 + 0.741309i −0.996695 0.0812362i \(-0.974113\pi\)
0.568700 + 0.822545i \(0.307447\pi\)
\(564\) 0 0
\(565\) 529.421 305.661i 0.937028 0.540993i
\(566\) 0 0
\(567\) −367.563 1219.70i −0.648259 2.15115i
\(568\) 0 0
\(569\) −127.991 221.686i −0.224940 0.389607i 0.731362 0.681990i \(-0.238885\pi\)
−0.956301 + 0.292383i \(0.905552\pi\)
\(570\) 0 0
\(571\) −254.168 + 440.233i −0.445129 + 0.770985i −0.998061 0.0622407i \(-0.980175\pi\)
0.552933 + 0.833226i \(0.313509\pi\)
\(572\) 0 0
\(573\) 1027.40i 1.79302i
\(574\) 0 0
\(575\) 28.7860i 0.0500626i
\(576\) 0 0
\(577\) −23.0495 + 39.9228i −0.0399471 + 0.0691904i −0.885308 0.465006i \(-0.846052\pi\)
0.845361 + 0.534196i \(0.179386\pi\)
\(578\) 0 0
\(579\) −58.4072 101.164i −0.100876 0.174722i
\(580\) 0 0
\(581\) −24.3559 + 25.9096i −0.0419206 + 0.0445948i
\(582\) 0 0
\(583\) −244.402 + 141.106i −0.419214 + 0.242033i
\(584\) 0 0
\(585\) −700.595 + 1213.47i −1.19760 + 2.07430i
\(586\) 0 0
\(587\) 604.834 1.03038 0.515191 0.857075i \(-0.327721\pi\)
0.515191 + 0.857075i \(0.327721\pi\)
\(588\) 0 0
\(589\) 1394.66i 2.36785i
\(590\) 0 0
\(591\) 71.8919 + 41.5068i 0.121644 + 0.0702314i
\(592\) 0 0
\(593\) 531.026 + 919.765i 0.895491 + 1.55104i 0.833195 + 0.552979i \(0.186509\pi\)
0.0622963 + 0.998058i \(0.480158\pi\)
\(594\) 0 0
\(595\) 148.262 + 139.371i 0.249179 + 0.234237i
\(596\) 0 0
\(597\) −36.1726 + 20.8843i −0.0605906 + 0.0349820i
\(598\) 0 0
\(599\) −335.212 193.535i −0.559619 0.323096i 0.193373 0.981125i \(-0.438057\pi\)
−0.752993 + 0.658029i \(0.771390\pi\)
\(600\) 0 0
\(601\) −429.568 −0.714756 −0.357378 0.933960i \(-0.616329\pi\)
−0.357378 + 0.933960i \(0.616329\pi\)
\(602\) 0 0
\(603\) −423.729 −0.702701
\(604\) 0 0
\(605\) −512.384 295.825i −0.846915 0.488967i
\(606\) 0 0
\(607\) 19.7842 11.4224i 0.0325934 0.0188178i −0.483615 0.875281i \(-0.660676\pi\)
0.516208 + 0.856463i \(0.327343\pi\)
\(608\) 0 0
\(609\) 1042.80 314.253i 1.71231 0.516014i
\(610\) 0 0
\(611\) −98.9896 171.455i −0.162012 0.280614i
\(612\) 0 0
\(613\) −409.020 236.148i −0.667243 0.385233i 0.127788 0.991802i \(-0.459212\pi\)
−0.795031 + 0.606568i \(0.792546\pi\)
\(614\) 0 0
\(615\) 315.225i 0.512560i
\(616\) 0 0
\(617\) 622.191 1.00841 0.504207 0.863583i \(-0.331785\pi\)
0.504207 + 0.863583i \(0.331785\pi\)
\(618\) 0 0
\(619\) 219.754 380.625i 0.355014 0.614903i −0.632106 0.774882i \(-0.717809\pi\)
0.987120 + 0.159979i \(0.0511426\pi\)
\(620\) 0 0
\(621\) 300.370 173.418i 0.483687 0.279257i
\(622\) 0 0
\(623\) 702.221 + 165.087i 1.12716 + 0.264987i
\(624\) 0 0
\(625\) 367.065 + 635.774i 0.587303 + 1.01724i
\(626\) 0 0
\(627\) 1209.71 2095.29i 1.92937 3.34177i
\(628\) 0 0
\(629\) 164.024i 0.260770i
\(630\) 0 0
\(631\) 817.228i 1.29513i 0.762010 + 0.647565i \(0.224213\pi\)
−0.762010 + 0.647565i \(0.775787\pi\)
\(632\) 0 0
\(633\) −607.186 + 1051.68i −0.959220 + 1.66142i
\(634\) 0 0
\(635\) −349.956 606.142i −0.551112 0.954554i
\(636\) 0 0
\(637\) −580.456 + 35.9181i −0.911233 + 0.0563864i
\(638\) 0 0
\(639\) 2355.97 1360.22i 3.68696 2.12867i
\(640\) 0 0
\(641\) 192.818 333.970i 0.300808 0.521014i −0.675511 0.737350i \(-0.736077\pi\)
0.976319 + 0.216335i \(0.0694104\pi\)
\(642\) 0 0
\(643\) 1235.25 1.92107 0.960537 0.278151i \(-0.0897216\pi\)
0.960537 + 0.278151i \(0.0897216\pi\)
\(644\) 0 0
\(645\) 1439.46i 2.23173i
\(646\) 0 0
\(647\) −331.418 191.345i −0.512239 0.295741i 0.221515 0.975157i \(-0.428900\pi\)
−0.733753 + 0.679416i \(0.762233\pi\)
\(648\) 0 0
\(649\) −519.713 900.169i −0.800790 1.38701i
\(650\) 0 0
\(651\) −422.807 + 1798.47i −0.649473 + 2.76263i
\(652\) 0 0
\(653\) −921.585 + 532.077i −1.41131 + 0.814820i −0.995512 0.0946374i \(-0.969831\pi\)
−0.415798 + 0.909457i \(0.636498\pi\)
\(654\) 0 0
\(655\) −107.354 61.9807i −0.163899 0.0946271i
\(656\) 0 0
\(657\) 407.001 0.619484
\(658\) 0 0
\(659\) 604.104 0.916698 0.458349 0.888772i \(-0.348441\pi\)
0.458349 + 0.888772i \(0.348441\pi\)
\(660\) 0 0
\(661\) 161.954 + 93.5041i 0.245014 + 0.141459i 0.617479 0.786587i \(-0.288154\pi\)
−0.372465 + 0.928046i \(0.621487\pi\)
\(662\) 0 0
\(663\) 297.294 171.643i 0.448407 0.258888i
\(664\) 0 0
\(665\) 1079.57 325.333i 1.62341 0.489222i
\(666\) 0 0
\(667\) 72.1541 + 124.975i 0.108177 + 0.187368i
\(668\) 0 0
\(669\) −1066.42 615.698i −1.59405 0.920326i
\(670\) 0 0
\(671\) 322.167i 0.480130i
\(672\) 0 0
\(673\) 253.646 0.376889 0.188445 0.982084i \(-0.439655\pi\)
0.188445 + 0.982084i \(0.439655\pi\)
\(674\) 0 0
\(675\) 191.330 331.394i 0.283453 0.490954i
\(676\) 0 0
\(677\) −51.4995 + 29.7333i −0.0760702 + 0.0439191i −0.537553 0.843230i \(-0.680651\pi\)
0.461482 + 0.887149i \(0.347318\pi\)
\(678\) 0 0
\(679\) 298.736 317.792i 0.439964 0.468030i
\(680\) 0 0
\(681\) 32.1069 + 55.6107i 0.0471466 + 0.0816604i
\(682\) 0 0
\(683\) −333.120 + 576.981i −0.487731 + 0.844774i −0.999900 0.0141100i \(-0.995509\pi\)
0.512170 + 0.858884i \(0.328842\pi\)
\(684\) 0 0
\(685\) 930.764i 1.35878i
\(686\) 0 0
\(687\) 1108.85i 1.61405i
\(688\) 0 0
\(689\) −110.938 + 192.150i −0.161013 + 0.278883i
\(690\) 0 0
\(691\) 103.065 + 178.515i 0.149154 + 0.258342i 0.930915 0.365236i \(-0.119012\pi\)
−0.781761 + 0.623578i \(0.785678\pi\)
\(692\) 0 0
\(693\) 1543.79 1642.27i 2.22769 2.36979i
\(694\) 0 0
\(695\) −198.832 + 114.796i −0.286089 + 0.165174i
\(696\) 0 0
\(697\) 27.1559 47.0354i 0.0389611 0.0674827i
\(698\) 0 0
\(699\) −1019.14 −1.45800
\(700\) 0 0
\(701\) 54.9968i 0.0784548i 0.999230 + 0.0392274i \(0.0124897\pi\)
−0.999230 + 0.0392274i \(0.987510\pi\)
\(702\) 0 0
\(703\) −787.104 454.435i −1.11964 0.646422i
\(704\) 0 0
\(705\) 254.233 + 440.345i 0.360614 + 0.624602i
\(706\) 0 0
\(707\) 30.6892 9.24835i 0.0434077 0.0130811i
\(708\) 0 0
\(709\) −807.852 + 466.414i −1.13943 + 0.657847i −0.946288 0.323324i \(-0.895200\pi\)
−0.193137 + 0.981172i \(0.561866\pi\)
\(710\) 0 0
\(711\) −68.3266 39.4484i −0.0960994 0.0554830i
\(712\) 0 0
\(713\) −244.794 −0.343330
\(714\) 0 0
\(715\) −991.703 −1.38700
\(716\) 0 0
\(717\) 97.5725 + 56.3335i 0.136084 + 0.0785684i
\(718\) 0 0
\(719\) −156.465 + 90.3352i −0.217615 + 0.125640i −0.604845 0.796343i \(-0.706765\pi\)
0.387231 + 0.921983i \(0.373432\pi\)
\(720\) 0 0
\(721\) 322.113 1370.16i 0.446759 1.90036i
\(722\) 0 0
\(723\) 1113.24 + 1928.19i 1.53975 + 2.66693i
\(724\) 0 0
\(725\) 137.883 + 79.6067i 0.190183 + 0.109802i
\(726\) 0 0
\(727\) 70.5863i 0.0970925i 0.998821 + 0.0485463i \(0.0154588\pi\)
−0.998821 + 0.0485463i \(0.984541\pi\)
\(728\) 0 0
\(729\) 516.073 0.707918
\(730\) 0 0
\(731\) 124.007 214.786i 0.169640 0.293825i
\(732\) 0 0
\(733\) 282.839 163.297i 0.385865 0.222779i −0.294502 0.955651i \(-0.595154\pi\)
0.680367 + 0.732872i \(0.261820\pi\)
\(734\) 0 0
\(735\) 1490.77 92.2479i 2.02826 0.125507i
\(736\) 0 0
\(737\) −149.949 259.719i −0.203458 0.352400i
\(738\) 0 0
\(739\) −8.32520 + 14.4197i −0.0112655 + 0.0195124i −0.871603 0.490212i \(-0.836919\pi\)
0.860338 + 0.509724i \(0.170253\pi\)
\(740\) 0 0
\(741\) 1902.17i 2.56703i
\(742\) 0 0
\(743\) 152.185i 0.204825i 0.994742 + 0.102413i \(0.0326562\pi\)
−0.994742 + 0.102413i \(0.967344\pi\)
\(744\) 0 0
\(745\) −437.577 + 757.906i −0.587352 + 1.01732i
\(746\) 0 0
\(747\) −54.1770 93.8374i −0.0725261 0.125619i
\(748\) 0 0
\(749\) 1184.56 + 278.481i 1.58152 + 0.371804i
\(750\) 0 0
\(751\) −1077.99 + 622.377i −1.43540 + 0.828731i −0.997526 0.0703024i \(-0.977604\pi\)
−0.437879 + 0.899034i \(0.644270\pi\)
\(752\) 0 0
\(753\) 497.450 861.608i 0.660624 1.14423i
\(754\) 0 0
\(755\) 462.032 0.611963
\(756\) 0 0
\(757\) 93.6659i 0.123733i 0.998084 + 0.0618665i \(0.0197053\pi\)
−0.998084 + 0.0618665i \(0.980295\pi\)
\(758\) 0 0
\(759\) 367.769 + 212.332i 0.484545 + 0.279752i
\(760\) 0 0
\(761\) 173.538 + 300.576i 0.228039 + 0.394975i 0.957227 0.289338i \(-0.0934353\pi\)
−0.729188 + 0.684314i \(0.760102\pi\)
\(762\) 0 0
\(763\) 757.698 228.336i 0.993052 0.299261i
\(764\) 0 0
\(765\) −536.963 + 310.016i −0.701912 + 0.405249i
\(766\) 0 0
\(767\) −707.719 408.602i −0.922710 0.532727i
\(768\) 0 0
\(769\) 578.300 0.752016 0.376008 0.926617i \(-0.377297\pi\)
0.376008 + 0.926617i \(0.377297\pi\)
\(770\) 0 0
\(771\) 1316.36 1.70734
\(772\) 0 0
\(773\) −29.6112 17.0960i −0.0383068 0.0221164i 0.480724 0.876872i \(-0.340374\pi\)
−0.519031 + 0.854755i \(0.673707\pi\)
\(774\) 0 0
\(775\) −233.895 + 135.039i −0.301800 + 0.174244i
\(776\) 0 0
\(777\) −877.237 824.632i −1.12901 1.06130i
\(778\) 0 0
\(779\) −150.473 260.627i −0.193162 0.334566i
\(780\) 0 0
\(781\) 1667.45 + 962.705i 2.13502 + 1.23266i
\(782\) 0 0
\(783\) 1918.33i 2.44998i
\(784\) 0 0
\(785\) 169.054 0.215356
\(786\) 0 0
\(787\) 307.280 532.225i 0.390445 0.676271i −0.602063 0.798449i \(-0.705654\pi\)
0.992508 + 0.122178i \(0.0389877\pi\)
\(788\) 0 0
\(789\) −1484.16 + 856.880i −1.88106 + 1.08603i
\(790\) 0 0
\(791\) −529.538 + 563.319i −0.669454 + 0.712160i
\(792\) 0 0
\(793\) −126.645 219.356i −0.159704 0.276615i
\(794\) 0 0
\(795\) 284.920 493.496i 0.358390 0.620750i
\(796\) 0 0
\(797\) 1042.48i 1.30800i −0.756494 0.654001i \(-0.773089\pi\)
0.756494 0.654001i \(-0.226911\pi\)
\(798\) 0 0
\(799\) 87.6065i 0.109645i
\(800\) 0 0
\(801\) −1099.03 + 1903.57i −1.37207 + 2.37649i
\(802\) 0 0
\(803\) 144.029 + 249.466i 0.179364 + 0.310667i
\(804\) 0 0
\(805\) 57.1031 + 189.488i 0.0709356 + 0.235389i
\(806\) 0 0
\(807\) 1085.00 626.423i 1.34448 0.776236i
\(808\) 0 0
\(809\) 367.854 637.143i 0.454703 0.787568i −0.543968 0.839106i \(-0.683079\pi\)
0.998671 + 0.0515376i \(0.0164122\pi\)
\(810\) 0 0
\(811\) −479.569 −0.591331 −0.295665 0.955292i \(-0.595541\pi\)
−0.295665 + 0.955292i \(0.595541\pi\)
\(812\) 0 0
\(813\) 2259.98i 2.77980i
\(814\) 0 0
\(815\) 123.161 + 71.1071i 0.151118 + 0.0872480i
\(816\) 0 0
\(817\) −687.130 1190.14i −0.841041 1.45673i
\(818\) 0 0
\(819\) 405.545 1725.05i 0.495170 2.10628i
\(820\) 0 0
\(821\) 1089.70 629.138i 1.32728 0.766307i 0.342404 0.939553i \(-0.388759\pi\)
0.984879 + 0.173246i \(0.0554256\pi\)
\(822\) 0 0
\(823\) 1148.55 + 663.116i 1.39557 + 0.805730i 0.993924 0.110067i \(-0.0351066\pi\)
0.401641 + 0.915797i \(0.368440\pi\)
\(824\) 0 0
\(825\) 468.526 0.567910
\(826\) 0 0
\(827\) −865.743 −1.04685 −0.523424 0.852073i \(-0.675345\pi\)
−0.523424 + 0.852073i \(0.675345\pi\)
\(828\) 0 0
\(829\) −634.533 366.348i −0.765420 0.441915i 0.0658183 0.997832i \(-0.479034\pi\)
−0.831238 + 0.555916i \(0.812368\pi\)
\(830\) 0 0
\(831\) −1837.34 + 1060.79i −2.21100 + 1.27652i
\(832\) 0 0
\(833\) −230.389 114.662i −0.276577 0.137650i
\(834\) 0 0
\(835\) −831.011 1439.35i −0.995223 1.72378i
\(836\) 0 0
\(837\) −2818.15 1627.06i −3.36697 1.94392i
\(838\) 0 0
\(839\) 816.131i 0.972743i −0.873752 0.486372i \(-0.838320\pi\)
0.873752 0.486372i \(-0.161680\pi\)
\(840\) 0 0
\(841\) 42.8406 0.0509401
\(842\) 0 0
\(843\) 1371.82 2376.06i 1.62731 2.81858i
\(844\) 0 0
\(845\) 134.858 77.8604i 0.159596 0.0921425i
\(846\) 0 0
\(847\) 728.398 + 171.240i 0.859973 + 0.202173i
\(848\) 0 0
\(849\) −767.933 1330.10i −0.904514 1.56667i
\(850\) 0 0
\(851\) 79.7634 138.154i 0.0937290 0.162343i
\(852\) 0 0
\(853\) 211.653i 0.248127i 0.992274 + 0.124064i \(0.0395927\pi\)
−0.992274 + 0.124064i \(0.960407\pi\)
\(854\) 0 0
\(855\) 3435.64i 4.01829i
\(856\) 0 0
\(857\) 267.510 463.341i 0.312147 0.540655i −0.666680 0.745344i \(-0.732285\pi\)
0.978827 + 0.204689i \(0.0656185\pi\)
\(858\) 0 0
\(859\) 517.682 + 896.651i 0.602657 + 1.04383i 0.992417 + 0.122916i \(0.0392244\pi\)
−0.389761 + 0.920916i \(0.627442\pi\)
\(860\) 0 0
\(861\) −115.029 381.707i −0.133600 0.443330i
\(862\) 0 0
\(863\) −627.407 + 362.234i −0.727007 + 0.419738i −0.817326 0.576175i \(-0.804545\pi\)
0.0903190 + 0.995913i \(0.471211\pi\)
\(864\) 0 0
\(865\) 454.238 786.763i 0.525131 0.909553i
\(866\) 0 0
\(867\) −1439.68 −1.66053
\(868\) 0 0
\(869\) 55.8399i 0.0642576i
\(870\) 0 0
\(871\) −204.193 117.891i −0.234435 0.135351i
\(872\) 0 0
\(873\) 664.505 + 1150.96i 0.761174 + 1.31839i
\(874\) 0 0
\(875\) −546.657 513.876i −0.624751 0.587286i
\(876\) 0 0
\(877\) 460.810 266.049i 0.525439 0.303362i −0.213718 0.976895i \(-0.568558\pi\)
0.739157 + 0.673533i \(0.235224\pi\)
\(878\) 0 0
\(879\) −2663.77 1537.93i −3.03045 1.74963i
\(880\) 0 0
\(881\) −1289.53 −1.46372 −0.731858 0.681457i \(-0.761346\pi\)
−0.731858 + 0.681457i \(0.761346\pi\)
\(882\) 0 0
\(883\) −501.393 −0.567829 −0.283915 0.958850i \(-0.591633\pi\)
−0.283915 + 0.958850i \(0.591633\pi\)
\(884\) 0 0
\(885\) 1817.62 + 1049.40i 2.05381 + 1.18577i
\(886\) 0 0
\(887\) −947.184 + 546.857i −1.06785 + 0.616524i −0.927594 0.373591i \(-0.878126\pi\)
−0.140258 + 0.990115i \(0.544793\pi\)
\(888\) 0 0
\(889\) 644.952 + 606.276i 0.725480 + 0.681976i
\(890\) 0 0
\(891\) 1373.62 + 2379.18i 1.54166 + 2.67024i
\(892\) 0 0
\(893\) −420.399 242.717i −0.470771 0.271800i
\(894\) 0 0
\(895\) 811.397i 0.906589i
\(896\) 0 0
\(897\) 333.873 0.372211
\(898\) 0 0
\(899\) 676.970 1172.55i 0.753026 1.30428i
\(900\) 0 0
\(901\) −85.0273 + 49.0905i −0.0943699 + 0.0544845i
\(902\) 0 0
\(903\) −525.278 1743.05i −0.581703 1.93029i
\(904\) 0 0
\(905\) 200.422 + 347.140i 0.221460 + 0.383580i
\(906\) 0 0
\(907\) −24.4674 + 42.3787i −0.0269761 + 0.0467240i −0.879198 0.476456i \(-0.841921\pi\)
0.852222 + 0.523180i \(0.175254\pi\)
\(908\) 0 0
\(909\) 97.6662i 0.107444i
\(910\) 0 0
\(911\) 1225.94i 1.34571i −0.739776 0.672853i \(-0.765069\pi\)
0.739776 0.672853i \(-0.234931\pi\)
\(912\) 0 0
\(913\) 38.3442 66.4142i 0.0419981 0.0727428i
\(914\) 0 0
\(915\) 325.260 + 563.367i 0.355475 + 0.615702i
\(916\) 0 0
\(917\) 152.613 + 35.8780i 0.166426 + 0.0391254i
\(918\) 0 0
\(919\) 436.533 252.032i 0.475009 0.274246i −0.243325 0.969945i \(-0.578238\pi\)
0.718334 + 0.695698i \(0.244905\pi\)
\(920\) 0 0
\(921\) −431.935 + 748.133i −0.468984 + 0.812305i
\(922\) 0 0
\(923\) 1513.77 1.64005
\(924\) 0 0
\(925\) 176.004i 0.190275i
\(926\) 0 0
\(927\) 3714.20 + 2144.40i 4.00669 + 2.31326i
\(928\) 0 0
\(929\) −623.593 1080.10i −0.671252 1.16264i −0.977549 0.210707i \(-0.932423\pi\)
0.306297 0.951936i \(-0.400910\pi\)
\(930\) 0 0
\(931\) −1188.53 + 787.894i −1.27662 + 0.846287i
\(932\) 0 0
\(933\) −10.6143 + 6.12817i −0.0113765 + 0.00656825i
\(934\) 0 0
\(935\) −380.040 219.416i −0.406460 0.234670i
\(936\) 0 0
\(937\) 55.7855 0.0595363 0.0297681 0.999557i \(-0.490523\pi\)
0.0297681 + 0.999557i \(0.490523\pi\)
\(938\) 0 0
\(939\) 426.387 0.454087
\(940\) 0 0
\(941\) 313.904 + 181.232i 0.333585 + 0.192595i 0.657432 0.753514i \(-0.271643\pi\)
−0.323847 + 0.946110i \(0.604976\pi\)
\(942\) 0 0
\(943\) 45.7458 26.4114i 0.0485109 0.0280078i
\(944\) 0 0
\(945\) −602.069 + 2560.99i −0.637110 + 2.71005i
\(946\) 0 0
\(947\) 780.871 + 1352.51i 0.824573 + 1.42820i 0.902245 + 0.431224i \(0.141918\pi\)
−0.0776715 + 0.996979i \(0.524749\pi\)
\(948\) 0 0
\(949\) 196.132 + 113.237i 0.206672 + 0.119322i
\(950\) 0 0
\(951\) 2654.37i 2.79113i
\(952\) 0 0
\(953\) 821.437 0.861949 0.430974 0.902364i \(-0.358170\pi\)
0.430974 + 0.902364i \(0.358170\pi\)
\(954\) 0 0
\(955\) 516.286 894.234i 0.540614 0.936370i
\(956\) 0 0
\(957\) −2034.11 + 1174.39i −2.12551 + 1.22716i
\(958\) 0 0
\(959\) 339.647 + 1127.07i 0.354168 + 1.17525i
\(960\) 0 0
\(961\) 667.865 + 1156.78i 0.694968 + 1.20372i
\(962\) 0 0
\(963\) −1853.93 + 3211.09i −1.92516 + 3.33447i
\(964\) 0 0
\(965\) 117.402i 0.121660i
\(966\) 0 0
\(967\) 200.009i 0.206834i 0.994638 + 0.103417i \(0.0329777\pi\)
−0.994638 + 0.103417i \(0.967022\pi\)
\(968\) 0 0
\(969\) 420.859 728.949i 0.434323 0.752269i
\(970\) 0 0
\(971\) 672.784 + 1165.30i 0.692878 + 1.20010i 0.970891 + 0.239522i \(0.0769908\pi\)
−0.278013 + 0.960577i \(0.589676\pi\)
\(972\) 0 0
\(973\) 198.876 211.563i 0.204395 0.217434i
\(974\) 0 0
\(975\) 319.008 184.179i 0.327187 0.188902i
\(976\) 0 0
\(977\) −488.959 + 846.902i −0.500470 + 0.866840i 0.499530 + 0.866297i \(0.333506\pi\)
−1.00000 0.000542948i \(0.999827\pi\)
\(978\) 0 0
\(979\) −1555.69 −1.58906
\(980\) 0 0
\(981\) 2411.32i 2.45802i
\(982\) 0 0
\(983\) −246.638 142.397i −0.250903 0.144859i 0.369274 0.929320i \(-0.379606\pi\)
−0.620178 + 0.784461i \(0.712940\pi\)
\(984\) 0 0
\(985\) −41.7156 72.2536i −0.0423509 0.0733539i
\(986\) 0 0
\(987\) −468.539 440.442i −0.474710 0.446244i
\(988\) 0 0
\(989\) 208.897 120.607i 0.211220 0.121948i
\(990\) 0 0
\(991\) 1119.05 + 646.081i 1.12921 + 0.651949i 0.943736 0.330701i \(-0.107285\pi\)
0.185472 + 0.982649i \(0.440618\pi\)
\(992\) 0 0
\(993\) 2242.31 2.25812
\(994\) 0 0
\(995\) 41.9787 0.0421896
\(996\) 0 0
\(997\) 304.256 + 175.662i 0.305171 + 0.176191i 0.644764 0.764382i \(-0.276956\pi\)
−0.339592 + 0.940573i \(0.610289\pi\)
\(998\) 0 0
\(999\) 1836.53 1060.32i 1.83837 1.06138i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.o.b.95.1 yes 20
4.3 odd 2 inner 448.3.o.b.95.10 yes 20
7.2 even 3 448.3.o.a.415.1 yes 20
8.3 odd 2 448.3.o.a.95.1 20
8.5 even 2 448.3.o.a.95.10 yes 20
28.23 odd 6 448.3.o.a.415.10 yes 20
56.37 even 6 inner 448.3.o.b.415.10 yes 20
56.51 odd 6 inner 448.3.o.b.415.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.3.o.a.95.1 20 8.3 odd 2
448.3.o.a.95.10 yes 20 8.5 even 2
448.3.o.a.415.1 yes 20 7.2 even 3
448.3.o.a.415.10 yes 20 28.23 odd 6
448.3.o.b.95.1 yes 20 1.1 even 1 trivial
448.3.o.b.95.10 yes 20 4.3 odd 2 inner
448.3.o.b.415.1 yes 20 56.51 odd 6 inner
448.3.o.b.415.10 yes 20 56.37 even 6 inner