Properties

Label 448.3.l.b.209.21
Level $448$
Weight $3$
Character 448.209
Analytic conductor $12.207$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(209,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.209"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 209.21
Character \(\chi\) \(=\) 448.209
Dual form 448.3.l.b.433.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.22244 - 2.22244i) q^{3} +(1.66633 + 1.66633i) q^{5} +(-4.68881 - 5.19760i) q^{7} -0.878436i q^{9} +(1.36066 - 1.36066i) q^{11} +(5.09302 - 5.09302i) q^{13} +7.40664 q^{15} -23.0033i q^{17} +(19.4645 - 19.4645i) q^{19} +(-21.9719 - 1.13076i) q^{21} -7.80957i q^{23} -19.4467i q^{25} +(18.0496 + 18.0496i) q^{27} +(-26.2044 - 26.2044i) q^{29} +21.8757i q^{31} -6.04797i q^{33} +(0.847823 - 16.4741i) q^{35} +(-25.0652 + 25.0652i) q^{37} -22.6378i q^{39} +64.9559 q^{41} +(-9.70579 + 9.70579i) q^{43} +(1.46377 - 1.46377i) q^{45} -11.6768i q^{47} +(-5.03016 + 48.7411i) q^{49} +(-51.1233 - 51.1233i) q^{51} +(-15.1568 + 15.1568i) q^{53} +4.53464 q^{55} -86.5172i q^{57} +(-14.7798 - 14.7798i) q^{59} +(-0.766723 + 0.766723i) q^{61} +(-4.56576 + 4.11882i) q^{63} +16.9733 q^{65} +(-50.1767 - 50.1767i) q^{67} +(-17.3563 - 17.3563i) q^{69} +120.845i q^{71} -7.32621 q^{73} +(-43.2189 - 43.2189i) q^{75} +(-13.4521 - 0.692299i) q^{77} -7.61837 q^{79} +88.1343 q^{81} +(95.8459 - 95.8459i) q^{83} +(38.3311 - 38.3311i) q^{85} -116.475 q^{87} +71.9017 q^{89} +(-50.3517 - 2.59130i) q^{91} +(48.6174 + 48.6174i) q^{93} +64.8687 q^{95} +121.785i q^{97} +(-1.19526 - 1.19526i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{15} - 20 q^{21} - 96 q^{29} + 100 q^{35} - 128 q^{37} + 72 q^{43} + 192 q^{49} + 128 q^{51} + 88 q^{53} - 444 q^{63} - 8 q^{65} - 440 q^{67} + 12 q^{77} + 8 q^{79} + 64 q^{81} + 96 q^{85} + 388 q^{91}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.22244 2.22244i 0.740812 0.740812i −0.231923 0.972734i \(-0.574502\pi\)
0.972734 + 0.231923i \(0.0745016\pi\)
\(4\) 0 0
\(5\) 1.66633 + 1.66633i 0.333267 + 0.333267i 0.853826 0.520559i \(-0.174276\pi\)
−0.520559 + 0.853826i \(0.674276\pi\)
\(6\) 0 0
\(7\) −4.68881 5.19760i −0.669830 0.742515i
\(8\) 0 0
\(9\) 0.878436i 0.0976040i
\(10\) 0 0
\(11\) 1.36066 1.36066i 0.123697 0.123697i −0.642548 0.766245i \(-0.722123\pi\)
0.766245 + 0.642548i \(0.222123\pi\)
\(12\) 0 0
\(13\) 5.09302 5.09302i 0.391771 0.391771i −0.483548 0.875318i \(-0.660652\pi\)
0.875318 + 0.483548i \(0.160652\pi\)
\(14\) 0 0
\(15\) 7.40664 0.493776
\(16\) 0 0
\(17\) 23.0033i 1.35313i −0.736381 0.676567i \(-0.763467\pi\)
0.736381 0.676567i \(-0.236533\pi\)
\(18\) 0 0
\(19\) 19.4645 19.4645i 1.02445 1.02445i 0.0247535 0.999694i \(-0.492120\pi\)
0.999694 0.0247535i \(-0.00788009\pi\)
\(20\) 0 0
\(21\) −21.9719 1.13076i −1.04628 0.0538459i
\(22\) 0 0
\(23\) 7.80957i 0.339546i −0.985483 0.169773i \(-0.945696\pi\)
0.985483 0.169773i \(-0.0543035\pi\)
\(24\) 0 0
\(25\) 19.4467i 0.777866i
\(26\) 0 0
\(27\) 18.0496 + 18.0496i 0.668506 + 0.668506i
\(28\) 0 0
\(29\) −26.2044 26.2044i −0.903598 0.903598i 0.0921470 0.995745i \(-0.470627\pi\)
−0.995745 + 0.0921470i \(0.970627\pi\)
\(30\) 0 0
\(31\) 21.8757i 0.705669i 0.935686 + 0.352835i \(0.114782\pi\)
−0.935686 + 0.352835i \(0.885218\pi\)
\(32\) 0 0
\(33\) 6.04797i 0.183272i
\(34\) 0 0
\(35\) 0.847823 16.4741i 0.0242235 0.470688i
\(36\) 0 0
\(37\) −25.0652 + 25.0652i −0.677438 + 0.677438i −0.959420 0.281982i \(-0.909008\pi\)
0.281982 + 0.959420i \(0.409008\pi\)
\(38\) 0 0
\(39\) 22.6378i 0.580457i
\(40\) 0 0
\(41\) 64.9559 1.58429 0.792145 0.610333i \(-0.208964\pi\)
0.792145 + 0.610333i \(0.208964\pi\)
\(42\) 0 0
\(43\) −9.70579 + 9.70579i −0.225716 + 0.225716i −0.810900 0.585184i \(-0.801022\pi\)
0.585184 + 0.810900i \(0.301022\pi\)
\(44\) 0 0
\(45\) 1.46377 1.46377i 0.0325282 0.0325282i
\(46\) 0 0
\(47\) 11.6768i 0.248444i −0.992254 0.124222i \(-0.960357\pi\)
0.992254 0.124222i \(-0.0396434\pi\)
\(48\) 0 0
\(49\) −5.03016 + 48.7411i −0.102656 + 0.994717i
\(50\) 0 0
\(51\) −51.1233 51.1233i −1.00242 1.00242i
\(52\) 0 0
\(53\) −15.1568 + 15.1568i −0.285978 + 0.285978i −0.835487 0.549510i \(-0.814815\pi\)
0.549510 + 0.835487i \(0.314815\pi\)
\(54\) 0 0
\(55\) 4.53464 0.0824480
\(56\) 0 0
\(57\) 86.5172i 1.51784i
\(58\) 0 0
\(59\) −14.7798 14.7798i −0.250505 0.250505i 0.570673 0.821178i \(-0.306683\pi\)
−0.821178 + 0.570673i \(0.806683\pi\)
\(60\) 0 0
\(61\) −0.766723 + 0.766723i −0.0125692 + 0.0125692i −0.713363 0.700794i \(-0.752829\pi\)
0.700794 + 0.713363i \(0.252829\pi\)
\(62\) 0 0
\(63\) −4.56576 + 4.11882i −0.0724724 + 0.0653781i
\(64\) 0 0
\(65\) 16.9733 0.261128
\(66\) 0 0
\(67\) −50.1767 50.1767i −0.748905 0.748905i 0.225368 0.974274i \(-0.427641\pi\)
−0.974274 + 0.225368i \(0.927641\pi\)
\(68\) 0 0
\(69\) −17.3563 17.3563i −0.251540 0.251540i
\(70\) 0 0
\(71\) 120.845i 1.70204i 0.525135 + 0.851019i \(0.324015\pi\)
−0.525135 + 0.851019i \(0.675985\pi\)
\(72\) 0 0
\(73\) −7.32621 −0.100359 −0.0501795 0.998740i \(-0.515979\pi\)
−0.0501795 + 0.998740i \(0.515979\pi\)
\(74\) 0 0
\(75\) −43.2189 43.2189i −0.576253 0.576253i
\(76\) 0 0
\(77\) −13.4521 0.692299i −0.174702 0.00899090i
\(78\) 0 0
\(79\) −7.61837 −0.0964351 −0.0482176 0.998837i \(-0.515354\pi\)
−0.0482176 + 0.998837i \(0.515354\pi\)
\(80\) 0 0
\(81\) 88.1343 1.08808
\(82\) 0 0
\(83\) 95.8459 95.8459i 1.15477 1.15477i 0.169186 0.985584i \(-0.445886\pi\)
0.985584 0.169186i \(-0.0541140\pi\)
\(84\) 0 0
\(85\) 38.3311 38.3311i 0.450954 0.450954i
\(86\) 0 0
\(87\) −116.475 −1.33879
\(88\) 0 0
\(89\) 71.9017 0.807884 0.403942 0.914784i \(-0.367640\pi\)
0.403942 + 0.914784i \(0.367640\pi\)
\(90\) 0 0
\(91\) −50.3517 2.59130i −0.553315 0.0284759i
\(92\) 0 0
\(93\) 48.6174 + 48.6174i 0.522768 + 0.522768i
\(94\) 0 0
\(95\) 64.8687 0.682828
\(96\) 0 0
\(97\) 121.785i 1.25551i 0.778410 + 0.627757i \(0.216027\pi\)
−0.778410 + 0.627757i \(0.783973\pi\)
\(98\) 0 0
\(99\) −1.19526 1.19526i −0.0120733 0.0120733i
\(100\) 0 0
\(101\) −63.0038 63.0038i −0.623800 0.623800i 0.322701 0.946501i \(-0.395409\pi\)
−0.946501 + 0.322701i \(0.895409\pi\)
\(102\) 0 0
\(103\) 174.305 1.69228 0.846139 0.532962i \(-0.178921\pi\)
0.846139 + 0.532962i \(0.178921\pi\)
\(104\) 0 0
\(105\) −34.7283 38.4968i −0.330746 0.366636i
\(106\) 0 0
\(107\) −47.0984 + 47.0984i −0.440172 + 0.440172i −0.892070 0.451898i \(-0.850747\pi\)
0.451898 + 0.892070i \(0.350747\pi\)
\(108\) 0 0
\(109\) 86.7341 + 86.7341i 0.795726 + 0.795726i 0.982418 0.186693i \(-0.0597769\pi\)
−0.186693 + 0.982418i \(0.559777\pi\)
\(110\) 0 0
\(111\) 111.412i 1.00371i
\(112\) 0 0
\(113\) −49.9675 −0.442191 −0.221095 0.975252i \(-0.570963\pi\)
−0.221095 + 0.975252i \(0.570963\pi\)
\(114\) 0 0
\(115\) 13.0133 13.0133i 0.113160 0.113160i
\(116\) 0 0
\(117\) −4.47389 4.47389i −0.0382384 0.0382384i
\(118\) 0 0
\(119\) −119.562 + 107.858i −1.00472 + 0.906369i
\(120\) 0 0
\(121\) 117.297i 0.969398i
\(122\) 0 0
\(123\) 144.360 144.360i 1.17366 1.17366i
\(124\) 0 0
\(125\) 74.0630 74.0630i 0.592504 0.592504i
\(126\) 0 0
\(127\) 235.080 1.85102 0.925512 0.378719i \(-0.123635\pi\)
0.925512 + 0.378719i \(0.123635\pi\)
\(128\) 0 0
\(129\) 43.1410i 0.334426i
\(130\) 0 0
\(131\) −172.394 + 172.394i −1.31598 + 1.31598i −0.399058 + 0.916926i \(0.630663\pi\)
−0.916926 + 0.399058i \(0.869337\pi\)
\(132\) 0 0
\(133\) −192.434 9.90345i −1.44687 0.0744620i
\(134\) 0 0
\(135\) 60.1535i 0.445581i
\(136\) 0 0
\(137\) 44.5853i 0.325440i −0.986672 0.162720i \(-0.947973\pi\)
0.986672 0.162720i \(-0.0520268\pi\)
\(138\) 0 0
\(139\) 97.8682 + 97.8682i 0.704088 + 0.704088i 0.965285 0.261197i \(-0.0841174\pi\)
−0.261197 + 0.965285i \(0.584117\pi\)
\(140\) 0 0
\(141\) −25.9510 25.9510i −0.184050 0.184050i
\(142\) 0 0
\(143\) 13.8598i 0.0969214i
\(144\) 0 0
\(145\) 87.3304i 0.602279i
\(146\) 0 0
\(147\) 97.1448 + 119.503i 0.660849 + 0.812947i
\(148\) 0 0
\(149\) −95.5292 + 95.5292i −0.641136 + 0.641136i −0.950835 0.309699i \(-0.899772\pi\)
0.309699 + 0.950835i \(0.399772\pi\)
\(150\) 0 0
\(151\) 165.338i 1.09495i −0.836821 0.547476i \(-0.815589\pi\)
0.836821 0.547476i \(-0.184411\pi\)
\(152\) 0 0
\(153\) −20.2069 −0.132071
\(154\) 0 0
\(155\) −36.4523 + 36.4523i −0.235176 + 0.235176i
\(156\) 0 0
\(157\) −168.982 + 168.982i −1.07632 + 1.07632i −0.0794827 + 0.996836i \(0.525327\pi\)
−0.996836 + 0.0794827i \(0.974673\pi\)
\(158\) 0 0
\(159\) 67.3701i 0.423711i
\(160\) 0 0
\(161\) −40.5910 + 36.6176i −0.252118 + 0.227438i
\(162\) 0 0
\(163\) −76.2213 76.2213i −0.467616 0.467616i 0.433526 0.901141i \(-0.357269\pi\)
−0.901141 + 0.433526i \(0.857269\pi\)
\(164\) 0 0
\(165\) 10.0779 10.0779i 0.0610784 0.0610784i
\(166\) 0 0
\(167\) −166.172 −0.995040 −0.497520 0.867452i \(-0.665756\pi\)
−0.497520 + 0.867452i \(0.665756\pi\)
\(168\) 0 0
\(169\) 117.122i 0.693032i
\(170\) 0 0
\(171\) −17.0983 17.0983i −0.0999901 0.0999901i
\(172\) 0 0
\(173\) −127.346 + 127.346i −0.736103 + 0.736103i −0.971821 0.235719i \(-0.924256\pi\)
0.235719 + 0.971821i \(0.424256\pi\)
\(174\) 0 0
\(175\) −101.076 + 91.1817i −0.577577 + 0.521038i
\(176\) 0 0
\(177\) −65.6943 −0.371154
\(178\) 0 0
\(179\) 167.337 + 167.337i 0.934842 + 0.934842i 0.998003 0.0631609i \(-0.0201181\pi\)
−0.0631609 + 0.998003i \(0.520118\pi\)
\(180\) 0 0
\(181\) 11.2916 + 11.2916i 0.0623843 + 0.0623843i 0.737611 0.675226i \(-0.235954\pi\)
−0.675226 + 0.737611i \(0.735954\pi\)
\(182\) 0 0
\(183\) 3.40798i 0.0186229i
\(184\) 0 0
\(185\) −83.5340 −0.451535
\(186\) 0 0
\(187\) −31.2997 31.2997i −0.167378 0.167378i
\(188\) 0 0
\(189\) 9.18358 178.446i 0.0485904 0.944160i
\(190\) 0 0
\(191\) −163.386 −0.855423 −0.427712 0.903915i \(-0.640680\pi\)
−0.427712 + 0.903915i \(0.640680\pi\)
\(192\) 0 0
\(193\) 279.119 1.44621 0.723107 0.690736i \(-0.242713\pi\)
0.723107 + 0.690736i \(0.242713\pi\)
\(194\) 0 0
\(195\) 37.7221 37.7221i 0.193447 0.193447i
\(196\) 0 0
\(197\) 147.140 147.140i 0.746906 0.746906i −0.226991 0.973897i \(-0.572889\pi\)
0.973897 + 0.226991i \(0.0728888\pi\)
\(198\) 0 0
\(199\) 163.501 0.821612 0.410806 0.911723i \(-0.365247\pi\)
0.410806 + 0.911723i \(0.365247\pi\)
\(200\) 0 0
\(201\) −223.029 −1.10960
\(202\) 0 0
\(203\) −13.3327 + 259.067i −0.0656781 + 1.27619i
\(204\) 0 0
\(205\) 108.238 + 108.238i 0.527991 + 0.527991i
\(206\) 0 0
\(207\) −6.86020 −0.0331411
\(208\) 0 0
\(209\) 52.9692i 0.253441i
\(210\) 0 0
\(211\) −40.9927 40.9927i −0.194278 0.194278i 0.603264 0.797542i \(-0.293867\pi\)
−0.797542 + 0.603264i \(0.793867\pi\)
\(212\) 0 0
\(213\) 268.569 + 268.569i 1.26089 + 1.26089i
\(214\) 0 0
\(215\) −32.3462 −0.150447
\(216\) 0 0
\(217\) 113.701 102.571i 0.523970 0.472678i
\(218\) 0 0
\(219\) −16.2820 + 16.2820i −0.0743472 + 0.0743472i
\(220\) 0 0
\(221\) −117.156 117.156i −0.530118 0.530118i
\(222\) 0 0
\(223\) 197.114i 0.883917i −0.897035 0.441959i \(-0.854284\pi\)
0.897035 0.441959i \(-0.145716\pi\)
\(224\) 0 0
\(225\) −17.0826 −0.0759229
\(226\) 0 0
\(227\) −50.7474 + 50.7474i −0.223557 + 0.223557i −0.809994 0.586438i \(-0.800530\pi\)
0.586438 + 0.809994i \(0.300530\pi\)
\(228\) 0 0
\(229\) 276.035 + 276.035i 1.20539 + 1.20539i 0.972504 + 0.232887i \(0.0748172\pi\)
0.232887 + 0.972504i \(0.425183\pi\)
\(230\) 0 0
\(231\) −31.4350 + 28.3578i −0.136082 + 0.122761i
\(232\) 0 0
\(233\) 416.018i 1.78549i 0.450566 + 0.892743i \(0.351222\pi\)
−0.450566 + 0.892743i \(0.648778\pi\)
\(234\) 0 0
\(235\) 19.4575 19.4575i 0.0827980 0.0827980i
\(236\) 0 0
\(237\) −16.9313 + 16.9313i −0.0714403 + 0.0714403i
\(238\) 0 0
\(239\) −35.9992 −0.150624 −0.0753121 0.997160i \(-0.523995\pi\)
−0.0753121 + 0.997160i \(0.523995\pi\)
\(240\) 0 0
\(241\) 277.725i 1.15239i −0.817313 0.576194i \(-0.804537\pi\)
0.817313 0.576194i \(-0.195463\pi\)
\(242\) 0 0
\(243\) 33.4259 33.4259i 0.137555 0.137555i
\(244\) 0 0
\(245\) −89.6009 + 72.8371i −0.365718 + 0.297294i
\(246\) 0 0
\(247\) 198.266i 0.802696i
\(248\) 0 0
\(249\) 426.023i 1.71093i
\(250\) 0 0
\(251\) −177.118 177.118i −0.705651 0.705651i 0.259967 0.965618i \(-0.416288\pi\)
−0.965618 + 0.259967i \(0.916288\pi\)
\(252\) 0 0
\(253\) −10.6262 10.6262i −0.0420007 0.0420007i
\(254\) 0 0
\(255\) 170.377i 0.668145i
\(256\) 0 0
\(257\) 289.567i 1.12672i −0.826211 0.563361i \(-0.809508\pi\)
0.826211 0.563361i \(-0.190492\pi\)
\(258\) 0 0
\(259\) 247.805 + 12.7531i 0.956775 + 0.0492396i
\(260\) 0 0
\(261\) −23.0188 + 23.0188i −0.0881948 + 0.0881948i
\(262\) 0 0
\(263\) 216.416i 0.822875i −0.911438 0.411438i \(-0.865027\pi\)
0.911438 0.411438i \(-0.134973\pi\)
\(264\) 0 0
\(265\) −50.5127 −0.190614
\(266\) 0 0
\(267\) 159.797 159.797i 0.598490 0.598490i
\(268\) 0 0
\(269\) 161.704 161.704i 0.601131 0.601131i −0.339482 0.940613i \(-0.610252\pi\)
0.940613 + 0.339482i \(0.110252\pi\)
\(270\) 0 0
\(271\) 98.2578i 0.362575i −0.983430 0.181287i \(-0.941974\pi\)
0.983430 0.181287i \(-0.0580264\pi\)
\(272\) 0 0
\(273\) −117.662 + 106.144i −0.430998 + 0.388807i
\(274\) 0 0
\(275\) −26.4604 26.4604i −0.0962195 0.0962195i
\(276\) 0 0
\(277\) 380.735 380.735i 1.37449 1.37449i 0.520839 0.853655i \(-0.325619\pi\)
0.853655 0.520839i \(-0.174381\pi\)
\(278\) 0 0
\(279\) 19.2164 0.0688761
\(280\) 0 0
\(281\) 264.950i 0.942884i 0.881897 + 0.471442i \(0.156266\pi\)
−0.881897 + 0.471442i \(0.843734\pi\)
\(282\) 0 0
\(283\) 50.3482 + 50.3482i 0.177909 + 0.177909i 0.790444 0.612535i \(-0.209850\pi\)
−0.612535 + 0.790444i \(0.709850\pi\)
\(284\) 0 0
\(285\) 144.166 144.166i 0.505847 0.505847i
\(286\) 0 0
\(287\) −304.566 337.615i −1.06120 1.17636i
\(288\) 0 0
\(289\) −240.150 −0.830969
\(290\) 0 0
\(291\) 270.659 + 270.659i 0.930099 + 0.930099i
\(292\) 0 0
\(293\) −244.020 244.020i −0.832834 0.832834i 0.155070 0.987904i \(-0.450440\pi\)
−0.987904 + 0.155070i \(0.950440\pi\)
\(294\) 0 0
\(295\) 49.2562i 0.166970i
\(296\) 0 0
\(297\) 49.1190 0.165384
\(298\) 0 0
\(299\) −39.7743 39.7743i −0.133024 0.133024i
\(300\) 0 0
\(301\) 95.9554 + 4.93826i 0.318789 + 0.0164062i
\(302\) 0 0
\(303\) −280.044 −0.924236
\(304\) 0 0
\(305\) −2.55523 −0.00837781
\(306\) 0 0
\(307\) −206.183 + 206.183i −0.671605 + 0.671605i −0.958086 0.286481i \(-0.907515\pi\)
0.286481 + 0.958086i \(0.407515\pi\)
\(308\) 0 0
\(309\) 387.381 387.381i 1.25366 1.25366i
\(310\) 0 0
\(311\) 311.503 1.00162 0.500809 0.865558i \(-0.333036\pi\)
0.500809 + 0.865558i \(0.333036\pi\)
\(312\) 0 0
\(313\) 150.068 0.479450 0.239725 0.970841i \(-0.422943\pi\)
0.239725 + 0.970841i \(0.422943\pi\)
\(314\) 0 0
\(315\) −14.4714 0.744759i −0.0459410 0.00236431i
\(316\) 0 0
\(317\) −255.523 255.523i −0.806066 0.806066i 0.177970 0.984036i \(-0.443047\pi\)
−0.984036 + 0.177970i \(0.943047\pi\)
\(318\) 0 0
\(319\) −71.3106 −0.223544
\(320\) 0 0
\(321\) 209.346i 0.652168i
\(322\) 0 0
\(323\) −447.747 447.747i −1.38621 1.38621i
\(324\) 0 0
\(325\) −99.0422 99.0422i −0.304745 0.304745i
\(326\) 0 0
\(327\) 385.522 1.17897
\(328\) 0 0
\(329\) −60.6916 + 54.7505i −0.184473 + 0.166415i
\(330\) 0 0
\(331\) −207.933 + 207.933i −0.628197 + 0.628197i −0.947614 0.319417i \(-0.896513\pi\)
0.319417 + 0.947614i \(0.396513\pi\)
\(332\) 0 0
\(333\) 22.0182 + 22.0182i 0.0661206 + 0.0661206i
\(334\) 0 0
\(335\) 167.222i 0.499171i
\(336\) 0 0
\(337\) −498.996 −1.48070 −0.740350 0.672221i \(-0.765340\pi\)
−0.740350 + 0.672221i \(0.765340\pi\)
\(338\) 0 0
\(339\) −111.050 + 111.050i −0.327580 + 0.327580i
\(340\) 0 0
\(341\) 29.7655 + 29.7655i 0.0872889 + 0.0872889i
\(342\) 0 0
\(343\) 276.923 202.393i 0.807354 0.590067i
\(344\) 0 0
\(345\) 57.8426i 0.167660i
\(346\) 0 0
\(347\) 266.997 266.997i 0.769444 0.769444i −0.208565 0.978009i \(-0.566879\pi\)
0.978009 + 0.208565i \(0.0668793\pi\)
\(348\) 0 0
\(349\) −30.6346 + 30.6346i −0.0877782 + 0.0877782i −0.749633 0.661854i \(-0.769770\pi\)
0.661854 + 0.749633i \(0.269770\pi\)
\(350\) 0 0
\(351\) 183.854 0.523802
\(352\) 0 0
\(353\) 219.589i 0.622066i 0.950399 + 0.311033i \(0.100675\pi\)
−0.950399 + 0.311033i \(0.899325\pi\)
\(354\) 0 0
\(355\) −201.368 + 201.368i −0.567233 + 0.567233i
\(356\) 0 0
\(357\) −26.0113 + 505.426i −0.0728607 + 1.41576i
\(358\) 0 0
\(359\) 401.224i 1.11761i 0.829298 + 0.558807i \(0.188741\pi\)
−0.829298 + 0.558807i \(0.811259\pi\)
\(360\) 0 0
\(361\) 396.733i 1.09898i
\(362\) 0 0
\(363\) 260.685 + 260.685i 0.718142 + 0.718142i
\(364\) 0 0
\(365\) −12.2079 12.2079i −0.0334463 0.0334463i
\(366\) 0 0
\(367\) 240.624i 0.655652i 0.944738 + 0.327826i \(0.106316\pi\)
−0.944738 + 0.327826i \(0.893684\pi\)
\(368\) 0 0
\(369\) 57.0596i 0.154633i
\(370\) 0 0
\(371\) 149.847 + 7.71172i 0.403899 + 0.0207863i
\(372\) 0 0
\(373\) 178.908 178.908i 0.479646 0.479646i −0.425372 0.905018i \(-0.639857\pi\)
0.905018 + 0.425372i \(0.139857\pi\)
\(374\) 0 0
\(375\) 329.200i 0.877868i
\(376\) 0 0
\(377\) −266.918 −0.708007
\(378\) 0 0
\(379\) 40.4554 40.4554i 0.106742 0.106742i −0.651718 0.758461i \(-0.725952\pi\)
0.758461 + 0.651718i \(0.225952\pi\)
\(380\) 0 0
\(381\) 522.450 522.450i 1.37126 1.37126i
\(382\) 0 0
\(383\) 339.537i 0.886521i −0.896393 0.443260i \(-0.853822\pi\)
0.896393 0.443260i \(-0.146178\pi\)
\(384\) 0 0
\(385\) −21.2621 23.5693i −0.0552261 0.0612188i
\(386\) 0 0
\(387\) 8.52591 + 8.52591i 0.0220308 + 0.0220308i
\(388\) 0 0
\(389\) −281.781 + 281.781i −0.724374 + 0.724374i −0.969493 0.245119i \(-0.921173\pi\)
0.245119 + 0.969493i \(0.421173\pi\)
\(390\) 0 0
\(391\) −179.646 −0.459451
\(392\) 0 0
\(393\) 766.268i 1.94979i
\(394\) 0 0
\(395\) −12.6948 12.6948i −0.0321386 0.0321386i
\(396\) 0 0
\(397\) −405.318 + 405.318i −1.02095 + 1.02095i −0.0211753 + 0.999776i \(0.506741\pi\)
−0.999776 + 0.0211753i \(0.993259\pi\)
\(398\) 0 0
\(399\) −449.682 + 405.662i −1.12702 + 1.01670i
\(400\) 0 0
\(401\) −691.547 −1.72456 −0.862278 0.506435i \(-0.830963\pi\)
−0.862278 + 0.506435i \(0.830963\pi\)
\(402\) 0 0
\(403\) 111.414 + 111.414i 0.276460 + 0.276460i
\(404\) 0 0
\(405\) 146.861 + 146.861i 0.362620 + 0.362620i
\(406\) 0 0
\(407\) 68.2106i 0.167594i
\(408\) 0 0
\(409\) 398.371 0.974012 0.487006 0.873399i \(-0.338089\pi\)
0.487006 + 0.873399i \(0.338089\pi\)
\(410\) 0 0
\(411\) −99.0880 99.0880i −0.241090 0.241090i
\(412\) 0 0
\(413\) −7.51990 + 146.119i −0.0182080 + 0.353800i
\(414\) 0 0
\(415\) 319.423 0.769693
\(416\) 0 0
\(417\) 435.012 1.04319
\(418\) 0 0
\(419\) −72.7602 + 72.7602i −0.173652 + 0.173652i −0.788582 0.614930i \(-0.789184\pi\)
0.614930 + 0.788582i \(0.289184\pi\)
\(420\) 0 0
\(421\) 228.343 228.343i 0.542382 0.542382i −0.381844 0.924227i \(-0.624711\pi\)
0.924227 + 0.381844i \(0.124711\pi\)
\(422\) 0 0
\(423\) −10.2574 −0.0242491
\(424\) 0 0
\(425\) −447.337 −1.05256
\(426\) 0 0
\(427\) 7.58014 + 0.390105i 0.0177521 + 0.000913595i
\(428\) 0 0
\(429\) −30.8024 30.8024i −0.0718005 0.0718005i
\(430\) 0 0
\(431\) −125.697 −0.291640 −0.145820 0.989311i \(-0.546582\pi\)
−0.145820 + 0.989311i \(0.546582\pi\)
\(432\) 0 0
\(433\) 466.729i 1.07790i −0.842339 0.538948i \(-0.818822\pi\)
0.842339 0.538948i \(-0.181178\pi\)
\(434\) 0 0
\(435\) −194.086 194.086i −0.446175 0.446175i
\(436\) 0 0
\(437\) −152.009 152.009i −0.347847 0.347847i
\(438\) 0 0
\(439\) −293.932 −0.669549 −0.334774 0.942298i \(-0.608660\pi\)
−0.334774 + 0.942298i \(0.608660\pi\)
\(440\) 0 0
\(441\) 42.8160 + 4.41867i 0.0970884 + 0.0100197i
\(442\) 0 0
\(443\) −119.753 + 119.753i −0.270322 + 0.270322i −0.829230 0.558908i \(-0.811221\pi\)
0.558908 + 0.829230i \(0.311221\pi\)
\(444\) 0 0
\(445\) 119.812 + 119.812i 0.269241 + 0.269241i
\(446\) 0 0
\(447\) 424.615i 0.949922i
\(448\) 0 0
\(449\) 213.568 0.475653 0.237827 0.971308i \(-0.423565\pi\)
0.237827 + 0.971308i \(0.423565\pi\)
\(450\) 0 0
\(451\) 88.3831 88.3831i 0.195971 0.195971i
\(452\) 0 0
\(453\) −367.453 367.453i −0.811153 0.811153i
\(454\) 0 0
\(455\) −79.5847 88.2207i −0.174911 0.193892i
\(456\) 0 0
\(457\) 200.183i 0.438037i −0.975721 0.219019i \(-0.929714\pi\)
0.975721 0.219019i \(-0.0702856\pi\)
\(458\) 0 0
\(459\) 415.201 415.201i 0.904577 0.904577i
\(460\) 0 0
\(461\) −18.3869 + 18.3869i −0.0398848 + 0.0398848i −0.726768 0.686883i \(-0.758978\pi\)
0.686883 + 0.726768i \(0.258978\pi\)
\(462\) 0 0
\(463\) 865.534 1.86940 0.934702 0.355433i \(-0.115667\pi\)
0.934702 + 0.355433i \(0.115667\pi\)
\(464\) 0 0
\(465\) 162.026i 0.348442i
\(466\) 0 0
\(467\) 256.219 256.219i 0.548649 0.548649i −0.377401 0.926050i \(-0.623182\pi\)
0.926050 + 0.377401i \(0.123182\pi\)
\(468\) 0 0
\(469\) −25.5297 + 496.067i −0.0544342 + 1.05771i
\(470\) 0 0
\(471\) 751.103i 1.59470i
\(472\) 0 0
\(473\) 26.4126i 0.0558406i
\(474\) 0 0
\(475\) −378.519 378.519i −0.796883 0.796883i
\(476\) 0 0
\(477\) 13.3143 + 13.3143i 0.0279126 + 0.0279126i
\(478\) 0 0
\(479\) 81.5854i 0.170324i 0.996367 + 0.0851622i \(0.0271408\pi\)
−0.996367 + 0.0851622i \(0.972859\pi\)
\(480\) 0 0
\(481\) 255.315i 0.530800i
\(482\) 0 0
\(483\) −8.83078 + 171.591i −0.0182832 + 0.355261i
\(484\) 0 0
\(485\) −202.934 + 202.934i −0.418421 + 0.418421i
\(486\) 0 0
\(487\) 446.445i 0.916725i −0.888765 0.458362i \(-0.848436\pi\)
0.888765 0.458362i \(-0.151564\pi\)
\(488\) 0 0
\(489\) −338.794 −0.692830
\(490\) 0 0
\(491\) −285.566 + 285.566i −0.581601 + 0.581601i −0.935343 0.353742i \(-0.884909\pi\)
0.353742 + 0.935343i \(0.384909\pi\)
\(492\) 0 0
\(493\) −602.786 + 602.786i −1.22269 + 1.22269i
\(494\) 0 0
\(495\) 3.98339i 0.00804725i
\(496\) 0 0
\(497\) 628.103 566.617i 1.26379 1.14008i
\(498\) 0 0
\(499\) 349.704 + 349.704i 0.700810 + 0.700810i 0.964584 0.263774i \(-0.0849674\pi\)
−0.263774 + 0.964584i \(0.584967\pi\)
\(500\) 0 0
\(501\) −369.306 + 369.306i −0.737137 + 0.737137i
\(502\) 0 0
\(503\) −44.1832 −0.0878393 −0.0439196 0.999035i \(-0.513985\pi\)
−0.0439196 + 0.999035i \(0.513985\pi\)
\(504\) 0 0
\(505\) 209.971i 0.415783i
\(506\) 0 0
\(507\) 260.297 + 260.297i 0.513406 + 0.513406i
\(508\) 0 0
\(509\) 432.447 432.447i 0.849601 0.849601i −0.140482 0.990083i \(-0.544865\pi\)
0.990083 + 0.140482i \(0.0448653\pi\)
\(510\) 0 0
\(511\) 34.3512 + 38.0787i 0.0672235 + 0.0745181i
\(512\) 0 0
\(513\) 702.655 1.36970
\(514\) 0 0
\(515\) 290.450 + 290.450i 0.563980 + 0.563980i
\(516\) 0 0
\(517\) −15.8883 15.8883i −0.0307316 0.0307316i
\(518\) 0 0
\(519\) 566.035i 1.09063i
\(520\) 0 0
\(521\) −288.769 −0.554258 −0.277129 0.960833i \(-0.589383\pi\)
−0.277129 + 0.960833i \(0.589383\pi\)
\(522\) 0 0
\(523\) 292.459 + 292.459i 0.559195 + 0.559195i 0.929078 0.369884i \(-0.120602\pi\)
−0.369884 + 0.929078i \(0.620602\pi\)
\(524\) 0 0
\(525\) −21.9896 + 427.280i −0.0418850 + 0.813867i
\(526\) 0 0
\(527\) 503.214 0.954864
\(528\) 0 0
\(529\) 468.011 0.884708
\(530\) 0 0
\(531\) −12.9831 + 12.9831i −0.0244503 + 0.0244503i
\(532\) 0 0
\(533\) 330.822 330.822i 0.620678 0.620678i
\(534\) 0 0
\(535\) −156.963 −0.293389
\(536\) 0 0
\(537\) 743.790 1.38508
\(538\) 0 0
\(539\) 59.4759 + 73.1646i 0.110345 + 0.135741i
\(540\) 0 0
\(541\) −275.144 275.144i −0.508584 0.508584i 0.405507 0.914092i \(-0.367095\pi\)
−0.914092 + 0.405507i \(0.867095\pi\)
\(542\) 0 0
\(543\) 50.1895 0.0924301
\(544\) 0 0
\(545\) 289.056i 0.530378i
\(546\) 0 0
\(547\) −264.248 264.248i −0.483087 0.483087i 0.423029 0.906116i \(-0.360967\pi\)
−0.906116 + 0.423029i \(0.860967\pi\)
\(548\) 0 0
\(549\) 0.673517 + 0.673517i 0.00122681 + 0.00122681i
\(550\) 0 0
\(551\) −1020.11 −1.85138
\(552\) 0 0
\(553\) 35.7211 + 39.5973i 0.0645951 + 0.0716045i
\(554\) 0 0
\(555\) −185.649 + 185.649i −0.334502 + 0.334502i
\(556\) 0 0
\(557\) 332.593 + 332.593i 0.597116 + 0.597116i 0.939544 0.342428i \(-0.111249\pi\)
−0.342428 + 0.939544i \(0.611249\pi\)
\(558\) 0 0
\(559\) 98.8635i 0.176858i
\(560\) 0 0
\(561\) −139.123 −0.247991
\(562\) 0 0
\(563\) 7.10518 7.10518i 0.0126202 0.0126202i −0.700769 0.713389i \(-0.747159\pi\)
0.713389 + 0.700769i \(0.247159\pi\)
\(564\) 0 0
\(565\) −83.2626 83.2626i −0.147367 0.147367i
\(566\) 0 0
\(567\) −413.245 458.087i −0.728827 0.807914i
\(568\) 0 0
\(569\) 511.170i 0.898366i −0.893440 0.449183i \(-0.851715\pi\)
0.893440 0.449183i \(-0.148285\pi\)
\(570\) 0 0
\(571\) −520.460 + 520.460i −0.911488 + 0.911488i −0.996389 0.0849014i \(-0.972942\pi\)
0.0849014 + 0.996389i \(0.472942\pi\)
\(572\) 0 0
\(573\) −363.114 + 363.114i −0.633707 + 0.633707i
\(574\) 0 0
\(575\) −151.870 −0.264122
\(576\) 0 0
\(577\) 212.128i 0.367640i 0.982960 + 0.183820i \(0.0588463\pi\)
−0.982960 + 0.183820i \(0.941154\pi\)
\(578\) 0 0
\(579\) 620.325 620.325i 1.07137 1.07137i
\(580\) 0 0
\(581\) −947.572 48.7660i −1.63093 0.0839346i
\(582\) 0 0
\(583\) 41.2467i 0.0707490i
\(584\) 0 0
\(585\) 14.9100i 0.0254872i
\(586\) 0 0
\(587\) −334.289 334.289i −0.569487 0.569487i 0.362498 0.931985i \(-0.381924\pi\)
−0.931985 + 0.362498i \(0.881924\pi\)
\(588\) 0 0
\(589\) 425.800 + 425.800i 0.722921 + 0.722921i
\(590\) 0 0
\(591\) 654.020i 1.10663i
\(592\) 0 0
\(593\) 855.444i 1.44257i 0.692639 + 0.721285i \(0.256448\pi\)
−0.692639 + 0.721285i \(0.743552\pi\)
\(594\) 0 0
\(595\) −378.957 19.5027i −0.636903 0.0327777i
\(596\) 0 0
\(597\) 363.370 363.370i 0.608660 0.608660i
\(598\) 0 0
\(599\) 434.765i 0.725819i 0.931824 + 0.362909i \(0.118217\pi\)
−0.931824 + 0.362909i \(0.881783\pi\)
\(600\) 0 0
\(601\) 1059.09 1.76221 0.881105 0.472922i \(-0.156801\pi\)
0.881105 + 0.472922i \(0.156801\pi\)
\(602\) 0 0
\(603\) −44.0770 + 44.0770i −0.0730961 + 0.0730961i
\(604\) 0 0
\(605\) −195.456 + 195.456i −0.323068 + 0.323068i
\(606\) 0 0
\(607\) 1153.55i 1.90041i 0.311622 + 0.950206i \(0.399128\pi\)
−0.311622 + 0.950206i \(0.600872\pi\)
\(608\) 0 0
\(609\) 546.129 + 605.391i 0.896763 + 0.994073i
\(610\) 0 0
\(611\) −59.4704 59.4704i −0.0973329 0.0973329i
\(612\) 0 0
\(613\) −431.336 + 431.336i −0.703648 + 0.703648i −0.965192 0.261544i \(-0.915768\pi\)
0.261544 + 0.965192i \(0.415768\pi\)
\(614\) 0 0
\(615\) 481.105 0.782284
\(616\) 0 0
\(617\) 307.446i 0.498292i 0.968466 + 0.249146i \(0.0801500\pi\)
−0.968466 + 0.249146i \(0.919850\pi\)
\(618\) 0 0
\(619\) −713.160 713.160i −1.15212 1.15212i −0.986128 0.165988i \(-0.946919\pi\)
−0.165988 0.986128i \(-0.553081\pi\)
\(620\) 0 0
\(621\) 140.960 140.960i 0.226989 0.226989i
\(622\) 0 0
\(623\) −337.133 373.717i −0.541145 0.599866i
\(624\) 0 0
\(625\) −239.339 −0.382943
\(626\) 0 0
\(627\) −117.721 117.721i −0.187752 0.187752i
\(628\) 0 0
\(629\) 576.581 + 576.581i 0.916664 + 0.916664i
\(630\) 0 0
\(631\) 605.748i 0.959981i 0.877274 + 0.479991i \(0.159360\pi\)
−0.877274 + 0.479991i \(0.840640\pi\)
\(632\) 0 0
\(633\) −182.207 −0.287847
\(634\) 0 0
\(635\) 391.722 + 391.722i 0.616885 + 0.616885i
\(636\) 0 0
\(637\) 222.621 + 273.858i 0.349483 + 0.429919i
\(638\) 0 0
\(639\) 106.154 0.166126
\(640\) 0 0
\(641\) 320.432 0.499895 0.249947 0.968259i \(-0.419587\pi\)
0.249947 + 0.968259i \(0.419587\pi\)
\(642\) 0 0
\(643\) 192.773 192.773i 0.299803 0.299803i −0.541134 0.840937i \(-0.682005\pi\)
0.840937 + 0.541134i \(0.182005\pi\)
\(644\) 0 0
\(645\) −71.8873 + 71.8873i −0.111453 + 0.111453i
\(646\) 0 0
\(647\) −684.599 −1.05811 −0.529056 0.848587i \(-0.677454\pi\)
−0.529056 + 0.848587i \(0.677454\pi\)
\(648\) 0 0
\(649\) −40.2207 −0.0619733
\(650\) 0 0
\(651\) 24.7363 480.652i 0.0379974 0.738328i
\(652\) 0 0
\(653\) −54.1559 54.1559i −0.0829340 0.0829340i 0.664423 0.747357i \(-0.268677\pi\)
−0.747357 + 0.664423i \(0.768677\pi\)
\(654\) 0 0
\(655\) −574.531 −0.877147
\(656\) 0 0
\(657\) 6.43561i 0.00979544i
\(658\) 0 0
\(659\) −823.988 823.988i −1.25036 1.25036i −0.955558 0.294804i \(-0.904746\pi\)
−0.294804 0.955558i \(-0.595254\pi\)
\(660\) 0 0
\(661\) −246.912 246.912i −0.373544 0.373544i 0.495223 0.868766i \(-0.335086\pi\)
−0.868766 + 0.495223i \(0.835086\pi\)
\(662\) 0 0
\(663\) −520.743 −0.785435
\(664\) 0 0
\(665\) −304.157 337.162i −0.457379 0.507010i
\(666\) 0 0
\(667\) −204.645 + 204.645i −0.306814 + 0.306814i
\(668\) 0 0
\(669\) −438.072 438.072i −0.654816 0.654816i
\(670\) 0 0
\(671\) 2.08650i 0.00310954i
\(672\) 0 0
\(673\) −380.314 −0.565102 −0.282551 0.959252i \(-0.591181\pi\)
−0.282551 + 0.959252i \(0.591181\pi\)
\(674\) 0 0
\(675\) 351.005 351.005i 0.520008 0.520008i
\(676\) 0 0
\(677\) −291.402 291.402i −0.430431 0.430431i 0.458344 0.888775i \(-0.348443\pi\)
−0.888775 + 0.458344i \(0.848443\pi\)
\(678\) 0 0
\(679\) 632.989 571.025i 0.932237 0.840980i
\(680\) 0 0
\(681\) 225.566i 0.331227i
\(682\) 0 0
\(683\) 28.3409 28.3409i 0.0414947 0.0414947i −0.686055 0.727550i \(-0.740659\pi\)
0.727550 + 0.686055i \(0.240659\pi\)
\(684\) 0 0
\(685\) 74.2941 74.2941i 0.108458 0.108458i
\(686\) 0 0
\(687\) 1226.94 1.78594
\(688\) 0 0
\(689\) 154.388i 0.224075i
\(690\) 0 0
\(691\) 42.2644 42.2644i 0.0611642 0.0611642i −0.675863 0.737027i \(-0.736229\pi\)
0.737027 + 0.675863i \(0.236229\pi\)
\(692\) 0 0
\(693\) −0.608141 + 11.8168i −0.000877548 + 0.0170516i
\(694\) 0 0
\(695\) 326.162i 0.469298i
\(696\) 0 0
\(697\) 1494.20i 2.14376i
\(698\) 0 0
\(699\) 924.574 + 924.574i 1.32271 + 1.32271i
\(700\) 0 0
\(701\) −649.896 649.896i −0.927098 0.927098i 0.0704192 0.997517i \(-0.477566\pi\)
−0.997517 + 0.0704192i \(0.977566\pi\)
\(702\) 0 0
\(703\) 975.763i 1.38800i
\(704\) 0 0
\(705\) 86.4862i 0.122675i
\(706\) 0 0
\(707\) −32.0560 + 622.881i −0.0453409 + 0.881020i
\(708\) 0 0
\(709\) −142.807 + 142.807i −0.201421 + 0.201421i −0.800609 0.599188i \(-0.795490\pi\)
0.599188 + 0.800609i \(0.295490\pi\)
\(710\) 0 0
\(711\) 6.69225i 0.00941245i
\(712\) 0 0
\(713\) 170.840 0.239607
\(714\) 0 0
\(715\) 23.0950 23.0950i 0.0323007 0.0323007i
\(716\) 0 0
\(717\) −80.0058 + 80.0058i −0.111584 + 0.111584i
\(718\) 0 0
\(719\) 648.272i 0.901630i 0.892617 + 0.450815i \(0.148867\pi\)
−0.892617 + 0.450815i \(0.851133\pi\)
\(720\) 0 0
\(721\) −817.281 905.967i −1.13354 1.25654i
\(722\) 0 0
\(723\) −617.227 617.227i −0.853702 0.853702i
\(724\) 0 0
\(725\) −509.587 + 509.587i −0.702879 + 0.702879i
\(726\) 0 0
\(727\) 1370.10 1.88459 0.942295 0.334784i \(-0.108663\pi\)
0.942295 + 0.334784i \(0.108663\pi\)
\(728\) 0 0
\(729\) 644.635i 0.884273i
\(730\) 0 0
\(731\) 223.265 + 223.265i 0.305424 + 0.305424i
\(732\) 0 0
\(733\) 525.966 525.966i 0.717552 0.717552i −0.250551 0.968103i \(-0.580612\pi\)
0.968103 + 0.250551i \(0.0806118\pi\)
\(734\) 0 0
\(735\) −37.2566 + 361.008i −0.0506892 + 0.491167i
\(736\) 0 0
\(737\) −136.547 −0.185274
\(738\) 0 0
\(739\) 311.891 + 311.891i 0.422045 + 0.422045i 0.885907 0.463862i \(-0.153537\pi\)
−0.463862 + 0.885907i \(0.653537\pi\)
\(740\) 0 0
\(741\) −440.633 440.633i −0.594647 0.594647i
\(742\) 0 0
\(743\) 118.889i 0.160012i 0.996794 + 0.0800059i \(0.0254939\pi\)
−0.996794 + 0.0800059i \(0.974506\pi\)
\(744\) 0 0
\(745\) −318.367 −0.427339
\(746\) 0 0
\(747\) −84.1945 84.1945i −0.112710 0.112710i
\(748\) 0 0
\(749\) 465.634 + 23.9634i 0.621674 + 0.0319939i
\(750\) 0 0
\(751\) 742.079 0.988121 0.494061 0.869427i \(-0.335512\pi\)
0.494061 + 0.869427i \(0.335512\pi\)
\(752\) 0 0
\(753\) −787.268 −1.04551
\(754\) 0 0
\(755\) 275.508 275.508i 0.364911 0.364911i
\(756\) 0 0
\(757\) 511.624 511.624i 0.675858 0.675858i −0.283202 0.959060i \(-0.591397\pi\)
0.959060 + 0.283202i \(0.0913968\pi\)
\(758\) 0 0
\(759\) −47.2320 −0.0622293
\(760\) 0 0
\(761\) 97.6670 0.128340 0.0641702 0.997939i \(-0.479560\pi\)
0.0641702 + 0.997939i \(0.479560\pi\)
\(762\) 0 0
\(763\) 44.1299 857.489i 0.0578374 1.12384i
\(764\) 0 0
\(765\) −33.6714 33.6714i −0.0440150 0.0440150i
\(766\) 0 0
\(767\) −150.548 −0.196281
\(768\) 0 0
\(769\) 491.325i 0.638914i −0.947601 0.319457i \(-0.896499\pi\)
0.947601 0.319457i \(-0.103501\pi\)
\(770\) 0 0
\(771\) −643.545 643.545i −0.834688 0.834688i
\(772\) 0 0
\(773\) −223.072 223.072i −0.288580 0.288580i 0.547939 0.836518i \(-0.315413\pi\)
−0.836518 + 0.547939i \(0.815413\pi\)
\(774\) 0 0
\(775\) 425.410 0.548916
\(776\) 0 0
\(777\) 579.073 522.387i 0.745268 0.672313i
\(778\) 0 0
\(779\) 1264.33 1264.33i 1.62302 1.62302i
\(780\) 0 0
\(781\) 164.429 + 164.429i 0.210536 + 0.210536i
\(782\) 0 0
\(783\) 945.959i 1.20812i
\(784\) 0 0
\(785\) −563.161 −0.717403
\(786\) 0 0
\(787\) −76.7048 + 76.7048i −0.0974647 + 0.0974647i −0.754158 0.656693i \(-0.771955\pi\)
0.656693 + 0.754158i \(0.271955\pi\)
\(788\) 0 0
\(789\) −480.971 480.971i −0.609596 0.609596i
\(790\) 0 0
\(791\) 234.288 + 259.711i 0.296192 + 0.328333i
\(792\) 0 0
\(793\) 7.80986i 0.00984850i
\(794\) 0 0
\(795\) −112.261 + 112.261i −0.141209 + 0.141209i
\(796\) 0 0
\(797\) 712.807 712.807i 0.894363 0.894363i −0.100567 0.994930i \(-0.532066\pi\)
0.994930 + 0.100567i \(0.0320657\pi\)
\(798\) 0 0
\(799\) −268.606 −0.336177
\(800\) 0 0
\(801\) 63.1611i 0.0788528i
\(802\) 0 0
\(803\) −9.96850 + 9.96850i −0.0124141 + 0.0124141i
\(804\) 0 0
\(805\) −128.655 6.62113i −0.159820 0.00822501i
\(806\) 0 0
\(807\) 718.754i 0.890649i
\(808\) 0 0
\(809\) 527.771i 0.652374i 0.945305 + 0.326187i \(0.105764\pi\)
−0.945305 + 0.326187i \(0.894236\pi\)
\(810\) 0 0
\(811\) −793.267 793.267i −0.978134 0.978134i 0.0216320 0.999766i \(-0.493114\pi\)
−0.999766 + 0.0216320i \(0.993114\pi\)
\(812\) 0 0
\(813\) −218.372 218.372i −0.268600 0.268600i
\(814\) 0 0
\(815\) 254.020i 0.311682i
\(816\) 0 0
\(817\) 377.836i 0.462468i
\(818\) 0 0
\(819\) −2.27630 + 44.2307i −0.00277936 + 0.0540058i
\(820\) 0 0
\(821\) 383.964 383.964i 0.467678 0.467678i −0.433484 0.901161i \(-0.642716\pi\)
0.901161 + 0.433484i \(0.142716\pi\)
\(822\) 0 0
\(823\) 213.017i 0.258830i 0.991590 + 0.129415i \(0.0413100\pi\)
−0.991590 + 0.129415i \(0.958690\pi\)
\(824\) 0 0
\(825\) −117.613 −0.142561
\(826\) 0 0
\(827\) −134.908 + 134.908i −0.163129 + 0.163129i −0.783951 0.620822i \(-0.786799\pi\)
0.620822 + 0.783951i \(0.286799\pi\)
\(828\) 0 0
\(829\) 824.011 824.011i 0.993982 0.993982i −0.00599965 0.999982i \(-0.501910\pi\)
0.999982 + 0.00599965i \(0.00190976\pi\)
\(830\) 0 0
\(831\) 1692.32i 2.03648i
\(832\) 0 0
\(833\) 1121.21 + 115.710i 1.34598 + 0.138908i
\(834\) 0 0
\(835\) −276.898 276.898i −0.331614 0.331614i
\(836\) 0 0
\(837\) −394.849 + 394.849i −0.471744 + 0.471744i
\(838\) 0 0
\(839\) 212.466 0.253238 0.126619 0.991951i \(-0.459588\pi\)
0.126619 + 0.991951i \(0.459588\pi\)
\(840\) 0 0
\(841\) 532.336i 0.632980i
\(842\) 0 0
\(843\) 588.835 + 588.835i 0.698500 + 0.698500i
\(844\) 0 0
\(845\) −195.165 + 195.165i −0.230964 + 0.230964i
\(846\) 0 0
\(847\) 609.664 549.984i 0.719793 0.649332i
\(848\) 0 0
\(849\) 223.791 0.263594
\(850\) 0 0
\(851\) 195.748 + 195.748i 0.230022 + 0.230022i
\(852\) 0 0
\(853\) 362.999 + 362.999i 0.425555 + 0.425555i 0.887111 0.461556i \(-0.152709\pi\)
−0.461556 + 0.887111i \(0.652709\pi\)
\(854\) 0 0
\(855\) 56.9830i 0.0666468i
\(856\) 0 0
\(857\) 1437.25 1.67707 0.838533 0.544851i \(-0.183414\pi\)
0.838533 + 0.544851i \(0.183414\pi\)
\(858\) 0 0
\(859\) −112.226 112.226i −0.130647 0.130647i 0.638759 0.769407i \(-0.279448\pi\)
−0.769407 + 0.638759i \(0.779448\pi\)
\(860\) 0 0
\(861\) −1427.21 73.4498i −1.65761 0.0853076i
\(862\) 0 0
\(863\) −528.342 −0.612216 −0.306108 0.951997i \(-0.599027\pi\)
−0.306108 + 0.951997i \(0.599027\pi\)
\(864\) 0 0
\(865\) −424.401 −0.490637
\(866\) 0 0
\(867\) −533.718 + 533.718i −0.615592 + 0.615592i
\(868\) 0 0
\(869\) −10.3660 + 10.3660i −0.0119287 + 0.0119287i
\(870\) 0 0
\(871\) −511.101 −0.586798
\(872\) 0 0
\(873\) 106.980 0.122543
\(874\) 0 0
\(875\) −732.217 37.6829i −0.836820 0.0430662i
\(876\) 0 0
\(877\) 575.334 + 575.334i 0.656025 + 0.656025i 0.954437 0.298412i \(-0.0964569\pi\)
−0.298412 + 0.954437i \(0.596457\pi\)
\(878\) 0 0
\(879\) −1084.64 −1.23395
\(880\) 0 0
\(881\) 1300.14i 1.47575i −0.674936 0.737877i \(-0.735829\pi\)
0.674936 0.737877i \(-0.264171\pi\)
\(882\) 0 0
\(883\) 197.002 + 197.002i 0.223105 + 0.223105i 0.809805 0.586700i \(-0.199573\pi\)
−0.586700 + 0.809805i \(0.699573\pi\)
\(884\) 0 0
\(885\) −109.469 109.469i −0.123693 0.123693i
\(886\) 0 0
\(887\) 1296.24 1.46137 0.730686 0.682714i \(-0.239200\pi\)
0.730686 + 0.682714i \(0.239200\pi\)
\(888\) 0 0
\(889\) −1102.24 1221.85i −1.23987 1.37441i
\(890\) 0 0
\(891\) 119.921 119.921i 0.134592 0.134592i
\(892\) 0 0
\(893\) −227.284 227.284i −0.254517 0.254517i
\(894\) 0 0
\(895\) 557.678i 0.623104i
\(896\) 0 0
\(897\) −176.791 −0.197092
\(898\) 0 0
\(899\) 573.240 573.240i 0.637642 0.637642i
\(900\) 0 0
\(901\) 348.656 + 348.656i 0.386966 + 0.386966i
\(902\) 0 0
\(903\) 224.230 202.280i 0.248316 0.224009i
\(904\) 0 0
\(905\) 37.6310i 0.0415813i
\(906\) 0 0
\(907\) −1233.16 + 1233.16i −1.35960 + 1.35960i −0.485189 + 0.874410i \(0.661249\pi\)
−0.874410 + 0.485189i \(0.838751\pi\)
\(908\) 0 0
\(909\) −55.3448 + 55.3448i −0.0608853 + 0.0608853i
\(910\) 0 0
\(911\) −557.307 −0.611753 −0.305877 0.952071i \(-0.598949\pi\)
−0.305877 + 0.952071i \(0.598949\pi\)
\(912\) 0 0
\(913\) 260.828i 0.285682i
\(914\) 0 0
\(915\) −5.67884 + 5.67884i −0.00620638 + 0.00620638i
\(916\) 0 0
\(917\) 1704.36 + 87.7132i 1.85862 + 0.0956523i
\(918\) 0 0
\(919\) 1222.59i 1.33035i −0.746690 0.665173i \(-0.768358\pi\)
0.746690 0.665173i \(-0.231642\pi\)
\(920\) 0 0
\(921\) 916.456i 0.995066i
\(922\) 0 0
\(923\) 615.464 + 615.464i 0.666808 + 0.666808i
\(924\) 0 0
\(925\) 487.434 + 487.434i 0.526956 + 0.526956i
\(926\) 0 0
\(927\) 153.116i 0.165173i
\(928\) 0 0
\(929\) 1513.72i 1.62941i 0.579874 + 0.814706i \(0.303102\pi\)
−0.579874 + 0.814706i \(0.696898\pi\)
\(930\) 0 0
\(931\) 850.812 + 1046.63i 0.913869 + 1.12420i
\(932\) 0 0
\(933\) 692.295 692.295i 0.742010 0.742010i
\(934\) 0 0
\(935\) 104.311i 0.111563i
\(936\) 0 0
\(937\) 513.107 0.547606 0.273803 0.961786i \(-0.411718\pi\)
0.273803 + 0.961786i \(0.411718\pi\)
\(938\) 0 0
\(939\) 333.516 333.516i 0.355182 0.355182i
\(940\) 0 0
\(941\) −509.156 + 509.156i −0.541080 + 0.541080i −0.923845 0.382766i \(-0.874972\pi\)
0.382766 + 0.923845i \(0.374972\pi\)
\(942\) 0 0
\(943\) 507.277i 0.537940i
\(944\) 0 0
\(945\) 312.654 282.048i 0.330851 0.298464i
\(946\) 0 0
\(947\) 16.1826 + 16.1826i 0.0170883 + 0.0170883i 0.715599 0.698511i \(-0.246154\pi\)
−0.698511 + 0.715599i \(0.746154\pi\)
\(948\) 0 0
\(949\) −37.3125 + 37.3125i −0.0393177 + 0.0393177i
\(950\) 0 0
\(951\) −1135.77 −1.19429
\(952\) 0 0
\(953\) 57.1945i 0.0600152i −0.999550 0.0300076i \(-0.990447\pi\)
0.999550 0.0300076i \(-0.00955316\pi\)
\(954\) 0 0
\(955\) −272.255 272.255i −0.285084 0.285084i
\(956\) 0 0
\(957\) −158.483 + 158.483i −0.165604 + 0.165604i
\(958\) 0 0
\(959\) −231.737 + 209.052i −0.241644 + 0.217990i
\(960\) 0 0
\(961\) 482.452 0.502031
\(962\) 0 0
\(963\) 41.3729 + 41.3729i 0.0429625 + 0.0429625i
\(964\) 0 0
\(965\) 465.106 + 465.106i 0.481975 + 0.481975i
\(966\) 0 0
\(967\) 127.870i 0.132234i 0.997812 + 0.0661169i \(0.0210610\pi\)
−0.997812 + 0.0661169i \(0.978939\pi\)
\(968\) 0 0
\(969\) −1990.18 −2.05385
\(970\) 0 0
\(971\) 521.789 + 521.789i 0.537373 + 0.537373i 0.922757 0.385383i \(-0.125931\pi\)
−0.385383 + 0.922757i \(0.625931\pi\)
\(972\) 0 0
\(973\) 49.7949 967.565i 0.0511767 0.994415i
\(974\) 0 0
\(975\) −440.230 −0.451518
\(976\) 0 0
\(977\) −448.769 −0.459333 −0.229667 0.973269i \(-0.573764\pi\)
−0.229667 + 0.973269i \(0.573764\pi\)
\(978\) 0 0
\(979\) 97.8340 97.8340i 0.0999326 0.0999326i
\(980\) 0 0
\(981\) 76.1904 76.1904i 0.0776660 0.0776660i
\(982\) 0 0
\(983\) −1.44681 −0.00147183 −0.000735915 1.00000i \(-0.500234\pi\)
−0.000735915 1.00000i \(0.500234\pi\)
\(984\) 0 0
\(985\) 490.370 0.497838
\(986\) 0 0
\(987\) −13.2038 + 256.563i −0.0133777 + 0.259942i
\(988\) 0 0
\(989\) 75.7980 + 75.7980i 0.0766410 + 0.0766410i
\(990\) 0 0
\(991\) −1468.27 −1.48161 −0.740803 0.671722i \(-0.765555\pi\)
−0.740803 + 0.671722i \(0.765555\pi\)
\(992\) 0 0
\(993\) 924.237i 0.930752i
\(994\) 0 0
\(995\) 272.447 + 272.447i 0.273816 + 0.273816i
\(996\) 0 0
\(997\) 889.450 + 889.450i 0.892127 + 0.892127i 0.994723 0.102597i \(-0.0327151\pi\)
−0.102597 + 0.994723i \(0.532715\pi\)
\(998\) 0 0
\(999\) −904.836 −0.905742
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.l.b.209.21 56
4.3 odd 2 112.3.l.b.13.27 56
7.6 odd 2 inner 448.3.l.b.209.8 56
16.5 even 4 inner 448.3.l.b.433.8 56
16.11 odd 4 112.3.l.b.69.28 yes 56
28.27 even 2 112.3.l.b.13.28 yes 56
112.27 even 4 112.3.l.b.69.27 yes 56
112.69 odd 4 inner 448.3.l.b.433.21 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.27 56 4.3 odd 2
112.3.l.b.13.28 yes 56 28.27 even 2
112.3.l.b.69.27 yes 56 112.27 even 4
112.3.l.b.69.28 yes 56 16.11 odd 4
448.3.l.b.209.8 56 7.6 odd 2 inner
448.3.l.b.209.21 56 1.1 even 1 trivial
448.3.l.b.433.8 56 16.5 even 4 inner
448.3.l.b.433.21 56 112.69 odd 4 inner