Properties

Label 448.3.l.b.209.12
Level $448$
Weight $3$
Character 448.209
Analytic conductor $12.207$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(209,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.209"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 209.12
Character \(\chi\) \(=\) 448.209
Dual form 448.3.l.b.433.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00109 + 1.00109i) q^{3} +(4.03888 + 4.03888i) q^{5} +(-6.50171 + 2.59380i) q^{7} +6.99566i q^{9} +(6.25649 - 6.25649i) q^{11} +(-4.97013 + 4.97013i) q^{13} -8.08654 q^{15} -5.44402i q^{17} +(-17.3201 + 17.3201i) q^{19} +(3.91215 - 9.10538i) q^{21} -8.07936i q^{23} +7.62516i q^{25} +(-16.0130 - 16.0130i) q^{27} +(-27.3552 - 27.3552i) q^{29} +53.1316i q^{31} +12.5266i q^{33} +(-36.7357 - 15.7836i) q^{35} +(13.0922 - 13.0922i) q^{37} -9.95105i q^{39} +3.54538 q^{41} +(-13.9574 + 13.9574i) q^{43} +(-28.2546 + 28.2546i) q^{45} +38.9511i q^{47} +(35.5444 - 33.7283i) q^{49} +(5.44993 + 5.44993i) q^{51} +(-51.8947 + 51.8947i) q^{53} +50.5385 q^{55} -34.6778i q^{57} +(-56.4368 - 56.4368i) q^{59} +(-84.3789 + 84.3789i) q^{61} +(-18.1453 - 45.4837i) q^{63} -40.1475 q^{65} +(-0.603225 - 0.603225i) q^{67} +(8.08813 + 8.08813i) q^{69} +78.2455i q^{71} -79.7314 q^{73} +(-7.63344 - 7.63344i) q^{75} +(-24.4498 + 56.9060i) q^{77} +85.2911 q^{79} -30.9001 q^{81} +(5.96262 - 5.96262i) q^{83} +(21.9878 - 21.9878i) q^{85} +54.7699 q^{87} +163.829 q^{89} +(19.4228 - 45.2058i) q^{91} +(-53.1892 - 53.1892i) q^{93} -139.908 q^{95} -89.6393i q^{97} +(43.7683 + 43.7683i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{15} - 20 q^{21} - 96 q^{29} + 100 q^{35} - 128 q^{37} + 72 q^{43} + 192 q^{49} + 128 q^{51} + 88 q^{53} - 444 q^{63} - 8 q^{65} - 440 q^{67} + 12 q^{77} + 8 q^{79} + 64 q^{81} + 96 q^{85} + 388 q^{91}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00109 + 1.00109i −0.333695 + 0.333695i −0.853988 0.520293i \(-0.825823\pi\)
0.520293 + 0.853988i \(0.325823\pi\)
\(4\) 0 0
\(5\) 4.03888 + 4.03888i 0.807777 + 0.807777i 0.984297 0.176520i \(-0.0564841\pi\)
−0.176520 + 0.984297i \(0.556484\pi\)
\(6\) 0 0
\(7\) −6.50171 + 2.59380i −0.928815 + 0.370543i
\(8\) 0 0
\(9\) 6.99566i 0.777295i
\(10\) 0 0
\(11\) 6.25649 6.25649i 0.568772 0.568772i −0.363012 0.931784i \(-0.618252\pi\)
0.931784 + 0.363012i \(0.118252\pi\)
\(12\) 0 0
\(13\) −4.97013 + 4.97013i −0.382318 + 0.382318i −0.871936 0.489619i \(-0.837136\pi\)
0.489619 + 0.871936i \(0.337136\pi\)
\(14\) 0 0
\(15\) −8.08654 −0.539102
\(16\) 0 0
\(17\) 5.44402i 0.320237i −0.987098 0.160118i \(-0.948812\pi\)
0.987098 0.160118i \(-0.0511876\pi\)
\(18\) 0 0
\(19\) −17.3201 + 17.3201i −0.911585 + 0.911585i −0.996397 0.0848120i \(-0.972971\pi\)
0.0848120 + 0.996397i \(0.472971\pi\)
\(20\) 0 0
\(21\) 3.91215 9.10538i 0.186293 0.433590i
\(22\) 0 0
\(23\) 8.07936i 0.351276i −0.984455 0.175638i \(-0.943801\pi\)
0.984455 0.175638i \(-0.0561989\pi\)
\(24\) 0 0
\(25\) 7.62516i 0.305006i
\(26\) 0 0
\(27\) −16.0130 16.0130i −0.593075 0.593075i
\(28\) 0 0
\(29\) −27.3552 27.3552i −0.943284 0.943284i 0.0551914 0.998476i \(-0.482423\pi\)
−0.998476 + 0.0551914i \(0.982423\pi\)
\(30\) 0 0
\(31\) 53.1316i 1.71392i 0.515382 + 0.856961i \(0.327650\pi\)
−0.515382 + 0.856961i \(0.672350\pi\)
\(32\) 0 0
\(33\) 12.5266i 0.379593i
\(34\) 0 0
\(35\) −36.7357 15.7836i −1.04959 0.450959i
\(36\) 0 0
\(37\) 13.0922 13.0922i 0.353842 0.353842i −0.507695 0.861537i \(-0.669502\pi\)
0.861537 + 0.507695i \(0.169502\pi\)
\(38\) 0 0
\(39\) 9.95105i 0.255155i
\(40\) 0 0
\(41\) 3.54538 0.0864728 0.0432364 0.999065i \(-0.486233\pi\)
0.0432364 + 0.999065i \(0.486233\pi\)
\(42\) 0 0
\(43\) −13.9574 + 13.9574i −0.324590 + 0.324590i −0.850525 0.525935i \(-0.823715\pi\)
0.525935 + 0.850525i \(0.323715\pi\)
\(44\) 0 0
\(45\) −28.2546 + 28.2546i −0.627881 + 0.627881i
\(46\) 0 0
\(47\) 38.9511i 0.828747i 0.910107 + 0.414374i \(0.135999\pi\)
−0.910107 + 0.414374i \(0.864001\pi\)
\(48\) 0 0
\(49\) 35.5444 33.7283i 0.725396 0.688332i
\(50\) 0 0
\(51\) 5.44993 + 5.44993i 0.106861 + 0.106861i
\(52\) 0 0
\(53\) −51.8947 + 51.8947i −0.979144 + 0.979144i −0.999787 0.0206426i \(-0.993429\pi\)
0.0206426 + 0.999787i \(0.493429\pi\)
\(54\) 0 0
\(55\) 50.5385 0.918882
\(56\) 0 0
\(57\) 34.6778i 0.608383i
\(58\) 0 0
\(59\) −56.4368 56.4368i −0.956556 0.956556i 0.0425390 0.999095i \(-0.486455\pi\)
−0.999095 + 0.0425390i \(0.986455\pi\)
\(60\) 0 0
\(61\) −84.3789 + 84.3789i −1.38326 + 1.38326i −0.544499 + 0.838762i \(0.683280\pi\)
−0.838762 + 0.544499i \(0.816720\pi\)
\(62\) 0 0
\(63\) −18.1453 45.4837i −0.288021 0.721964i
\(64\) 0 0
\(65\) −40.1475 −0.617654
\(66\) 0 0
\(67\) −0.603225 0.603225i −0.00900335 0.00900335i 0.702591 0.711594i \(-0.252026\pi\)
−0.711594 + 0.702591i \(0.752026\pi\)
\(68\) 0 0
\(69\) 8.08813 + 8.08813i 0.117219 + 0.117219i
\(70\) 0 0
\(71\) 78.2455i 1.10205i 0.834489 + 0.551024i \(0.185763\pi\)
−0.834489 + 0.551024i \(0.814237\pi\)
\(72\) 0 0
\(73\) −79.7314 −1.09221 −0.546106 0.837716i \(-0.683890\pi\)
−0.546106 + 0.837716i \(0.683890\pi\)
\(74\) 0 0
\(75\) −7.63344 7.63344i −0.101779 0.101779i
\(76\) 0 0
\(77\) −24.4498 + 56.9060i −0.317530 + 0.739039i
\(78\) 0 0
\(79\) 85.2911 1.07963 0.539817 0.841782i \(-0.318493\pi\)
0.539817 + 0.841782i \(0.318493\pi\)
\(80\) 0 0
\(81\) −30.9001 −0.381483
\(82\) 0 0
\(83\) 5.96262 5.96262i 0.0718387 0.0718387i −0.670275 0.742113i \(-0.733824\pi\)
0.742113 + 0.670275i \(0.233824\pi\)
\(84\) 0 0
\(85\) 21.9878 21.9878i 0.258680 0.258680i
\(86\) 0 0
\(87\) 54.7699 0.629539
\(88\) 0 0
\(89\) 163.829 1.84077 0.920385 0.391014i \(-0.127875\pi\)
0.920385 + 0.391014i \(0.127875\pi\)
\(90\) 0 0
\(91\) 19.4228 45.2058i 0.213437 0.496767i
\(92\) 0 0
\(93\) −53.1892 53.1892i −0.571927 0.571927i
\(94\) 0 0
\(95\) −139.908 −1.47271
\(96\) 0 0
\(97\) 89.6393i 0.924117i −0.886850 0.462058i \(-0.847111\pi\)
0.886850 0.462058i \(-0.152889\pi\)
\(98\) 0 0
\(99\) 43.7683 + 43.7683i 0.442104 + 0.442104i
\(100\) 0 0
\(101\) 50.7141 + 50.7141i 0.502120 + 0.502120i 0.912096 0.409976i \(-0.134463\pi\)
−0.409976 + 0.912096i \(0.634463\pi\)
\(102\) 0 0
\(103\) 77.0434 0.747994 0.373997 0.927430i \(-0.377987\pi\)
0.373997 + 0.927430i \(0.377987\pi\)
\(104\) 0 0
\(105\) 52.5763 20.9749i 0.500727 0.199761i
\(106\) 0 0
\(107\) 140.533 140.533i 1.31339 1.31339i 0.394494 0.918899i \(-0.370920\pi\)
0.918899 0.394494i \(-0.129080\pi\)
\(108\) 0 0
\(109\) 46.2295 + 46.2295i 0.424124 + 0.424124i 0.886621 0.462497i \(-0.153046\pi\)
−0.462497 + 0.886621i \(0.653046\pi\)
\(110\) 0 0
\(111\) 26.2127i 0.236151i
\(112\) 0 0
\(113\) 163.269 1.44486 0.722431 0.691443i \(-0.243025\pi\)
0.722431 + 0.691443i \(0.243025\pi\)
\(114\) 0 0
\(115\) 32.6316 32.6316i 0.283753 0.283753i
\(116\) 0 0
\(117\) −34.7693 34.7693i −0.297173 0.297173i
\(118\) 0 0
\(119\) 14.1207 + 35.3954i 0.118661 + 0.297441i
\(120\) 0 0
\(121\) 42.7126i 0.352997i
\(122\) 0 0
\(123\) −3.54923 + 3.54923i −0.0288556 + 0.0288556i
\(124\) 0 0
\(125\) 70.1750 70.1750i 0.561400 0.561400i
\(126\) 0 0
\(127\) −31.3100 −0.246535 −0.123268 0.992373i \(-0.539337\pi\)
−0.123268 + 0.992373i \(0.539337\pi\)
\(128\) 0 0
\(129\) 27.9450i 0.216628i
\(130\) 0 0
\(131\) 21.8179 21.8179i 0.166549 0.166549i −0.618912 0.785461i \(-0.712426\pi\)
0.785461 + 0.618912i \(0.212426\pi\)
\(132\) 0 0
\(133\) 67.6854 157.535i 0.508913 1.18448i
\(134\) 0 0
\(135\) 129.349i 0.958144i
\(136\) 0 0
\(137\) 125.561i 0.916503i 0.888823 + 0.458251i \(0.151524\pi\)
−0.888823 + 0.458251i \(0.848476\pi\)
\(138\) 0 0
\(139\) 9.99666 + 9.99666i 0.0719184 + 0.0719184i 0.742151 0.670233i \(-0.233806\pi\)
−0.670233 + 0.742151i \(0.733806\pi\)
\(140\) 0 0
\(141\) −38.9934 38.9934i −0.276549 0.276549i
\(142\) 0 0
\(143\) 62.1911i 0.434903i
\(144\) 0 0
\(145\) 220.969i 1.52393i
\(146\) 0 0
\(147\) −1.81808 + 69.3479i −0.0123679 + 0.471754i
\(148\) 0 0
\(149\) −109.367 + 109.367i −0.734004 + 0.734004i −0.971410 0.237406i \(-0.923703\pi\)
0.237406 + 0.971410i \(0.423703\pi\)
\(150\) 0 0
\(151\) 212.815i 1.40937i 0.709519 + 0.704686i \(0.248912\pi\)
−0.709519 + 0.704686i \(0.751088\pi\)
\(152\) 0 0
\(153\) 38.0845 0.248918
\(154\) 0 0
\(155\) −214.592 + 214.592i −1.38447 + 1.38447i
\(156\) 0 0
\(157\) 159.296 159.296i 1.01463 1.01463i 0.0147347 0.999891i \(-0.495310\pi\)
0.999891 0.0147347i \(-0.00469038\pi\)
\(158\) 0 0
\(159\) 103.902i 0.653472i
\(160\) 0 0
\(161\) 20.9562 + 52.5296i 0.130163 + 0.326271i
\(162\) 0 0
\(163\) 12.8052 + 12.8052i 0.0785594 + 0.0785594i 0.745295 0.666735i \(-0.232309\pi\)
−0.666735 + 0.745295i \(0.732309\pi\)
\(164\) 0 0
\(165\) −50.5934 + 50.5934i −0.306626 + 0.306626i
\(166\) 0 0
\(167\) 29.3992 0.176043 0.0880214 0.996119i \(-0.471946\pi\)
0.0880214 + 0.996119i \(0.471946\pi\)
\(168\) 0 0
\(169\) 119.596i 0.707667i
\(170\) 0 0
\(171\) −121.166 121.166i −0.708570 0.708570i
\(172\) 0 0
\(173\) 21.6282 21.6282i 0.125018 0.125018i −0.641829 0.766848i \(-0.721824\pi\)
0.766848 + 0.641829i \(0.221824\pi\)
\(174\) 0 0
\(175\) −19.7781 49.5765i −0.113018 0.283295i
\(176\) 0 0
\(177\) 112.996 0.638396
\(178\) 0 0
\(179\) −42.8249 42.8249i −0.239245 0.239245i 0.577292 0.816538i \(-0.304109\pi\)
−0.816538 + 0.577292i \(0.804109\pi\)
\(180\) 0 0
\(181\) 148.030 + 148.030i 0.817848 + 0.817848i 0.985796 0.167948i \(-0.0537141\pi\)
−0.167948 + 0.985796i \(0.553714\pi\)
\(182\) 0 0
\(183\) 168.941i 0.923175i
\(184\) 0 0
\(185\) 105.755 0.571651
\(186\) 0 0
\(187\) −34.0605 34.0605i −0.182142 0.182142i
\(188\) 0 0
\(189\) 145.647 + 62.5774i 0.770617 + 0.331097i
\(190\) 0 0
\(191\) 266.000 1.39267 0.696336 0.717716i \(-0.254813\pi\)
0.696336 + 0.717716i \(0.254813\pi\)
\(192\) 0 0
\(193\) −287.377 −1.48900 −0.744499 0.667624i \(-0.767312\pi\)
−0.744499 + 0.667624i \(0.767312\pi\)
\(194\) 0 0
\(195\) 40.1911 40.1911i 0.206108 0.206108i
\(196\) 0 0
\(197\) −7.88931 + 7.88931i −0.0400473 + 0.0400473i −0.726847 0.686800i \(-0.759015\pi\)
0.686800 + 0.726847i \(0.259015\pi\)
\(198\) 0 0
\(199\) −55.3752 −0.278267 −0.139134 0.990274i \(-0.544432\pi\)
−0.139134 + 0.990274i \(0.544432\pi\)
\(200\) 0 0
\(201\) 1.20776 0.00600875
\(202\) 0 0
\(203\) 248.810 + 106.902i 1.22566 + 0.526609i
\(204\) 0 0
\(205\) 14.3194 + 14.3194i 0.0698507 + 0.0698507i
\(206\) 0 0
\(207\) 56.5204 0.273045
\(208\) 0 0
\(209\) 216.726i 1.03697i
\(210\) 0 0
\(211\) −120.578 120.578i −0.571461 0.571461i 0.361075 0.932537i \(-0.382410\pi\)
−0.932537 + 0.361075i \(0.882410\pi\)
\(212\) 0 0
\(213\) −78.3304 78.3304i −0.367748 0.367748i
\(214\) 0 0
\(215\) −112.744 −0.524392
\(216\) 0 0
\(217\) −137.813 345.446i −0.635082 1.59192i
\(218\) 0 0
\(219\) 79.8180 79.8180i 0.364466 0.364466i
\(220\) 0 0
\(221\) 27.0575 + 27.0575i 0.122432 + 0.122432i
\(222\) 0 0
\(223\) 120.836i 0.541865i −0.962598 0.270933i \(-0.912668\pi\)
0.962598 0.270933i \(-0.0873321\pi\)
\(224\) 0 0
\(225\) −53.3430 −0.237080
\(226\) 0 0
\(227\) 57.4724 57.4724i 0.253183 0.253183i −0.569092 0.822274i \(-0.692705\pi\)
0.822274 + 0.569092i \(0.192705\pi\)
\(228\) 0 0
\(229\) −175.590 175.590i −0.766771 0.766771i 0.210766 0.977537i \(-0.432404\pi\)
−0.977537 + 0.210766i \(0.932404\pi\)
\(230\) 0 0
\(231\) −32.4914 81.4441i −0.140656 0.352572i
\(232\) 0 0
\(233\) 184.061i 0.789959i −0.918690 0.394980i \(-0.870752\pi\)
0.918690 0.394980i \(-0.129248\pi\)
\(234\) 0 0
\(235\) −157.319 + 157.319i −0.669443 + 0.669443i
\(236\) 0 0
\(237\) −85.3837 + 85.3837i −0.360269 + 0.360269i
\(238\) 0 0
\(239\) 33.1847 0.138848 0.0694240 0.997587i \(-0.477884\pi\)
0.0694240 + 0.997587i \(0.477884\pi\)
\(240\) 0 0
\(241\) 55.7768i 0.231439i 0.993282 + 0.115719i \(0.0369173\pi\)
−0.993282 + 0.115719i \(0.963083\pi\)
\(242\) 0 0
\(243\) 175.051 175.051i 0.720374 0.720374i
\(244\) 0 0
\(245\) 279.784 + 7.33506i 1.14198 + 0.0299390i
\(246\) 0 0
\(247\) 172.166i 0.697030i
\(248\) 0 0
\(249\) 11.9382i 0.0479445i
\(250\) 0 0
\(251\) 181.168 + 181.168i 0.721785 + 0.721785i 0.968969 0.247184i \(-0.0795051\pi\)
−0.247184 + 0.968969i \(0.579505\pi\)
\(252\) 0 0
\(253\) −50.5484 50.5484i −0.199796 0.199796i
\(254\) 0 0
\(255\) 44.0233i 0.172640i
\(256\) 0 0
\(257\) 363.112i 1.41289i 0.707770 + 0.706443i \(0.249701\pi\)
−0.707770 + 0.706443i \(0.750299\pi\)
\(258\) 0 0
\(259\) −51.1629 + 119.080i −0.197540 + 0.459768i
\(260\) 0 0
\(261\) 191.368 191.368i 0.733210 0.733210i
\(262\) 0 0
\(263\) 421.236i 1.60166i 0.598892 + 0.800829i \(0.295608\pi\)
−0.598892 + 0.800829i \(0.704392\pi\)
\(264\) 0 0
\(265\) −419.193 −1.58186
\(266\) 0 0
\(267\) −164.006 + 164.006i −0.614256 + 0.614256i
\(268\) 0 0
\(269\) −171.203 + 171.203i −0.636441 + 0.636441i −0.949676 0.313235i \(-0.898587\pi\)
0.313235 + 0.949676i \(0.398587\pi\)
\(270\) 0 0
\(271\) 15.9792i 0.0589637i 0.999565 + 0.0294819i \(0.00938573\pi\)
−0.999565 + 0.0294819i \(0.990614\pi\)
\(272\) 0 0
\(273\) 25.8110 + 64.6988i 0.0945459 + 0.236992i
\(274\) 0 0
\(275\) 47.7068 + 47.7068i 0.173479 + 0.173479i
\(276\) 0 0
\(277\) −201.173 + 201.173i −0.726256 + 0.726256i −0.969872 0.243615i \(-0.921667\pi\)
0.243615 + 0.969872i \(0.421667\pi\)
\(278\) 0 0
\(279\) −371.690 −1.33222
\(280\) 0 0
\(281\) 364.700i 1.29786i 0.760846 + 0.648932i \(0.224784\pi\)
−0.760846 + 0.648932i \(0.775216\pi\)
\(282\) 0 0
\(283\) 311.354 + 311.354i 1.10019 + 1.10019i 0.994387 + 0.105806i \(0.0337421\pi\)
0.105806 + 0.994387i \(0.466258\pi\)
\(284\) 0 0
\(285\) 140.060 140.060i 0.491438 0.491438i
\(286\) 0 0
\(287\) −23.0511 + 9.19602i −0.0803173 + 0.0320419i
\(288\) 0 0
\(289\) 259.363 0.897449
\(290\) 0 0
\(291\) 89.7366 + 89.7366i 0.308373 + 0.308373i
\(292\) 0 0
\(293\) −249.211 249.211i −0.850550 0.850550i 0.139651 0.990201i \(-0.455402\pi\)
−0.990201 + 0.139651i \(0.955402\pi\)
\(294\) 0 0
\(295\) 455.883i 1.54537i
\(296\) 0 0
\(297\) −200.371 −0.674649
\(298\) 0 0
\(299\) 40.1554 + 40.1554i 0.134299 + 0.134299i
\(300\) 0 0
\(301\) 54.5440 126.949i 0.181209 0.421758i
\(302\) 0 0
\(303\) −101.538 −0.335110
\(304\) 0 0
\(305\) −681.593 −2.23473
\(306\) 0 0
\(307\) −265.892 + 265.892i −0.866098 + 0.866098i −0.992038 0.125940i \(-0.959805\pi\)
0.125940 + 0.992038i \(0.459805\pi\)
\(308\) 0 0
\(309\) −77.1270 + 77.1270i −0.249602 + 0.249602i
\(310\) 0 0
\(311\) −115.392 −0.371035 −0.185518 0.982641i \(-0.559396\pi\)
−0.185518 + 0.982641i \(0.559396\pi\)
\(312\) 0 0
\(313\) −334.318 −1.06811 −0.534054 0.845450i \(-0.679332\pi\)
−0.534054 + 0.845450i \(0.679332\pi\)
\(314\) 0 0
\(315\) 110.416 256.990i 0.350528 0.815842i
\(316\) 0 0
\(317\) 26.5251 + 26.5251i 0.0836755 + 0.0836755i 0.747706 0.664030i \(-0.231155\pi\)
−0.664030 + 0.747706i \(0.731155\pi\)
\(318\) 0 0
\(319\) −342.296 −1.07303
\(320\) 0 0
\(321\) 281.371i 0.876545i
\(322\) 0 0
\(323\) 94.2911 + 94.2911i 0.291923 + 0.291923i
\(324\) 0 0
\(325\) −37.8980 37.8980i −0.116609 0.116609i
\(326\) 0 0
\(327\) −92.5593 −0.283056
\(328\) 0 0
\(329\) −101.031 253.249i −0.307087 0.769753i
\(330\) 0 0
\(331\) −33.5611 + 33.5611i −0.101393 + 0.101393i −0.755984 0.654591i \(-0.772841\pi\)
0.654591 + 0.755984i \(0.272841\pi\)
\(332\) 0 0
\(333\) 91.5882 + 91.5882i 0.275040 + 0.275040i
\(334\) 0 0
\(335\) 4.87271i 0.0145454i
\(336\) 0 0
\(337\) 402.236 1.19358 0.596789 0.802398i \(-0.296443\pi\)
0.596789 + 0.802398i \(0.296443\pi\)
\(338\) 0 0
\(339\) −163.447 + 163.447i −0.482144 + 0.482144i
\(340\) 0 0
\(341\) 332.417 + 332.417i 0.974830 + 0.974830i
\(342\) 0 0
\(343\) −143.615 + 311.486i −0.418702 + 0.908124i
\(344\) 0 0
\(345\) 65.3340i 0.189374i
\(346\) 0 0
\(347\) 66.0997 66.0997i 0.190489 0.190489i −0.605418 0.795907i \(-0.706994\pi\)
0.795907 + 0.605418i \(0.206994\pi\)
\(348\) 0 0
\(349\) 224.860 224.860i 0.644299 0.644299i −0.307310 0.951609i \(-0.599429\pi\)
0.951609 + 0.307310i \(0.0994290\pi\)
\(350\) 0 0
\(351\) 159.174 0.453486
\(352\) 0 0
\(353\) 278.155i 0.787974i 0.919116 + 0.393987i \(0.128905\pi\)
−0.919116 + 0.393987i \(0.871095\pi\)
\(354\) 0 0
\(355\) −316.024 + 316.024i −0.890209 + 0.890209i
\(356\) 0 0
\(357\) −49.5699 21.2978i −0.138851 0.0596578i
\(358\) 0 0
\(359\) 473.744i 1.31962i −0.751432 0.659810i \(-0.770637\pi\)
0.751432 0.659810i \(-0.229363\pi\)
\(360\) 0 0
\(361\) 238.973i 0.661974i
\(362\) 0 0
\(363\) −42.7590 42.7590i −0.117793 0.117793i
\(364\) 0 0
\(365\) −322.026 322.026i −0.882263 0.882263i
\(366\) 0 0
\(367\) 717.099i 1.95395i −0.213360 0.976974i \(-0.568441\pi\)
0.213360 0.976974i \(-0.431559\pi\)
\(368\) 0 0
\(369\) 24.8023i 0.0672149i
\(370\) 0 0
\(371\) 202.799 472.008i 0.546629 1.27226i
\(372\) 0 0
\(373\) 226.840 226.840i 0.608150 0.608150i −0.334312 0.942462i \(-0.608504\pi\)
0.942462 + 0.334312i \(0.108504\pi\)
\(374\) 0 0
\(375\) 140.502i 0.374673i
\(376\) 0 0
\(377\) 271.918 0.721268
\(378\) 0 0
\(379\) −181.444 + 181.444i −0.478744 + 0.478744i −0.904730 0.425986i \(-0.859927\pi\)
0.425986 + 0.904730i \(0.359927\pi\)
\(380\) 0 0
\(381\) 31.3440 31.3440i 0.0822677 0.0822677i
\(382\) 0 0
\(383\) 453.443i 1.18393i 0.805965 + 0.591963i \(0.201647\pi\)
−0.805965 + 0.591963i \(0.798353\pi\)
\(384\) 0 0
\(385\) −328.586 + 131.087i −0.853471 + 0.340485i
\(386\) 0 0
\(387\) −97.6408 97.6408i −0.252302 0.252302i
\(388\) 0 0
\(389\) −0.485255 + 0.485255i −0.00124744 + 0.00124744i −0.707730 0.706483i \(-0.750281\pi\)
0.706483 + 0.707730i \(0.250281\pi\)
\(390\) 0 0
\(391\) −43.9842 −0.112492
\(392\) 0 0
\(393\) 43.6832i 0.111153i
\(394\) 0 0
\(395\) 344.481 + 344.481i 0.872103 + 0.872103i
\(396\) 0 0
\(397\) −113.596 + 113.596i −0.286135 + 0.286135i −0.835550 0.549415i \(-0.814851\pi\)
0.549415 + 0.835550i \(0.314851\pi\)
\(398\) 0 0
\(399\) 89.9474 + 225.465i 0.225432 + 0.565075i
\(400\) 0 0
\(401\) −115.312 −0.287561 −0.143781 0.989610i \(-0.545926\pi\)
−0.143781 + 0.989610i \(0.545926\pi\)
\(402\) 0 0
\(403\) −264.071 264.071i −0.655262 0.655262i
\(404\) 0 0
\(405\) −124.802 124.802i −0.308153 0.308153i
\(406\) 0 0
\(407\) 163.822i 0.402511i
\(408\) 0 0
\(409\) 498.247 1.21821 0.609104 0.793091i \(-0.291529\pi\)
0.609104 + 0.793091i \(0.291529\pi\)
\(410\) 0 0
\(411\) −125.697 125.697i −0.305832 0.305832i
\(412\) 0 0
\(413\) 513.321 + 220.550i 1.24291 + 0.534019i
\(414\) 0 0
\(415\) 48.1646 0.116059
\(416\) 0 0
\(417\) −20.0150 −0.0479977
\(418\) 0 0
\(419\) 63.7497 63.7497i 0.152147 0.152147i −0.626929 0.779076i \(-0.715688\pi\)
0.779076 + 0.626929i \(0.215688\pi\)
\(420\) 0 0
\(421\) −454.190 + 454.190i −1.07884 + 1.07884i −0.0822213 + 0.996614i \(0.526201\pi\)
−0.996614 + 0.0822213i \(0.973799\pi\)
\(422\) 0 0
\(423\) −272.489 −0.644181
\(424\) 0 0
\(425\) 41.5115 0.0976742
\(426\) 0 0
\(427\) 329.745 767.469i 0.772236 1.79735i
\(428\) 0 0
\(429\) −62.2586 62.2586i −0.145125 0.145125i
\(430\) 0 0
\(431\) −726.777 −1.68626 −0.843128 0.537712i \(-0.819289\pi\)
−0.843128 + 0.537712i \(0.819289\pi\)
\(432\) 0 0
\(433\) 797.491i 1.84178i −0.389822 0.920890i \(-0.627464\pi\)
0.389822 0.920890i \(-0.372536\pi\)
\(434\) 0 0
\(435\) 221.209 + 221.209i 0.508527 + 0.508527i
\(436\) 0 0
\(437\) 139.935 + 139.935i 0.320218 + 0.320218i
\(438\) 0 0
\(439\) −238.672 −0.543671 −0.271835 0.962344i \(-0.587631\pi\)
−0.271835 + 0.962344i \(0.587631\pi\)
\(440\) 0 0
\(441\) 235.951 + 248.656i 0.535037 + 0.563846i
\(442\) 0 0
\(443\) −340.379 + 340.379i −0.768351 + 0.768351i −0.977816 0.209466i \(-0.932828\pi\)
0.209466 + 0.977816i \(0.432828\pi\)
\(444\) 0 0
\(445\) 661.684 + 661.684i 1.48693 + 1.48693i
\(446\) 0 0
\(447\) 218.971i 0.489867i
\(448\) 0 0
\(449\) 260.491 0.580159 0.290079 0.957003i \(-0.406318\pi\)
0.290079 + 0.957003i \(0.406318\pi\)
\(450\) 0 0
\(451\) 22.1817 22.1817i 0.0491833 0.0491833i
\(452\) 0 0
\(453\) −213.046 213.046i −0.470301 0.470301i
\(454\) 0 0
\(455\) 261.027 104.135i 0.573687 0.228868i
\(456\) 0 0
\(457\) 599.916i 1.31273i −0.754445 0.656363i \(-0.772094\pi\)
0.754445 0.656363i \(-0.227906\pi\)
\(458\) 0 0
\(459\) −87.1752 + 87.1752i −0.189924 + 0.189924i
\(460\) 0 0
\(461\) −140.443 + 140.443i −0.304648 + 0.304648i −0.842829 0.538181i \(-0.819112\pi\)
0.538181 + 0.842829i \(0.319112\pi\)
\(462\) 0 0
\(463\) 830.793 1.79437 0.897185 0.441655i \(-0.145608\pi\)
0.897185 + 0.441655i \(0.145608\pi\)
\(464\) 0 0
\(465\) 429.650i 0.923979i
\(466\) 0 0
\(467\) 198.168 198.168i 0.424343 0.424343i −0.462353 0.886696i \(-0.652995\pi\)
0.886696 + 0.462353i \(0.152995\pi\)
\(468\) 0 0
\(469\) 5.48664 + 2.35735i 0.0116986 + 0.00502632i
\(470\) 0 0
\(471\) 318.938i 0.677152i
\(472\) 0 0
\(473\) 174.648i 0.369235i
\(474\) 0 0
\(475\) −132.069 132.069i −0.278039 0.278039i
\(476\) 0 0
\(477\) −363.037 363.037i −0.761084 0.761084i
\(478\) 0 0
\(479\) 309.380i 0.645887i 0.946418 + 0.322944i \(0.104672\pi\)
−0.946418 + 0.322944i \(0.895328\pi\)
\(480\) 0 0
\(481\) 130.139i 0.270560i
\(482\) 0 0
\(483\) −73.5656 31.6076i −0.152310 0.0654402i
\(484\) 0 0
\(485\) 362.043 362.043i 0.746480 0.746480i
\(486\) 0 0
\(487\) 376.712i 0.773537i 0.922177 + 0.386768i \(0.126409\pi\)
−0.922177 + 0.386768i \(0.873591\pi\)
\(488\) 0 0
\(489\) −25.6382 −0.0524298
\(490\) 0 0
\(491\) −404.340 + 404.340i −0.823502 + 0.823502i −0.986608 0.163106i \(-0.947849\pi\)
0.163106 + 0.986608i \(0.447849\pi\)
\(492\) 0 0
\(493\) −148.923 + 148.923i −0.302074 + 0.302074i
\(494\) 0 0
\(495\) 353.550i 0.714242i
\(496\) 0 0
\(497\) −202.953 508.729i −0.408357 1.02360i
\(498\) 0 0
\(499\) 134.474 + 134.474i 0.269487 + 0.269487i 0.828893 0.559406i \(-0.188971\pi\)
−0.559406 + 0.828893i \(0.688971\pi\)
\(500\) 0 0
\(501\) −29.4311 + 29.4311i −0.0587446 + 0.0587446i
\(502\) 0 0
\(503\) 550.735 1.09490 0.547451 0.836838i \(-0.315598\pi\)
0.547451 + 0.836838i \(0.315598\pi\)
\(504\) 0 0
\(505\) 409.657i 0.811202i
\(506\) 0 0
\(507\) −119.725 119.725i −0.236145 0.236145i
\(508\) 0 0
\(509\) 244.631 244.631i 0.480610 0.480610i −0.424716 0.905327i \(-0.639626\pi\)
0.905327 + 0.424716i \(0.139626\pi\)
\(510\) 0 0
\(511\) 518.390 206.807i 1.01446 0.404711i
\(512\) 0 0
\(513\) 554.695 1.08128
\(514\) 0 0
\(515\) 311.169 + 311.169i 0.604212 + 0.604212i
\(516\) 0 0
\(517\) 243.697 + 243.697i 0.471368 + 0.471368i
\(518\) 0 0
\(519\) 43.3034i 0.0834361i
\(520\) 0 0
\(521\) 244.953 0.470160 0.235080 0.971976i \(-0.424465\pi\)
0.235080 + 0.971976i \(0.424465\pi\)
\(522\) 0 0
\(523\) 113.030 + 113.030i 0.216118 + 0.216118i 0.806860 0.590742i \(-0.201165\pi\)
−0.590742 + 0.806860i \(0.701165\pi\)
\(524\) 0 0
\(525\) 69.4300 + 29.8307i 0.132248 + 0.0568205i
\(526\) 0 0
\(527\) 289.249 0.548860
\(528\) 0 0
\(529\) 463.724 0.876605
\(530\) 0 0
\(531\) 394.812 394.812i 0.743526 0.743526i
\(532\) 0 0
\(533\) −17.6210 + 17.6210i −0.0330601 + 0.0330601i
\(534\) 0 0
\(535\) 1135.19 2.12186
\(536\) 0 0
\(537\) 85.7428 0.159670
\(538\) 0 0
\(539\) 11.3625 433.404i 0.0210807 0.804089i
\(540\) 0 0
\(541\) −282.140 282.140i −0.521515 0.521515i 0.396514 0.918029i \(-0.370220\pi\)
−0.918029 + 0.396514i \(0.870220\pi\)
\(542\) 0 0
\(543\) −296.382 −0.545824
\(544\) 0 0
\(545\) 373.431i 0.685195i
\(546\) 0 0
\(547\) −152.625 152.625i −0.279023 0.279023i 0.553696 0.832719i \(-0.313217\pi\)
−0.832719 + 0.553696i \(0.813217\pi\)
\(548\) 0 0
\(549\) −590.286 590.286i −1.07520 1.07520i
\(550\) 0 0
\(551\) 947.592 1.71977
\(552\) 0 0
\(553\) −554.538 + 221.228i −1.00278 + 0.400051i
\(554\) 0 0
\(555\) −105.870 + 105.870i −0.190757 + 0.190757i
\(556\) 0 0
\(557\) −55.7663 55.7663i −0.100119 0.100119i 0.655273 0.755392i \(-0.272554\pi\)
−0.755392 + 0.655273i \(0.772554\pi\)
\(558\) 0 0
\(559\) 138.740i 0.248193i
\(560\) 0 0
\(561\) 68.1949 0.121560
\(562\) 0 0
\(563\) −101.194 + 101.194i −0.179741 + 0.179741i −0.791243 0.611502i \(-0.790566\pi\)
0.611502 + 0.791243i \(0.290566\pi\)
\(564\) 0 0
\(565\) 659.426 + 659.426i 1.16713 + 1.16713i
\(566\) 0 0
\(567\) 200.903 80.1487i 0.354327 0.141356i
\(568\) 0 0
\(569\) 754.689i 1.32634i 0.748468 + 0.663171i \(0.230790\pi\)
−0.748468 + 0.663171i \(0.769210\pi\)
\(570\) 0 0
\(571\) 595.857 595.857i 1.04353 1.04353i 0.0445235 0.999008i \(-0.485823\pi\)
0.999008 0.0445235i \(-0.0141770\pi\)
\(572\) 0 0
\(573\) −266.289 + 266.289i −0.464728 + 0.464728i
\(574\) 0 0
\(575\) 61.6064 0.107142
\(576\) 0 0
\(577\) 118.627i 0.205593i −0.994702 0.102796i \(-0.967221\pi\)
0.994702 0.102796i \(-0.0327790\pi\)
\(578\) 0 0
\(579\) 287.689 287.689i 0.496872 0.496872i
\(580\) 0 0
\(581\) −23.3013 + 54.2330i −0.0401056 + 0.0933443i
\(582\) 0 0
\(583\) 649.357i 1.11382i
\(584\) 0 0
\(585\) 280.858i 0.480100i
\(586\) 0 0
\(587\) −386.365 386.365i −0.658203 0.658203i 0.296751 0.954955i \(-0.404097\pi\)
−0.954955 + 0.296751i \(0.904097\pi\)
\(588\) 0 0
\(589\) −920.245 920.245i −1.56238 1.56238i
\(590\) 0 0
\(591\) 15.7958i 0.0267272i
\(592\) 0 0
\(593\) 475.843i 0.802433i −0.915983 0.401216i \(-0.868588\pi\)
0.915983 0.401216i \(-0.131412\pi\)
\(594\) 0 0
\(595\) −85.9261 + 199.990i −0.144414 + 0.336118i
\(596\) 0 0
\(597\) 55.4353 55.4353i 0.0928564 0.0928564i
\(598\) 0 0
\(599\) 38.9554i 0.0650341i 0.999471 + 0.0325171i \(0.0103523\pi\)
−0.999471 + 0.0325171i \(0.989648\pi\)
\(600\) 0 0
\(601\) 646.318 1.07540 0.537702 0.843135i \(-0.319292\pi\)
0.537702 + 0.843135i \(0.319292\pi\)
\(602\) 0 0
\(603\) 4.21995 4.21995i 0.00699826 0.00699826i
\(604\) 0 0
\(605\) −172.511 + 172.511i −0.285143 + 0.285143i
\(606\) 0 0
\(607\) 1192.00i 1.96376i −0.189505 0.981880i \(-0.560688\pi\)
0.189505 0.981880i \(-0.439312\pi\)
\(608\) 0 0
\(609\) −356.098 + 142.062i −0.584725 + 0.233271i
\(610\) 0 0
\(611\) −193.592 193.592i −0.316845 0.316845i
\(612\) 0 0
\(613\) 48.8446 48.8446i 0.0796812 0.0796812i −0.666143 0.745824i \(-0.732056\pi\)
0.745824 + 0.666143i \(0.232056\pi\)
\(614\) 0 0
\(615\) −28.6699 −0.0466177
\(616\) 0 0
\(617\) 225.471i 0.365432i 0.983166 + 0.182716i \(0.0584888\pi\)
−0.983166 + 0.182716i \(0.941511\pi\)
\(618\) 0 0
\(619\) −801.515 801.515i −1.29485 1.29485i −0.931747 0.363108i \(-0.881716\pi\)
−0.363108 0.931747i \(-0.618284\pi\)
\(620\) 0 0
\(621\) −129.375 + 129.375i −0.208333 + 0.208333i
\(622\) 0 0
\(623\) −1065.16 + 424.939i −1.70974 + 0.682084i
\(624\) 0 0
\(625\) 757.486 1.21198
\(626\) 0 0
\(627\) −216.962 216.962i −0.346031 0.346031i
\(628\) 0 0
\(629\) −71.2740 71.2740i −0.113313 0.113313i
\(630\) 0 0
\(631\) 826.708i 1.31016i −0.755561 0.655078i \(-0.772636\pi\)
0.755561 0.655078i \(-0.227364\pi\)
\(632\) 0 0
\(633\) 241.419 0.381388
\(634\) 0 0
\(635\) −126.457 126.457i −0.199146 0.199146i
\(636\) 0 0
\(637\) −9.02631 + 344.294i −0.0141700 + 0.540493i
\(638\) 0 0
\(639\) −547.378 −0.856617
\(640\) 0 0
\(641\) −616.538 −0.961838 −0.480919 0.876765i \(-0.659697\pi\)
−0.480919 + 0.876765i \(0.659697\pi\)
\(642\) 0 0
\(643\) 266.078 266.078i 0.413807 0.413807i −0.469256 0.883062i \(-0.655478\pi\)
0.883062 + 0.469256i \(0.155478\pi\)
\(644\) 0 0
\(645\) 112.867 112.867i 0.174987 0.174987i
\(646\) 0 0
\(647\) −856.520 −1.32383 −0.661917 0.749577i \(-0.730257\pi\)
−0.661917 + 0.749577i \(0.730257\pi\)
\(648\) 0 0
\(649\) −706.193 −1.08812
\(650\) 0 0
\(651\) 483.783 + 207.858i 0.743138 + 0.319291i
\(652\) 0 0
\(653\) −36.2597 36.2597i −0.0555279 0.0555279i 0.678798 0.734325i \(-0.262501\pi\)
−0.734325 + 0.678798i \(0.762501\pi\)
\(654\) 0 0
\(655\) 176.240 0.269069
\(656\) 0 0
\(657\) 557.773i 0.848970i
\(658\) 0 0
\(659\) 875.515 + 875.515i 1.32855 + 1.32855i 0.906634 + 0.421917i \(0.138643\pi\)
0.421917 + 0.906634i \(0.361357\pi\)
\(660\) 0 0
\(661\) 837.005 + 837.005i 1.26627 + 1.26627i 0.948000 + 0.318271i \(0.103102\pi\)
0.318271 + 0.948000i \(0.396898\pi\)
\(662\) 0 0
\(663\) −54.1737 −0.0817100
\(664\) 0 0
\(665\) 909.640 362.893i 1.36788 0.545704i
\(666\) 0 0
\(667\) −221.013 + 221.013i −0.331354 + 0.331354i
\(668\) 0 0
\(669\) 120.967 + 120.967i 0.180818 + 0.180818i
\(670\) 0 0
\(671\) 1055.83i 1.57352i
\(672\) 0 0
\(673\) 104.129 0.154723 0.0773615 0.997003i \(-0.475350\pi\)
0.0773615 + 0.997003i \(0.475350\pi\)
\(674\) 0 0
\(675\) 122.102 122.102i 0.180892 0.180892i
\(676\) 0 0
\(677\) −465.462 465.462i −0.687536 0.687536i 0.274151 0.961687i \(-0.411603\pi\)
−0.961687 + 0.274151i \(0.911603\pi\)
\(678\) 0 0
\(679\) 232.507 + 582.809i 0.342425 + 0.858334i
\(680\) 0 0
\(681\) 115.070i 0.168972i
\(682\) 0 0
\(683\) 616.133 616.133i 0.902098 0.902098i −0.0935198 0.995617i \(-0.529812\pi\)
0.995617 + 0.0935198i \(0.0298118\pi\)
\(684\) 0 0
\(685\) −507.126 + 507.126i −0.740329 + 0.740329i
\(686\) 0 0
\(687\) 351.562 0.511735
\(688\) 0 0
\(689\) 515.846i 0.748688i
\(690\) 0 0
\(691\) −512.637 + 512.637i −0.741878 + 0.741878i −0.972939 0.231061i \(-0.925780\pi\)
0.231061 + 0.972939i \(0.425780\pi\)
\(692\) 0 0
\(693\) −398.095 171.042i −0.574451 0.246814i
\(694\) 0 0
\(695\) 80.7507i 0.116188i
\(696\) 0 0
\(697\) 19.3012i 0.0276918i
\(698\) 0 0
\(699\) 184.260 + 184.260i 0.263606 + 0.263606i
\(700\) 0 0
\(701\) −11.7578 11.7578i −0.0167729 0.0167729i 0.698671 0.715443i \(-0.253775\pi\)
−0.715443 + 0.698671i \(0.753775\pi\)
\(702\) 0 0
\(703\) 453.515i 0.645114i
\(704\) 0 0
\(705\) 314.980i 0.446780i
\(706\) 0 0
\(707\) −461.271 198.186i −0.652434 0.280320i
\(708\) 0 0
\(709\) −400.746 + 400.746i −0.565228 + 0.565228i −0.930788 0.365560i \(-0.880877\pi\)
0.365560 + 0.930788i \(0.380877\pi\)
\(710\) 0 0
\(711\) 596.667i 0.839194i
\(712\) 0 0
\(713\) 429.269 0.602060
\(714\) 0 0
\(715\) −251.183 + 251.183i −0.351305 + 0.351305i
\(716\) 0 0
\(717\) −33.2207 + 33.2207i −0.0463329 + 0.0463329i
\(718\) 0 0
\(719\) 125.701i 0.174827i 0.996172 + 0.0874135i \(0.0278601\pi\)
−0.996172 + 0.0874135i \(0.972140\pi\)
\(720\) 0 0
\(721\) −500.914 + 199.835i −0.694748 + 0.277164i
\(722\) 0 0
\(723\) −55.8373 55.8373i −0.0772300 0.0772300i
\(724\) 0 0
\(725\) 208.588 208.588i 0.287708 0.287708i
\(726\) 0 0
\(727\) 216.647 0.298001 0.149001 0.988837i \(-0.452394\pi\)
0.149001 + 0.988837i \(0.452394\pi\)
\(728\) 0 0
\(729\) 72.3809i 0.0992879i
\(730\) 0 0
\(731\) 75.9842 + 75.9842i 0.103945 + 0.103945i
\(732\) 0 0
\(733\) 71.7298 71.7298i 0.0978579 0.0978579i −0.656483 0.754341i \(-0.727957\pi\)
0.754341 + 0.656483i \(0.227957\pi\)
\(734\) 0 0
\(735\) −287.431 + 272.745i −0.391063 + 0.371082i
\(736\) 0 0
\(737\) −7.54814 −0.0102417
\(738\) 0 0
\(739\) −532.903 532.903i −0.721113 0.721113i 0.247719 0.968832i \(-0.420319\pi\)
−0.968832 + 0.247719i \(0.920319\pi\)
\(740\) 0 0
\(741\) 172.353 + 172.353i 0.232595 + 0.232595i
\(742\) 0 0
\(743\) 579.975i 0.780585i −0.920691 0.390292i \(-0.872374\pi\)
0.920691 0.390292i \(-0.127626\pi\)
\(744\) 0 0
\(745\) −883.438 −1.18582
\(746\) 0 0
\(747\) 41.7124 + 41.7124i 0.0558399 + 0.0558399i
\(748\) 0 0
\(749\) −549.190 + 1278.22i −0.733230 + 1.70657i
\(750\) 0 0
\(751\) −666.251 −0.887151 −0.443576 0.896237i \(-0.646290\pi\)
−0.443576 + 0.896237i \(0.646290\pi\)
\(752\) 0 0
\(753\) −362.729 −0.481712
\(754\) 0 0
\(755\) −859.536 + 859.536i −1.13846 + 1.13846i
\(756\) 0 0
\(757\) −148.454 + 148.454i −0.196108 + 0.196108i −0.798329 0.602221i \(-0.794282\pi\)
0.602221 + 0.798329i \(0.294282\pi\)
\(758\) 0 0
\(759\) 101.207 0.133342
\(760\) 0 0
\(761\) 714.400 0.938765 0.469382 0.882995i \(-0.344477\pi\)
0.469382 + 0.882995i \(0.344477\pi\)
\(762\) 0 0
\(763\) −420.481 180.660i −0.551089 0.236776i
\(764\) 0 0
\(765\) 153.819 + 153.819i 0.201070 + 0.201070i
\(766\) 0 0
\(767\) 560.996 0.731416
\(768\) 0 0
\(769\) 175.219i 0.227854i 0.993489 + 0.113927i \(0.0363429\pi\)
−0.993489 + 0.113927i \(0.963657\pi\)
\(770\) 0 0
\(771\) −363.506 363.506i −0.471473 0.471473i
\(772\) 0 0
\(773\) −385.461 385.461i −0.498655 0.498655i 0.412364 0.911019i \(-0.364703\pi\)
−0.911019 + 0.412364i \(0.864703\pi\)
\(774\) 0 0
\(775\) −405.137 −0.522757
\(776\) 0 0
\(777\) −67.9906 170.428i −0.0875040 0.219340i
\(778\) 0 0
\(779\) −61.4065 + 61.4065i −0.0788273 + 0.0788273i
\(780\) 0 0
\(781\) 489.542 + 489.542i 0.626814 + 0.626814i
\(782\) 0 0
\(783\) 876.080i 1.11888i
\(784\) 0 0
\(785\) 1286.76 1.63918
\(786\) 0 0
\(787\) −661.030 + 661.030i −0.839937 + 0.839937i −0.988850 0.148913i \(-0.952422\pi\)
0.148913 + 0.988850i \(0.452422\pi\)
\(788\) 0 0
\(789\) −421.694 421.694i −0.534466 0.534466i
\(790\) 0 0
\(791\) −1061.53 + 423.489i −1.34201 + 0.535384i
\(792\) 0 0
\(793\) 838.748i 1.05769i
\(794\) 0 0
\(795\) 419.648 419.648i 0.527859 0.527859i
\(796\) 0 0
\(797\) 644.542 644.542i 0.808711 0.808711i −0.175728 0.984439i \(-0.556228\pi\)
0.984439 + 0.175728i \(0.0562279\pi\)
\(798\) 0 0
\(799\) 212.051 0.265395
\(800\) 0 0
\(801\) 1146.09i 1.43082i
\(802\) 0 0
\(803\) −498.839 + 498.839i −0.621219 + 0.621219i
\(804\) 0 0
\(805\) −127.521 + 296.801i −0.158411 + 0.368697i
\(806\) 0 0
\(807\) 342.777i 0.424755i
\(808\) 0 0
\(809\) 1222.06i 1.51058i −0.655388 0.755292i \(-0.727495\pi\)
0.655388 0.755292i \(-0.272505\pi\)
\(810\) 0 0
\(811\) 236.769 + 236.769i 0.291947 + 0.291947i 0.837849 0.545902i \(-0.183813\pi\)
−0.545902 + 0.837849i \(0.683813\pi\)
\(812\) 0 0
\(813\) −15.9965 15.9965i −0.0196759 0.0196759i
\(814\) 0 0
\(815\) 103.437i 0.126917i
\(816\) 0 0
\(817\) 483.486i 0.591782i
\(818\) 0 0
\(819\) 316.244 + 135.875i 0.386135 + 0.165904i
\(820\) 0 0
\(821\) −927.111 + 927.111i −1.12925 + 1.12925i −0.138946 + 0.990300i \(0.544371\pi\)
−0.990300 + 0.138946i \(0.955629\pi\)
\(822\) 0 0
\(823\) 386.940i 0.470158i −0.971976 0.235079i \(-0.924465\pi\)
0.971976 0.235079i \(-0.0755348\pi\)
\(824\) 0 0
\(825\) −95.5171 −0.115778
\(826\) 0 0
\(827\) −431.979 + 431.979i −0.522345 + 0.522345i −0.918279 0.395934i \(-0.870421\pi\)
0.395934 + 0.918279i \(0.370421\pi\)
\(828\) 0 0
\(829\) 546.644 546.644i 0.659401 0.659401i −0.295837 0.955238i \(-0.595599\pi\)
0.955238 + 0.295837i \(0.0955986\pi\)
\(830\) 0 0
\(831\) 402.783i 0.484697i
\(832\) 0 0
\(833\) −183.617 193.504i −0.220429 0.232298i
\(834\) 0 0
\(835\) 118.740 + 118.740i 0.142203 + 0.142203i
\(836\) 0 0
\(837\) 850.797 850.797i 1.01648 1.01648i
\(838\) 0 0
\(839\) 196.129 0.233765 0.116883 0.993146i \(-0.462710\pi\)
0.116883 + 0.993146i \(0.462710\pi\)
\(840\) 0 0
\(841\) 655.619i 0.779571i
\(842\) 0 0
\(843\) −365.096 365.096i −0.433091 0.433091i
\(844\) 0 0
\(845\) −483.033 + 483.033i −0.571637 + 0.571637i
\(846\) 0 0
\(847\) −110.788 277.705i −0.130800 0.327869i
\(848\) 0 0
\(849\) −623.385 −0.734258
\(850\) 0 0
\(851\) −105.776 105.776i −0.124296 0.124296i
\(852\) 0 0
\(853\) 463.772 + 463.772i 0.543695 + 0.543695i 0.924610 0.380915i \(-0.124391\pi\)
−0.380915 + 0.924610i \(0.624391\pi\)
\(854\) 0 0
\(855\) 978.747i 1.14473i
\(856\) 0 0
\(857\) −1536.03 −1.79234 −0.896168 0.443714i \(-0.853661\pi\)
−0.896168 + 0.443714i \(0.853661\pi\)
\(858\) 0 0
\(859\) −36.4535 36.4535i −0.0424371 0.0424371i 0.685570 0.728007i \(-0.259553\pi\)
−0.728007 + 0.685570i \(0.759553\pi\)
\(860\) 0 0
\(861\) 13.8701 32.2821i 0.0161093 0.0374937i
\(862\) 0 0
\(863\) 304.834 0.353226 0.176613 0.984280i \(-0.443486\pi\)
0.176613 + 0.984280i \(0.443486\pi\)
\(864\) 0 0
\(865\) 174.708 0.201974
\(866\) 0 0
\(867\) −259.644 + 259.644i −0.299474 + 0.299474i
\(868\) 0 0
\(869\) 533.623 533.623i 0.614066 0.614066i
\(870\) 0 0
\(871\) 5.99621 0.00688428
\(872\) 0 0
\(873\) 627.086 0.718311
\(874\) 0 0
\(875\) −274.237 + 638.277i −0.313414 + 0.729459i
\(876\) 0 0
\(877\) −545.809 545.809i −0.622359 0.622359i 0.323775 0.946134i \(-0.395048\pi\)
−0.946134 + 0.323775i \(0.895048\pi\)
\(878\) 0 0
\(879\) 498.963 0.567649
\(880\) 0 0
\(881\) 1051.42i 1.19344i 0.802449 + 0.596721i \(0.203530\pi\)
−0.802449 + 0.596721i \(0.796470\pi\)
\(882\) 0 0
\(883\) −693.577 693.577i −0.785478 0.785478i 0.195271 0.980749i \(-0.437441\pi\)
−0.980749 + 0.195271i \(0.937441\pi\)
\(884\) 0 0
\(885\) 456.378 + 456.378i 0.515682 + 0.515682i
\(886\) 0 0
\(887\) −579.072 −0.652843 −0.326422 0.945224i \(-0.605843\pi\)
−0.326422 + 0.945224i \(0.605843\pi\)
\(888\) 0 0
\(889\) 203.568 81.2119i 0.228986 0.0913520i
\(890\) 0 0
\(891\) −193.326 + 193.326i −0.216977 + 0.216977i
\(892\) 0 0
\(893\) −674.638 674.638i −0.755474 0.755474i
\(894\) 0 0
\(895\) 345.929i 0.386513i
\(896\) 0 0
\(897\) −80.3981 −0.0896299
\(898\) 0 0
\(899\) 1453.43 1453.43i 1.61672 1.61672i
\(900\) 0 0
\(901\) 282.516 + 282.516i 0.313558 + 0.313558i
\(902\) 0 0
\(903\) 72.4838 + 181.690i 0.0802700 + 0.201207i
\(904\) 0 0
\(905\) 1195.76i 1.32128i
\(906\) 0 0
\(907\) 134.035 134.035i 0.147778 0.147778i −0.629347 0.777125i \(-0.716677\pi\)
0.777125 + 0.629347i \(0.216677\pi\)
\(908\) 0 0
\(909\) −354.779 + 354.779i −0.390296 + 0.390296i
\(910\) 0 0
\(911\) −41.6323 −0.0456996 −0.0228498 0.999739i \(-0.507274\pi\)
−0.0228498 + 0.999739i \(0.507274\pi\)
\(912\) 0 0
\(913\) 74.6101i 0.0817197i
\(914\) 0 0
\(915\) 682.333 682.333i 0.745719 0.745719i
\(916\) 0 0
\(917\) −85.2623 + 198.445i −0.0929796 + 0.216407i
\(918\) 0 0
\(919\) 772.416i 0.840496i −0.907409 0.420248i \(-0.861943\pi\)
0.907409 0.420248i \(-0.138057\pi\)
\(920\) 0 0
\(921\) 532.361i 0.578025i
\(922\) 0 0
\(923\) −388.890 388.890i −0.421333 0.421333i
\(924\) 0 0
\(925\) 99.8298 + 99.8298i 0.107924 + 0.107924i
\(926\) 0 0
\(927\) 538.969i 0.581412i
\(928\) 0 0
\(929\) 1353.43i 1.45687i 0.685114 + 0.728436i \(0.259753\pi\)
−0.685114 + 0.728436i \(0.740247\pi\)
\(930\) 0 0
\(931\) −31.4553 + 1199.81i −0.0337865 + 1.28873i
\(932\) 0 0
\(933\) 115.517 115.517i 0.123813 0.123813i
\(934\) 0 0
\(935\) 275.133i 0.294260i
\(936\) 0 0
\(937\) −1628.25 −1.73772 −0.868861 0.495056i \(-0.835148\pi\)
−0.868861 + 0.495056i \(0.835148\pi\)
\(938\) 0 0
\(939\) 334.681 334.681i 0.356423 0.356423i
\(940\) 0 0
\(941\) 293.378 293.378i 0.311772 0.311772i −0.533824 0.845596i \(-0.679245\pi\)
0.845596 + 0.533824i \(0.179245\pi\)
\(942\) 0 0
\(943\) 28.6444i 0.0303759i
\(944\) 0 0
\(945\) 335.507 + 840.992i 0.355034 + 0.889939i
\(946\) 0 0
\(947\) 375.023 + 375.023i 0.396012 + 0.396012i 0.876824 0.480812i \(-0.159658\pi\)
−0.480812 + 0.876824i \(0.659658\pi\)
\(948\) 0 0
\(949\) 396.275 396.275i 0.417571 0.417571i
\(950\) 0 0
\(951\) −53.1079 −0.0558442
\(952\) 0 0
\(953\) 263.530i 0.276527i 0.990395 + 0.138264i \(0.0441521\pi\)
−0.990395 + 0.138264i \(0.955848\pi\)
\(954\) 0 0
\(955\) 1074.34 + 1074.34i 1.12497 + 1.12497i
\(956\) 0 0
\(957\) 342.667 342.667i 0.358064 0.358064i
\(958\) 0 0
\(959\) −325.680 816.360i −0.339604 0.851262i
\(960\) 0 0
\(961\) −1861.96 −1.93753
\(962\) 0 0
\(963\) 983.120 + 983.120i 1.02089 + 1.02089i
\(964\) 0 0
\(965\) −1160.68 1160.68i −1.20278 1.20278i
\(966\) 0 0
\(967\) 791.495i 0.818505i 0.912421 + 0.409253i \(0.134211\pi\)
−0.912421 + 0.409253i \(0.865789\pi\)
\(968\) 0 0
\(969\) −188.787 −0.194827
\(970\) 0 0
\(971\) 1184.27 + 1184.27i 1.21964 + 1.21964i 0.967758 + 0.251883i \(0.0810499\pi\)
0.251883 + 0.967758i \(0.418950\pi\)
\(972\) 0 0
\(973\) −90.9247 39.0660i −0.0934478 0.0401501i
\(974\) 0 0
\(975\) 75.8783 0.0778239
\(976\) 0 0
\(977\) 615.856 0.630354 0.315177 0.949033i \(-0.397936\pi\)
0.315177 + 0.949033i \(0.397936\pi\)
\(978\) 0 0
\(979\) 1024.99 1024.99i 1.04698 1.04698i
\(980\) 0 0
\(981\) −323.406 + 323.406i −0.329669 + 0.329669i
\(982\) 0 0
\(983\) −534.869 −0.544119 −0.272059 0.962280i \(-0.587705\pi\)
−0.272059 + 0.962280i \(0.587705\pi\)
\(984\) 0 0
\(985\) −63.7280 −0.0646985
\(986\) 0 0
\(987\) 354.665 + 152.383i 0.359336 + 0.154390i
\(988\) 0 0
\(989\) 112.766 + 112.766i 0.114021 + 0.114021i
\(990\) 0 0
\(991\) 125.613 0.126754 0.0633768 0.997990i \(-0.479813\pi\)
0.0633768 + 0.997990i \(0.479813\pi\)
\(992\) 0 0
\(993\) 67.1950i 0.0676687i
\(994\) 0 0
\(995\) −223.654 223.654i −0.224778 0.224778i
\(996\) 0 0
\(997\) 83.7554 + 83.7554i 0.0840075 + 0.0840075i 0.747862 0.663854i \(-0.231081\pi\)
−0.663854 + 0.747862i \(0.731081\pi\)
\(998\) 0 0
\(999\) −419.290 −0.419710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.l.b.209.12 56
4.3 odd 2 112.3.l.b.13.18 yes 56
7.6 odd 2 inner 448.3.l.b.209.17 56
16.5 even 4 inner 448.3.l.b.433.17 56
16.11 odd 4 112.3.l.b.69.17 yes 56
28.27 even 2 112.3.l.b.13.17 56
112.27 even 4 112.3.l.b.69.18 yes 56
112.69 odd 4 inner 448.3.l.b.433.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.17 56 28.27 even 2
112.3.l.b.13.18 yes 56 4.3 odd 2
112.3.l.b.69.17 yes 56 16.11 odd 4
112.3.l.b.69.18 yes 56 112.27 even 4
448.3.l.b.209.12 56 1.1 even 1 trivial
448.3.l.b.209.17 56 7.6 odd 2 inner
448.3.l.b.433.12 56 112.69 odd 4 inner
448.3.l.b.433.17 56 16.5 even 4 inner