Properties

Label 448.3.c.g.321.4
Level $448$
Weight $3$
Character 448.321
Analytic conductor $12.207$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(321,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.321"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4694952902656.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 56x^{4} + 20x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 321.4
Root \(-0.590371i\) of defining polynomial
Character \(\chi\) \(=\) 448.321
Dual form 448.3.c.g.321.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.56056i q^{3} +3.23038i q^{5} +(-3.38162 - 6.12900i) q^{7} +6.56466 q^{9} +3.93481 q^{11} +14.1051i q^{13} +5.04119 q^{15} -26.1633i q^{17} -10.6974i q^{19} +(-9.56466 + 5.27721i) q^{21} +20.9054 q^{23} +14.5647 q^{25} -24.2895i q^{27} -13.1293 q^{29} -39.8951i q^{31} -6.14050i q^{33} +(19.7990 - 10.9239i) q^{35} +1.12932 q^{37} +22.0118 q^{39} -2.36709i q^{41} +59.2720 q^{43} +21.2063i q^{45} -33.6529i q^{47} +(-26.1293 + 41.4519i) q^{49} -40.8293 q^{51} +30.0000 q^{53} +12.7109i q^{55} -16.6940 q^{57} -63.3035i q^{59} -103.149i q^{61} +(-22.1992 - 40.2348i) q^{63} -45.5647 q^{65} -28.7750 q^{67} -32.6240i q^{69} -90.3847 q^{71} +62.5607i q^{73} -22.7290i q^{75} +(-13.3060 - 24.1164i) q^{77} +139.084 q^{79} +21.1767 q^{81} +109.441i q^{83} +84.5173 q^{85} +20.4891i q^{87} -2.04683i q^{89} +(86.4499 - 47.6979i) q^{91} -62.2586 q^{93} +34.5568 q^{95} +90.7708i q^{97} +25.8307 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 56 q^{9} + 32 q^{21} + 8 q^{25} + 112 q^{29} - 208 q^{37} + 8 q^{49} + 240 q^{53} + 192 q^{57} - 256 q^{65} - 432 q^{77} + 712 q^{81} - 192 q^{85} - 64 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56056i 0.520186i −0.965584 0.260093i \(-0.916247\pi\)
0.965584 0.260093i \(-0.0837532\pi\)
\(4\) 0 0
\(5\) 3.23038i 0.646076i 0.946386 + 0.323038i \(0.104704\pi\)
−0.946386 + 0.323038i \(0.895296\pi\)
\(6\) 0 0
\(7\) −3.38162 6.12900i −0.483088 0.875572i
\(8\) 0 0
\(9\) 6.56466 0.729407
\(10\) 0 0
\(11\) 3.93481 0.357710 0.178855 0.983875i \(-0.442761\pi\)
0.178855 + 0.983875i \(0.442761\pi\)
\(12\) 0 0
\(13\) 14.1051i 1.08500i 0.840054 + 0.542502i \(0.182523\pi\)
−0.840054 + 0.542502i \(0.817477\pi\)
\(14\) 0 0
\(15\) 5.04119 0.336079
\(16\) 0 0
\(17\) 26.1633i 1.53902i −0.638637 0.769508i \(-0.720501\pi\)
0.638637 0.769508i \(-0.279499\pi\)
\(18\) 0 0
\(19\) 10.6974i 0.563023i −0.959558 0.281512i \(-0.909164\pi\)
0.959558 0.281512i \(-0.0908358\pi\)
\(20\) 0 0
\(21\) −9.56466 + 5.27721i −0.455460 + 0.251296i
\(22\) 0 0
\(23\) 20.9054 0.908929 0.454465 0.890765i \(-0.349831\pi\)
0.454465 + 0.890765i \(0.349831\pi\)
\(24\) 0 0
\(25\) 14.5647 0.582586
\(26\) 0 0
\(27\) 24.2895i 0.899613i
\(28\) 0 0
\(29\) −13.1293 −0.452735 −0.226368 0.974042i \(-0.572685\pi\)
−0.226368 + 0.974042i \(0.572685\pi\)
\(30\) 0 0
\(31\) 39.8951i 1.28694i −0.765472 0.643470i \(-0.777494\pi\)
0.765472 0.643470i \(-0.222506\pi\)
\(32\) 0 0
\(33\) 6.14050i 0.186076i
\(34\) 0 0
\(35\) 19.7990 10.9239i 0.565685 0.312112i
\(36\) 0 0
\(37\) 1.12932 0.0305222 0.0152611 0.999884i \(-0.495142\pi\)
0.0152611 + 0.999884i \(0.495142\pi\)
\(38\) 0 0
\(39\) 22.0118 0.564404
\(40\) 0 0
\(41\) 2.36709i 0.0577339i −0.999583 0.0288670i \(-0.990810\pi\)
0.999583 0.0288670i \(-0.00918992\pi\)
\(42\) 0 0
\(43\) 59.2720 1.37842 0.689210 0.724562i \(-0.257958\pi\)
0.689210 + 0.724562i \(0.257958\pi\)
\(44\) 0 0
\(45\) 21.2063i 0.471252i
\(46\) 0 0
\(47\) 33.6529i 0.716019i −0.933718 0.358010i \(-0.883456\pi\)
0.933718 0.358010i \(-0.116544\pi\)
\(48\) 0 0
\(49\) −26.1293 + 41.4519i −0.533251 + 0.845957i
\(50\) 0 0
\(51\) −40.8293 −0.800575
\(52\) 0 0
\(53\) 30.0000 0.566038 0.283019 0.959114i \(-0.408664\pi\)
0.283019 + 0.959114i \(0.408664\pi\)
\(54\) 0 0
\(55\) 12.7109i 0.231108i
\(56\) 0 0
\(57\) −16.6940 −0.292877
\(58\) 0 0
\(59\) 63.3035i 1.07294i −0.843919 0.536470i \(-0.819757\pi\)
0.843919 0.536470i \(-0.180243\pi\)
\(60\) 0 0
\(61\) 103.149i 1.69097i −0.533997 0.845486i \(-0.679311\pi\)
0.533997 0.845486i \(-0.320689\pi\)
\(62\) 0 0
\(63\) −22.1992 40.2348i −0.352368 0.638648i
\(64\) 0 0
\(65\) −45.5647 −0.700995
\(66\) 0 0
\(67\) −28.7750 −0.429477 −0.214739 0.976672i \(-0.568890\pi\)
−0.214739 + 0.976672i \(0.568890\pi\)
\(68\) 0 0
\(69\) 32.6240i 0.472812i
\(70\) 0 0
\(71\) −90.3847 −1.27302 −0.636512 0.771267i \(-0.719623\pi\)
−0.636512 + 0.771267i \(0.719623\pi\)
\(72\) 0 0
\(73\) 62.5607i 0.856996i 0.903543 + 0.428498i \(0.140957\pi\)
−0.903543 + 0.428498i \(0.859043\pi\)
\(74\) 0 0
\(75\) 22.7290i 0.303053i
\(76\) 0 0
\(77\) −13.3060 24.1164i −0.172805 0.313201i
\(78\) 0 0
\(79\) 139.084 1.76055 0.880276 0.474462i \(-0.157357\pi\)
0.880276 + 0.474462i \(0.157357\pi\)
\(80\) 0 0
\(81\) 21.1767 0.261441
\(82\) 0 0
\(83\) 109.441i 1.31856i 0.751896 + 0.659282i \(0.229140\pi\)
−0.751896 + 0.659282i \(0.770860\pi\)
\(84\) 0 0
\(85\) 84.5173 0.994321
\(86\) 0 0
\(87\) 20.4891i 0.235506i
\(88\) 0 0
\(89\) 2.04683i 0.0229981i −0.999934 0.0114991i \(-0.996340\pi\)
0.999934 0.0114991i \(-0.00366034\pi\)
\(90\) 0 0
\(91\) 86.4499 47.6979i 0.949999 0.524153i
\(92\) 0 0
\(93\) −62.2586 −0.669448
\(94\) 0 0
\(95\) 34.5568 0.363756
\(96\) 0 0
\(97\) 90.7708i 0.935782i 0.883786 + 0.467891i \(0.154986\pi\)
−0.883786 + 0.467891i \(0.845014\pi\)
\(98\) 0 0
\(99\) 25.8307 0.260916
\(100\) 0 0
\(101\) 5.91773i 0.0585914i −0.999571 0.0292957i \(-0.990674\pi\)
0.999571 0.0292957i \(-0.00932644\pi\)
\(102\) 0 0
\(103\) 101.638i 0.986777i 0.869809 + 0.493389i \(0.164242\pi\)
−0.869809 + 0.493389i \(0.835758\pi\)
\(104\) 0 0
\(105\) −17.0474 30.8975i −0.162356 0.294262i
\(106\) 0 0
\(107\) −180.279 −1.68485 −0.842424 0.538815i \(-0.818872\pi\)
−0.842424 + 0.538815i \(0.818872\pi\)
\(108\) 0 0
\(109\) 132.259 1.21338 0.606691 0.794938i \(-0.292497\pi\)
0.606691 + 0.794938i \(0.292497\pi\)
\(110\) 0 0
\(111\) 1.76237i 0.0158772i
\(112\) 0 0
\(113\) 111.211 0.984170 0.492085 0.870547i \(-0.336235\pi\)
0.492085 + 0.870547i \(0.336235\pi\)
\(114\) 0 0
\(115\) 67.5322i 0.587237i
\(116\) 0 0
\(117\) 92.5949i 0.791409i
\(118\) 0 0
\(119\) −160.355 + 88.4742i −1.34752 + 0.743481i
\(120\) 0 0
\(121\) −105.517 −0.872044
\(122\) 0 0
\(123\) −3.69398 −0.0300324
\(124\) 0 0
\(125\) 127.809i 1.02247i
\(126\) 0 0
\(127\) −110.434 −0.869556 −0.434778 0.900538i \(-0.643173\pi\)
−0.434778 + 0.900538i \(0.643173\pi\)
\(128\) 0 0
\(129\) 92.4974i 0.717034i
\(130\) 0 0
\(131\) 200.357i 1.52944i 0.644362 + 0.764721i \(0.277123\pi\)
−0.644362 + 0.764721i \(0.722877\pi\)
\(132\) 0 0
\(133\) −65.5647 + 36.1747i −0.492967 + 0.271990i
\(134\) 0 0
\(135\) 78.4644 0.581218
\(136\) 0 0
\(137\) 214.517 1.56582 0.782910 0.622135i \(-0.213735\pi\)
0.782910 + 0.622135i \(0.213735\pi\)
\(138\) 0 0
\(139\) 47.6979i 0.343150i 0.985171 + 0.171575i \(0.0548857\pi\)
−0.985171 + 0.171575i \(0.945114\pi\)
\(140\) 0 0
\(141\) −52.5173 −0.372463
\(142\) 0 0
\(143\) 55.5007i 0.388117i
\(144\) 0 0
\(145\) 42.4127i 0.292501i
\(146\) 0 0
\(147\) 64.6881 + 40.7763i 0.440055 + 0.277390i
\(148\) 0 0
\(149\) −214.517 −1.43971 −0.719857 0.694123i \(-0.755792\pi\)
−0.719857 + 0.694123i \(0.755792\pi\)
\(150\) 0 0
\(151\) −55.8279 −0.369721 −0.184861 0.982765i \(-0.559183\pi\)
−0.184861 + 0.982765i \(0.559183\pi\)
\(152\) 0 0
\(153\) 171.753i 1.12257i
\(154\) 0 0
\(155\) 128.876 0.831460
\(156\) 0 0
\(157\) 130.594i 0.831807i −0.909409 0.415903i \(-0.863465\pi\)
0.909409 0.415903i \(-0.136535\pi\)
\(158\) 0 0
\(159\) 46.8167i 0.294445i
\(160\) 0 0
\(161\) −70.6940 128.129i −0.439093 0.795833i
\(162\) 0 0
\(163\) −296.610 −1.81969 −0.909847 0.414945i \(-0.863801\pi\)
−0.909847 + 0.414945i \(0.863801\pi\)
\(164\) 0 0
\(165\) 19.8361 0.120219
\(166\) 0 0
\(167\) 266.102i 1.59343i 0.604358 + 0.796713i \(0.293430\pi\)
−0.604358 + 0.796713i \(0.706570\pi\)
\(168\) 0 0
\(169\) −29.9526 −0.177234
\(170\) 0 0
\(171\) 70.2251i 0.410673i
\(172\) 0 0
\(173\) 292.113i 1.68851i 0.535940 + 0.844256i \(0.319957\pi\)
−0.535940 + 0.844256i \(0.680043\pi\)
\(174\) 0 0
\(175\) −49.2521 89.2668i −0.281441 0.510096i
\(176\) 0 0
\(177\) −98.7887 −0.558128
\(178\) 0 0
\(179\) −219.377 −1.22557 −0.612785 0.790250i \(-0.709951\pi\)
−0.612785 + 0.790250i \(0.709951\pi\)
\(180\) 0 0
\(181\) 173.577i 0.958990i −0.877545 0.479495i \(-0.840820\pi\)
0.877545 0.479495i \(-0.159180\pi\)
\(182\) 0 0
\(183\) −160.970 −0.879620
\(184\) 0 0
\(185\) 3.64813i 0.0197196i
\(186\) 0 0
\(187\) 102.948i 0.550521i
\(188\) 0 0
\(189\) −148.871 + 82.1380i −0.787676 + 0.434592i
\(190\) 0 0
\(191\) 154.823 0.810591 0.405296 0.914186i \(-0.367169\pi\)
0.405296 + 0.914186i \(0.367169\pi\)
\(192\) 0 0
\(193\) 164.435 0.851997 0.425998 0.904724i \(-0.359923\pi\)
0.425998 + 0.904724i \(0.359923\pi\)
\(194\) 0 0
\(195\) 71.1063i 0.364648i
\(196\) 0 0
\(197\) 58.8707 0.298836 0.149418 0.988774i \(-0.452260\pi\)
0.149418 + 0.988774i \(0.452260\pi\)
\(198\) 0 0
\(199\) 9.81626i 0.0493279i −0.999696 0.0246640i \(-0.992148\pi\)
0.999696 0.0246640i \(-0.00785158\pi\)
\(200\) 0 0
\(201\) 44.9050i 0.223408i
\(202\) 0 0
\(203\) 44.3983 + 80.4696i 0.218711 + 0.396402i
\(204\) 0 0
\(205\) 7.64660 0.0373005
\(206\) 0 0
\(207\) 137.237 0.662979
\(208\) 0 0
\(209\) 42.0924i 0.201399i
\(210\) 0 0
\(211\) 167.484 0.793762 0.396881 0.917870i \(-0.370093\pi\)
0.396881 + 0.917870i \(0.370093\pi\)
\(212\) 0 0
\(213\) 141.051i 0.662209i
\(214\) 0 0
\(215\) 191.471i 0.890563i
\(216\) 0 0
\(217\) −244.517 + 134.910i −1.12681 + 0.621705i
\(218\) 0 0
\(219\) 97.6296 0.445797
\(220\) 0 0
\(221\) 369.035 1.66984
\(222\) 0 0
\(223\) 172.971i 0.775654i −0.921732 0.387827i \(-0.873226\pi\)
0.921732 0.387827i \(-0.126774\pi\)
\(224\) 0 0
\(225\) 95.6120 0.424942
\(226\) 0 0
\(227\) 358.854i 1.58086i 0.612555 + 0.790428i \(0.290142\pi\)
−0.612555 + 0.790428i \(0.709858\pi\)
\(228\) 0 0
\(229\) 239.786i 1.04710i −0.851995 0.523550i \(-0.824607\pi\)
0.851995 0.523550i \(-0.175393\pi\)
\(230\) 0 0
\(231\) −37.6351 + 20.7648i −0.162923 + 0.0898910i
\(232\) 0 0
\(233\) −25.4827 −0.109368 −0.0546839 0.998504i \(-0.517415\pi\)
−0.0546839 + 0.998504i \(0.517415\pi\)
\(234\) 0 0
\(235\) 108.712 0.462602
\(236\) 0 0
\(237\) 217.048i 0.915815i
\(238\) 0 0
\(239\) −40.0887 −0.167735 −0.0838676 0.996477i \(-0.526727\pi\)
−0.0838676 + 0.996477i \(0.526727\pi\)
\(240\) 0 0
\(241\) 399.356i 1.65708i 0.559932 + 0.828538i \(0.310827\pi\)
−0.559932 + 0.828538i \(0.689173\pi\)
\(242\) 0 0
\(243\) 251.653i 1.03561i
\(244\) 0 0
\(245\) −133.905 84.4076i −0.546552 0.344521i
\(246\) 0 0
\(247\) 150.888 0.610883
\(248\) 0 0
\(249\) 170.789 0.685899
\(250\) 0 0
\(251\) 373.781i 1.48917i −0.667530 0.744583i \(-0.732649\pi\)
0.667530 0.744583i \(-0.267351\pi\)
\(252\) 0 0
\(253\) 82.2586 0.325133
\(254\) 0 0
\(255\) 131.894i 0.517232i
\(256\) 0 0
\(257\) 189.729i 0.738245i 0.929381 + 0.369123i \(0.120342\pi\)
−0.929381 + 0.369123i \(0.879658\pi\)
\(258\) 0 0
\(259\) −3.81893 6.92160i −0.0147449 0.0267243i
\(260\) 0 0
\(261\) −86.1895 −0.330228
\(262\) 0 0
\(263\) −28.8909 −0.109851 −0.0549256 0.998490i \(-0.517492\pi\)
−0.0549256 + 0.998490i \(0.517492\pi\)
\(264\) 0 0
\(265\) 96.9113i 0.365703i
\(266\) 0 0
\(267\) −3.19420 −0.0119633
\(268\) 0 0
\(269\) 132.766i 0.493553i −0.969072 0.246776i \(-0.920629\pi\)
0.969072 0.246776i \(-0.0793713\pi\)
\(270\) 0 0
\(271\) 333.004i 1.22880i −0.788996 0.614399i \(-0.789399\pi\)
0.788996 0.614399i \(-0.210601\pi\)
\(272\) 0 0
\(273\) −74.4353 134.910i −0.272657 0.494176i
\(274\) 0 0
\(275\) 57.3092 0.208397
\(276\) 0 0
\(277\) 436.940 1.57740 0.788700 0.614778i \(-0.210755\pi\)
0.788700 + 0.614778i \(0.210755\pi\)
\(278\) 0 0
\(279\) 261.898i 0.938702i
\(280\) 0 0
\(281\) −154.517 −0.549884 −0.274942 0.961461i \(-0.588659\pi\)
−0.274942 + 0.961461i \(0.588659\pi\)
\(282\) 0 0
\(283\) 421.907i 1.49084i −0.666597 0.745418i \(-0.732250\pi\)
0.666597 0.745418i \(-0.267750\pi\)
\(284\) 0 0
\(285\) 53.9279i 0.189221i
\(286\) 0 0
\(287\) −14.5079 + 8.00460i −0.0505502 + 0.0278906i
\(288\) 0 0
\(289\) −395.517 −1.36857
\(290\) 0 0
\(291\) 141.653 0.486780
\(292\) 0 0
\(293\) 170.639i 0.582386i 0.956664 + 0.291193i \(0.0940522\pi\)
−0.956664 + 0.291193i \(0.905948\pi\)
\(294\) 0 0
\(295\) 204.494 0.693201
\(296\) 0 0
\(297\) 95.5747i 0.321800i
\(298\) 0 0
\(299\) 294.871i 0.986192i
\(300\) 0 0
\(301\) −200.435 363.278i −0.665898 1.20690i
\(302\) 0 0
\(303\) −9.23496 −0.0304784
\(304\) 0 0
\(305\) 333.211 1.09250
\(306\) 0 0
\(307\) 261.470i 0.851693i −0.904795 0.425846i \(-0.859976\pi\)
0.904795 0.425846i \(-0.140024\pi\)
\(308\) 0 0
\(309\) 158.612 0.513308
\(310\) 0 0
\(311\) 6.92160i 0.0222560i −0.999938 0.0111280i \(-0.996458\pi\)
0.999938 0.0111280i \(-0.00354222\pi\)
\(312\) 0 0
\(313\) 65.0531i 0.207837i −0.994586 0.103919i \(-0.966862\pi\)
0.994586 0.103919i \(-0.0331382\pi\)
\(314\) 0 0
\(315\) 129.974 71.7117i 0.412615 0.227656i
\(316\) 0 0
\(317\) −65.6466 −0.207087 −0.103544 0.994625i \(-0.533018\pi\)
−0.103544 + 0.994625i \(0.533018\pi\)
\(318\) 0 0
\(319\) −51.6614 −0.161948
\(320\) 0 0
\(321\) 281.335i 0.876434i
\(322\) 0 0
\(323\) −279.880 −0.866502
\(324\) 0 0
\(325\) 205.435i 0.632109i
\(326\) 0 0
\(327\) 206.397i 0.631184i
\(328\) 0 0
\(329\) −206.259 + 113.801i −0.626926 + 0.345900i
\(330\) 0 0
\(331\) 76.2426 0.230340 0.115170 0.993346i \(-0.463259\pi\)
0.115170 + 0.993346i \(0.463259\pi\)
\(332\) 0 0
\(333\) 7.41360 0.0222631
\(334\) 0 0
\(335\) 92.9541i 0.277475i
\(336\) 0 0
\(337\) 182.177 0.540584 0.270292 0.962778i \(-0.412880\pi\)
0.270292 + 0.962778i \(0.412880\pi\)
\(338\) 0 0
\(339\) 173.552i 0.511952i
\(340\) 0 0
\(341\) 156.980i 0.460351i
\(342\) 0 0
\(343\) 342.418 + 19.9722i 0.998303 + 0.0582280i
\(344\) 0 0
\(345\) 105.388 0.305472
\(346\) 0 0
\(347\) −13.5355 −0.0390073 −0.0195037 0.999810i \(-0.506209\pi\)
−0.0195037 + 0.999810i \(0.506209\pi\)
\(348\) 0 0
\(349\) 350.134i 1.00325i 0.865085 + 0.501625i \(0.167264\pi\)
−0.865085 + 0.501625i \(0.832736\pi\)
\(350\) 0 0
\(351\) 342.605 0.976084
\(352\) 0 0
\(353\) 572.390i 1.62150i −0.585392 0.810750i \(-0.699060\pi\)
0.585392 0.810750i \(-0.300940\pi\)
\(354\) 0 0
\(355\) 291.977i 0.822470i
\(356\) 0 0
\(357\) 138.069 + 250.243i 0.386748 + 0.700960i
\(358\) 0 0
\(359\) −458.196 −1.27631 −0.638156 0.769907i \(-0.720303\pi\)
−0.638156 + 0.769907i \(0.720303\pi\)
\(360\) 0 0
\(361\) 246.565 0.683005
\(362\) 0 0
\(363\) 164.666i 0.453625i
\(364\) 0 0
\(365\) −202.095 −0.553684
\(366\) 0 0
\(367\) 272.394i 0.742217i 0.928590 + 0.371108i \(0.121022\pi\)
−0.928590 + 0.371108i \(0.878978\pi\)
\(368\) 0 0
\(369\) 15.5392i 0.0421115i
\(370\) 0 0
\(371\) −101.449 183.870i −0.273446 0.495607i
\(372\) 0 0
\(373\) −705.974 −1.89269 −0.946346 0.323154i \(-0.895257\pi\)
−0.946346 + 0.323154i \(0.895257\pi\)
\(374\) 0 0
\(375\) 199.453 0.531875
\(376\) 0 0
\(377\) 185.190i 0.491220i
\(378\) 0 0
\(379\) −5.41603 −0.0142903 −0.00714516 0.999974i \(-0.502274\pi\)
−0.00714516 + 0.999974i \(0.502274\pi\)
\(380\) 0 0
\(381\) 172.338i 0.452331i
\(382\) 0 0
\(383\) 127.286i 0.332340i 0.986097 + 0.166170i \(0.0531401\pi\)
−0.986097 + 0.166170i \(0.946860\pi\)
\(384\) 0 0
\(385\) 77.9052 42.9835i 0.202351 0.111645i
\(386\) 0 0
\(387\) 389.101 1.00543
\(388\) 0 0
\(389\) 49.8361 0.128113 0.0640567 0.997946i \(-0.479596\pi\)
0.0640567 + 0.997946i \(0.479596\pi\)
\(390\) 0 0
\(391\) 546.953i 1.39886i
\(392\) 0 0
\(393\) 312.668 0.795594
\(394\) 0 0
\(395\) 449.293i 1.13745i
\(396\) 0 0
\(397\) 112.172i 0.282549i 0.989970 + 0.141275i \(0.0451201\pi\)
−0.989970 + 0.141275i \(0.954880\pi\)
\(398\) 0 0
\(399\) 56.4527 + 102.317i 0.141485 + 0.256435i
\(400\) 0 0
\(401\) −583.375 −1.45480 −0.727400 0.686213i \(-0.759272\pi\)
−0.727400 + 0.686213i \(0.759272\pi\)
\(402\) 0 0
\(403\) 562.723 1.39633
\(404\) 0 0
\(405\) 68.4087i 0.168910i
\(406\) 0 0
\(407\) 4.44366 0.0109181
\(408\) 0 0
\(409\) 179.815i 0.439646i −0.975540 0.219823i \(-0.929452\pi\)
0.975540 0.219823i \(-0.0705479\pi\)
\(410\) 0 0
\(411\) 334.767i 0.814517i
\(412\) 0 0
\(413\) −387.987 + 214.068i −0.939436 + 0.518325i
\(414\) 0 0
\(415\) −353.535 −0.851892
\(416\) 0 0
\(417\) 74.4353 0.178502
\(418\) 0 0
\(419\) 297.515i 0.710060i 0.934855 + 0.355030i \(0.115529\pi\)
−0.934855 + 0.355030i \(0.884471\pi\)
\(420\) 0 0
\(421\) 198.707 0.471988 0.235994 0.971755i \(-0.424165\pi\)
0.235994 + 0.971755i \(0.424165\pi\)
\(422\) 0 0
\(423\) 220.920i 0.522269i
\(424\) 0 0
\(425\) 381.059i 0.896610i
\(426\) 0 0
\(427\) −632.202 + 348.812i −1.48057 + 0.816889i
\(428\) 0 0
\(429\) 86.6120 0.201893
\(430\) 0 0
\(431\) −128.136 −0.297299 −0.148649 0.988890i \(-0.547493\pi\)
−0.148649 + 0.988890i \(0.547493\pi\)
\(432\) 0 0
\(433\) 593.568i 1.37083i −0.728154 0.685414i \(-0.759621\pi\)
0.728154 0.685414i \(-0.240379\pi\)
\(434\) 0 0
\(435\) −66.1874 −0.152155
\(436\) 0 0
\(437\) 223.634i 0.511748i
\(438\) 0 0
\(439\) 88.9764i 0.202680i 0.994852 + 0.101340i \(0.0323130\pi\)
−0.994852 + 0.101340i \(0.967687\pi\)
\(440\) 0 0
\(441\) −171.530 + 272.118i −0.388957 + 0.617047i
\(442\) 0 0
\(443\) 508.626 1.14814 0.574070 0.818806i \(-0.305364\pi\)
0.574070 + 0.818806i \(0.305364\pi\)
\(444\) 0 0
\(445\) 6.61204 0.0148585
\(446\) 0 0
\(447\) 334.767i 0.748919i
\(448\) 0 0
\(449\) 23.2241 0.0517240 0.0258620 0.999666i \(-0.491767\pi\)
0.0258620 + 0.999666i \(0.491767\pi\)
\(450\) 0 0
\(451\) 9.31405i 0.0206520i
\(452\) 0 0
\(453\) 87.1227i 0.192324i
\(454\) 0 0
\(455\) 154.082 + 279.266i 0.338642 + 0.613771i
\(456\) 0 0
\(457\) 273.306 0.598044 0.299022 0.954246i \(-0.403340\pi\)
0.299022 + 0.954246i \(0.403340\pi\)
\(458\) 0 0
\(459\) −635.494 −1.38452
\(460\) 0 0
\(461\) 141.273i 0.306450i −0.988191 0.153225i \(-0.951034\pi\)
0.988191 0.153225i \(-0.0489659\pi\)
\(462\) 0 0
\(463\) 17.5953 0.0380028 0.0190014 0.999819i \(-0.493951\pi\)
0.0190014 + 0.999819i \(0.493951\pi\)
\(464\) 0 0
\(465\) 201.119i 0.432514i
\(466\) 0 0
\(467\) 295.073i 0.631849i 0.948784 + 0.315924i \(0.102315\pi\)
−0.948784 + 0.315924i \(0.897685\pi\)
\(468\) 0 0
\(469\) 97.3060 + 176.362i 0.207476 + 0.376038i
\(470\) 0 0
\(471\) −203.799 −0.432694
\(472\) 0 0
\(473\) 233.224 0.493074
\(474\) 0 0
\(475\) 155.805i 0.328010i
\(476\) 0 0
\(477\) 196.940 0.412872
\(478\) 0 0
\(479\) 785.694i 1.64028i 0.572163 + 0.820140i \(0.306104\pi\)
−0.572163 + 0.820140i \(0.693896\pi\)
\(480\) 0 0
\(481\) 15.9291i 0.0331167i
\(482\) 0 0
\(483\) −199.953 + 110.322i −0.413981 + 0.228410i
\(484\) 0 0
\(485\) −293.224 −0.604586
\(486\) 0 0
\(487\) −503.451 −1.03378 −0.516890 0.856052i \(-0.672910\pi\)
−0.516890 + 0.856052i \(0.672910\pi\)
\(488\) 0 0
\(489\) 462.877i 0.946579i
\(490\) 0 0
\(491\) −851.213 −1.73363 −0.866816 0.498628i \(-0.833837\pi\)
−0.866816 + 0.498628i \(0.833837\pi\)
\(492\) 0 0
\(493\) 343.506i 0.696767i
\(494\) 0 0
\(495\) 83.4429i 0.168571i
\(496\) 0 0
\(497\) 305.647 + 553.968i 0.614983 + 1.11462i
\(498\) 0 0
\(499\) 393.990 0.789559 0.394779 0.918776i \(-0.370821\pi\)
0.394779 + 0.918776i \(0.370821\pi\)
\(500\) 0 0
\(501\) 415.268 0.828877
\(502\) 0 0
\(503\) 389.312i 0.773980i 0.922084 + 0.386990i \(0.126485\pi\)
−0.922084 + 0.386990i \(0.873515\pi\)
\(504\) 0 0
\(505\) 19.1165 0.0378545
\(506\) 0 0
\(507\) 46.7428i 0.0921948i
\(508\) 0 0
\(509\) 519.840i 1.02130i −0.859790 0.510649i \(-0.829405\pi\)
0.859790 0.510649i \(-0.170595\pi\)
\(510\) 0 0
\(511\) 383.435 211.556i 0.750362 0.414005i
\(512\) 0 0
\(513\) −259.836 −0.506503
\(514\) 0 0
\(515\) −328.329 −0.637533
\(516\) 0 0
\(517\) 132.418i 0.256127i
\(518\) 0 0
\(519\) 455.858 0.878340
\(520\) 0 0
\(521\) 930.043i 1.78511i 0.450938 + 0.892555i \(0.351090\pi\)
−0.450938 + 0.892555i \(0.648910\pi\)
\(522\) 0 0
\(523\) 1007.90i 1.92715i 0.267442 + 0.963574i \(0.413822\pi\)
−0.267442 + 0.963574i \(0.586178\pi\)
\(524\) 0 0
\(525\) −139.306 + 76.8608i −0.265345 + 0.146401i
\(526\) 0 0
\(527\) −1043.79 −1.98062
\(528\) 0 0
\(529\) −91.9654 −0.173848
\(530\) 0 0
\(531\) 415.566i 0.782610i
\(532\) 0 0
\(533\) 33.3880 0.0626416
\(534\) 0 0
\(535\) 582.368i 1.08854i
\(536\) 0 0
\(537\) 342.350i 0.637524i
\(538\) 0 0
\(539\) −102.814 + 163.105i −0.190749 + 0.302607i
\(540\) 0 0
\(541\) 629.293 1.16320 0.581602 0.813474i \(-0.302426\pi\)
0.581602 + 0.813474i \(0.302426\pi\)
\(542\) 0 0
\(543\) −270.877 −0.498853
\(544\) 0 0
\(545\) 427.245i 0.783936i
\(546\) 0 0
\(547\) −227.728 −0.416322 −0.208161 0.978095i \(-0.566748\pi\)
−0.208161 + 0.978095i \(0.566748\pi\)
\(548\) 0 0
\(549\) 677.140i 1.23341i
\(550\) 0 0
\(551\) 140.450i 0.254901i
\(552\) 0 0
\(553\) −470.328 852.444i −0.850502 1.54149i
\(554\) 0 0
\(555\) 5.69312 0.0102579
\(556\) 0 0
\(557\) 452.259 0.811954 0.405977 0.913883i \(-0.366931\pi\)
0.405977 + 0.913883i \(0.366931\pi\)
\(558\) 0 0
\(559\) 836.035i 1.49559i
\(560\) 0 0
\(561\) −160.656 −0.286373
\(562\) 0 0
\(563\) 123.008i 0.218487i 0.994015 + 0.109244i \(0.0348429\pi\)
−0.994015 + 0.109244i \(0.965157\pi\)
\(564\) 0 0
\(565\) 359.254i 0.635848i
\(566\) 0 0
\(567\) −71.6115 129.792i −0.126299 0.228910i
\(568\) 0 0
\(569\) 317.823 0.558565 0.279282 0.960209i \(-0.409903\pi\)
0.279282 + 0.960209i \(0.409903\pi\)
\(570\) 0 0
\(571\) 934.353 1.63635 0.818173 0.574972i \(-0.194987\pi\)
0.818173 + 0.574972i \(0.194987\pi\)
\(572\) 0 0
\(573\) 241.610i 0.421658i
\(574\) 0 0
\(575\) 304.480 0.529530
\(576\) 0 0
\(577\) 382.661i 0.663190i 0.943422 + 0.331595i \(0.107587\pi\)
−0.943422 + 0.331595i \(0.892413\pi\)
\(578\) 0 0
\(579\) 256.611i 0.443197i
\(580\) 0 0
\(581\) 670.763 370.087i 1.15450 0.636983i
\(582\) 0 0
\(583\) 118.044 0.202477
\(584\) 0 0
\(585\) −299.116 −0.511310
\(586\) 0 0
\(587\) 962.844i 1.64028i 0.572163 + 0.820140i \(0.306104\pi\)
−0.572163 + 0.820140i \(0.693896\pi\)
\(588\) 0 0
\(589\) −426.776 −0.724577
\(590\) 0 0
\(591\) 91.8711i 0.155450i
\(592\) 0 0
\(593\) 136.511i 0.230205i −0.993354 0.115102i \(-0.963280\pi\)
0.993354 0.115102i \(-0.0367196\pi\)
\(594\) 0 0
\(595\) −285.805 518.007i −0.480345 0.870599i
\(596\) 0 0
\(597\) −15.3188 −0.0256597
\(598\) 0 0
\(599\) 120.150 0.200585 0.100292 0.994958i \(-0.468022\pi\)
0.100292 + 0.994958i \(0.468022\pi\)
\(600\) 0 0
\(601\) 145.464i 0.242037i 0.992650 + 0.121019i \(0.0386161\pi\)
−0.992650 + 0.121019i \(0.961384\pi\)
\(602\) 0 0
\(603\) −188.898 −0.313264
\(604\) 0 0
\(605\) 340.861i 0.563406i
\(606\) 0 0
\(607\) 839.885i 1.38367i 0.722058 + 0.691833i \(0.243196\pi\)
−0.722058 + 0.691833i \(0.756804\pi\)
\(608\) 0 0
\(609\) 125.577 69.2862i 0.206203 0.113770i
\(610\) 0 0
\(611\) 474.676 0.776884
\(612\) 0 0
\(613\) −948.397 −1.54714 −0.773570 0.633711i \(-0.781531\pi\)
−0.773570 + 0.633711i \(0.781531\pi\)
\(614\) 0 0
\(615\) 11.9330i 0.0194032i
\(616\) 0 0
\(617\) −1029.28 −1.66820 −0.834101 0.551612i \(-0.814013\pi\)
−0.834101 + 0.551612i \(0.814013\pi\)
\(618\) 0 0
\(619\) 729.440i 1.17842i 0.807981 + 0.589208i \(0.200560\pi\)
−0.807981 + 0.589208i \(0.799440\pi\)
\(620\) 0 0
\(621\) 507.782i 0.817684i
\(622\) 0 0
\(623\) −12.5450 + 6.92160i −0.0201365 + 0.0111101i
\(624\) 0 0
\(625\) −48.7542 −0.0780067
\(626\) 0 0
\(627\) −65.6876 −0.104765
\(628\) 0 0
\(629\) 29.5467i 0.0469741i
\(630\) 0 0
\(631\) 528.907 0.838204 0.419102 0.907939i \(-0.362345\pi\)
0.419102 + 0.907939i \(0.362345\pi\)
\(632\) 0 0
\(633\) 261.368i 0.412904i
\(634\) 0 0
\(635\) 356.742i 0.561799i
\(636\) 0 0
\(637\) −584.681 368.556i −0.917867 0.578580i
\(638\) 0 0
\(639\) −593.345 −0.928552
\(640\) 0 0
\(641\) −191.047 −0.298046 −0.149023 0.988834i \(-0.547613\pi\)
−0.149023 + 0.988834i \(0.547613\pi\)
\(642\) 0 0
\(643\) 113.192i 0.176037i −0.996119 0.0880187i \(-0.971946\pi\)
0.996119 0.0880187i \(-0.0280535\pi\)
\(644\) 0 0
\(645\) 298.802 0.463258
\(646\) 0 0
\(647\) 11.5293i 0.0178197i 0.999960 + 0.00890984i \(0.00283613\pi\)
−0.999960 + 0.00890984i \(0.997164\pi\)
\(648\) 0 0
\(649\) 249.087i 0.383801i
\(650\) 0 0
\(651\) 210.535 + 381.583i 0.323402 + 0.586149i
\(652\) 0 0
\(653\) 714.845 1.09471 0.547355 0.836901i \(-0.315635\pi\)
0.547355 + 0.836901i \(0.315635\pi\)
\(654\) 0 0
\(655\) −647.228 −0.988135
\(656\) 0 0
\(657\) 410.690i 0.625099i
\(658\) 0 0
\(659\) −30.7379 −0.0466432 −0.0233216 0.999728i \(-0.507424\pi\)
−0.0233216 + 0.999728i \(0.507424\pi\)
\(660\) 0 0
\(661\) 177.796i 0.268980i 0.990915 + 0.134490i \(0.0429397\pi\)
−0.990915 + 0.134490i \(0.957060\pi\)
\(662\) 0 0
\(663\) 575.900i 0.868627i
\(664\) 0 0
\(665\) −116.858 211.799i −0.175726 0.318494i
\(666\) 0 0
\(667\) −274.473 −0.411504
\(668\) 0 0
\(669\) −269.931 −0.403484
\(670\) 0 0
\(671\) 405.873i 0.604878i
\(672\) 0 0
\(673\) 899.362 1.33635 0.668174 0.744005i \(-0.267076\pi\)
0.668174 + 0.744005i \(0.267076\pi\)
\(674\) 0 0
\(675\) 353.769i 0.524102i
\(676\) 0 0
\(677\) 639.977i 0.945313i 0.881247 + 0.472657i \(0.156705\pi\)
−0.881247 + 0.472657i \(0.843295\pi\)
\(678\) 0 0
\(679\) 556.335 306.952i 0.819344 0.452065i
\(680\) 0 0
\(681\) 560.013 0.822339
\(682\) 0 0
\(683\) −459.196 −0.672322 −0.336161 0.941805i \(-0.609129\pi\)
−0.336161 + 0.941805i \(0.609129\pi\)
\(684\) 0 0
\(685\) 692.972i 1.01164i
\(686\) 0 0
\(687\) −374.200 −0.544687
\(688\) 0 0
\(689\) 423.152i 0.614153i
\(690\) 0 0
\(691\) 795.387i 1.15107i −0.817778 0.575533i \(-0.804795\pi\)
0.817778 0.575533i \(-0.195205\pi\)
\(692\) 0 0
\(693\) −87.3495 158.316i −0.126045 0.228451i
\(694\) 0 0
\(695\) −154.082 −0.221701
\(696\) 0 0
\(697\) −61.9309 −0.0888535
\(698\) 0 0
\(699\) 39.7673i 0.0568916i
\(700\) 0 0
\(701\) −645.810 −0.921270 −0.460635 0.887590i \(-0.652378\pi\)
−0.460635 + 0.887590i \(0.652378\pi\)
\(702\) 0 0
\(703\) 12.0808i 0.0171847i
\(704\) 0 0
\(705\) 169.651i 0.240639i
\(706\) 0 0
\(707\) −36.2698 + 20.0115i −0.0513009 + 0.0283048i
\(708\) 0 0
\(709\) −418.000 −0.589563 −0.294781 0.955565i \(-0.595247\pi\)
−0.294781 + 0.955565i \(0.595247\pi\)
\(710\) 0 0
\(711\) 913.037 1.28416
\(712\) 0 0
\(713\) 834.022i 1.16974i
\(714\) 0 0
\(715\) −179.288 −0.250753
\(716\) 0 0
\(717\) 62.5607i 0.0872534i
\(718\) 0 0
\(719\) 258.373i 0.359351i −0.983726 0.179675i \(-0.942495\pi\)
0.983726 0.179675i \(-0.0575047\pi\)
\(720\) 0 0
\(721\) 622.940 343.701i 0.863994 0.476701i
\(722\) 0 0
\(723\) 623.217 0.861988
\(724\) 0 0
\(725\) −191.224 −0.263757
\(726\) 0 0
\(727\) 345.892i 0.475780i −0.971292 0.237890i \(-0.923544\pi\)
0.971292 0.237890i \(-0.0764558\pi\)
\(728\) 0 0
\(729\) −202.129 −0.277269
\(730\) 0 0
\(731\) 1550.75i 2.12141i
\(732\) 0 0
\(733\) 1100.86i 1.50186i 0.660382 + 0.750930i \(0.270394\pi\)
−0.660382 + 0.750930i \(0.729606\pi\)
\(734\) 0 0
\(735\) −131.723 + 208.967i −0.179215 + 0.284309i
\(736\) 0 0
\(737\) −113.224 −0.153628
\(738\) 0 0
\(739\) 538.142 0.728203 0.364101 0.931359i \(-0.381376\pi\)
0.364101 + 0.931359i \(0.381376\pi\)
\(740\) 0 0
\(741\) 235.470i 0.317773i
\(742\) 0 0
\(743\) −73.5300 −0.0989637 −0.0494819 0.998775i \(-0.515757\pi\)
−0.0494819 + 0.998775i \(0.515757\pi\)
\(744\) 0 0
\(745\) 692.972i 0.930164i
\(746\) 0 0
\(747\) 718.442i 0.961770i
\(748\) 0 0
\(749\) 609.634 + 1104.93i 0.813930 + 1.47521i
\(750\) 0 0
\(751\) 1198.49 1.59586 0.797932 0.602747i \(-0.205927\pi\)
0.797932 + 0.602747i \(0.205927\pi\)
\(752\) 0 0
\(753\) −583.306 −0.774643
\(754\) 0 0
\(755\) 180.345i 0.238868i
\(756\) 0 0
\(757\) 172.259 0.227554 0.113777 0.993506i \(-0.463705\pi\)
0.113777 + 0.993506i \(0.463705\pi\)
\(758\) 0 0
\(759\) 128.369i 0.169130i
\(760\) 0 0
\(761\) 899.967i 1.18261i 0.806448 + 0.591305i \(0.201387\pi\)
−0.806448 + 0.591305i \(0.798613\pi\)
\(762\) 0 0
\(763\) −447.248 810.613i −0.586171 1.06240i
\(764\) 0 0
\(765\) 554.827 0.725264
\(766\) 0 0
\(767\) 892.899 1.16415
\(768\) 0 0
\(769\) 1170.05i 1.52152i −0.649031 0.760762i \(-0.724826\pi\)
0.649031 0.760762i \(-0.275174\pi\)
\(770\) 0 0
\(771\) 296.083 0.384025
\(772\) 0 0
\(773\) 684.116i 0.885014i 0.896765 + 0.442507i \(0.145911\pi\)
−0.896765 + 0.442507i \(0.854089\pi\)
\(774\) 0 0
\(775\) 581.059i 0.749753i
\(776\) 0 0
\(777\) −10.8016 + 5.95966i −0.0139016 + 0.00767009i
\(778\) 0 0
\(779\) −25.3218 −0.0325056
\(780\) 0 0
\(781\) −355.647 −0.455373
\(782\) 0 0
\(783\) 318.905i 0.407286i
\(784\) 0 0
\(785\) 421.867 0.537410
\(786\) 0 0
\(787\) 709.630i 0.901690i −0.892602 0.450845i \(-0.851123\pi\)
0.892602 0.450845i \(-0.148877\pi\)
\(788\) 0 0
\(789\) 45.0859i 0.0571430i
\(790\) 0 0
\(791\) −376.074 681.614i −0.475441 0.861712i
\(792\) 0 0
\(793\) 1454.93 1.83471
\(794\) 0 0
\(795\) 151.236 0.190234
\(796\) 0 0
\(797\) 1173.92i 1.47293i −0.676478 0.736463i \(-0.736494\pi\)
0.676478 0.736463i \(-0.263506\pi\)
\(798\) 0 0
\(799\) −880.470 −1.10197
\(800\) 0 0
\(801\) 13.4368i 0.0167750i
\(802\) 0 0
\(803\) 246.164i 0.306556i
\(804\) 0 0
\(805\) 413.905 228.368i 0.514168 0.283687i
\(806\) 0 0
\(807\) −207.189 −0.256739
\(808\) 0 0
\(809\) −123.211 −0.152301 −0.0761503 0.997096i \(-0.524263\pi\)
−0.0761503 + 0.997096i \(0.524263\pi\)
\(810\) 0 0
\(811\) 295.753i 0.364676i 0.983236 + 0.182338i \(0.0583666\pi\)
−0.983236 + 0.182338i \(0.941633\pi\)
\(812\) 0 0
\(813\) −519.672 −0.639203
\(814\) 0 0
\(815\) 958.162i 1.17566i
\(816\) 0 0
\(817\) 634.059i 0.776082i
\(818\) 0 0
\(819\) 567.514 313.121i 0.692936 0.382321i
\(820\) 0 0
\(821\) −692.750 −0.843788 −0.421894 0.906645i \(-0.638635\pi\)
−0.421894 + 0.906645i \(0.638635\pi\)
\(822\) 0 0
\(823\) −631.980 −0.767897 −0.383949 0.923354i \(-0.625436\pi\)
−0.383949 + 0.923354i \(0.625436\pi\)
\(824\) 0 0
\(825\) 89.4342i 0.108405i
\(826\) 0 0
\(827\) 1074.28 1.29900 0.649501 0.760360i \(-0.274978\pi\)
0.649501 + 0.760360i \(0.274978\pi\)
\(828\) 0 0
\(829\) 474.866i 0.572817i 0.958108 + 0.286409i \(0.0924615\pi\)
−0.958108 + 0.286409i \(0.907539\pi\)
\(830\) 0 0
\(831\) 681.870i 0.820541i
\(832\) 0 0
\(833\) 1084.52 + 683.629i 1.30194 + 0.820683i
\(834\) 0 0
\(835\) −859.610 −1.02947
\(836\) 0 0
\(837\) −969.035 −1.15775
\(838\) 0 0
\(839\) 137.181i 0.163506i −0.996653 0.0817528i \(-0.973948\pi\)
0.996653 0.0817528i \(-0.0260518\pi\)
\(840\) 0 0
\(841\) −668.621 −0.795031
\(842\) 0 0
\(843\) 241.133i 0.286042i
\(844\) 0 0
\(845\) 96.7583i 0.114507i
\(846\) 0 0
\(847\) 356.819 + 646.716i 0.421274 + 0.763537i
\(848\) 0 0
\(849\) −658.410 −0.775512
\(850\) 0 0
\(851\) 23.6089 0.0277425
\(852\) 0 0
\(853\) 586.940i 0.688089i 0.938953 + 0.344045i \(0.111797\pi\)
−0.938953 + 0.344045i \(0.888203\pi\)
\(854\) 0 0
\(855\) 226.854 0.265326
\(856\) 0 0
\(857\) 861.341i 1.00507i −0.864558 0.502533i \(-0.832402\pi\)
0.864558 0.502533i \(-0.167598\pi\)
\(858\) 0 0
\(859\) 253.465i 0.295070i −0.989057 0.147535i \(-0.952866\pi\)
0.989057 0.147535i \(-0.0471339\pi\)
\(860\) 0 0
\(861\) 12.4916 + 22.6404i 0.0145083 + 0.0262955i
\(862\) 0 0
\(863\) 600.447 0.695767 0.347883 0.937538i \(-0.386901\pi\)
0.347883 + 0.937538i \(0.386901\pi\)
\(864\) 0 0
\(865\) −943.634 −1.09091
\(866\) 0 0
\(867\) 617.227i 0.711912i
\(868\) 0 0
\(869\) 547.268 0.629767
\(870\) 0 0
\(871\) 405.873i 0.465985i
\(872\) 0 0
\(873\) 595.880i 0.682565i
\(874\) 0 0
\(875\) 783.340 432.201i 0.895246 0.493943i
\(876\) 0 0
\(877\) 1156.61 1.31883 0.659414 0.751780i \(-0.270804\pi\)
0.659414 + 0.751780i \(0.270804\pi\)
\(878\) 0 0
\(879\) 266.292 0.302949
\(880\) 0 0
\(881\) 57.7013i 0.0654952i −0.999464 0.0327476i \(-0.989574\pi\)
0.999464 0.0327476i \(-0.0104257\pi\)
\(882\) 0 0
\(883\) 590.053 0.668237 0.334118 0.942531i \(-0.391561\pi\)
0.334118 + 0.942531i \(0.391561\pi\)
\(884\) 0 0
\(885\) 319.125i 0.360593i
\(886\) 0 0
\(887\) 1077.85i 1.21516i 0.794258 + 0.607580i \(0.207860\pi\)
−0.794258 + 0.607580i \(0.792140\pi\)
\(888\) 0 0
\(889\) 373.444 + 676.848i 0.420072 + 0.761359i
\(890\) 0 0
\(891\) 83.3263 0.0935199
\(892\) 0 0
\(893\) −360.000 −0.403135
\(894\) 0 0
\(895\) 708.670i 0.791810i
\(896\) 0 0
\(897\) 460.164 0.513003
\(898\) 0 0
\(899\) 523.796i 0.582643i
\(900\) 0 0
\(901\) 784.898i 0.871141i
\(902\) 0 0
\(903\) −566.917 + 312.791i −0.627815 + 0.346391i
\(904\) 0 0
\(905\) 560.720 0.619580
\(906\) 0 0
\(907\) −132.793 −0.146409 −0.0732045 0.997317i \(-0.523323\pi\)
−0.0732045 + 0.997317i \(0.523323\pi\)
\(908\) 0 0
\(909\) 38.8479i 0.0427369i
\(910\) 0 0
\(911\) 1173.87 1.28855 0.644274 0.764794i \(-0.277160\pi\)
0.644274 + 0.764794i \(0.277160\pi\)
\(912\) 0 0
\(913\) 430.629i 0.471664i
\(914\) 0 0
\(915\) 519.995i 0.568301i
\(916\) 0 0
\(917\) 1227.99 677.530i 1.33914 0.738855i
\(918\) 0 0
\(919\) 1166.90 1.26975 0.634875 0.772615i \(-0.281052\pi\)
0.634875 + 0.772615i \(0.281052\pi\)
\(920\) 0 0
\(921\) −408.038 −0.443039
\(922\) 0 0
\(923\) 1274.88i 1.38124i
\(924\) 0 0
\(925\) 16.4482 0.0177818
\(926\) 0 0
\(927\) 667.219i 0.719762i
\(928\) 0 0
\(929\) 679.675i 0.731619i 0.930690 + 0.365810i \(0.119208\pi\)
−0.930690 + 0.365810i \(0.880792\pi\)
\(930\) 0 0
\(931\) 443.429 + 279.517i 0.476294 + 0.300233i
\(932\) 0 0
\(933\) −10.8016 −0.0115772
\(934\) 0 0
\(935\) 332.559 0.355678
\(936\) 0 0
\(937\) 1411.66i 1.50658i 0.657691 + 0.753288i \(0.271533\pi\)
−0.657691 + 0.753288i \(0.728467\pi\)
\(938\) 0 0
\(939\) −101.519 −0.108114
\(940\) 0 0
\(941\) 607.408i 0.645493i −0.946486 0.322746i \(-0.895394\pi\)
0.946486 0.322746i \(-0.104606\pi\)
\(942\) 0 0
\(943\) 49.4849i 0.0524761i
\(944\) 0 0
\(945\) −265.337 480.909i −0.280780 0.508898i
\(946\) 0 0
\(947\) −954.000 −1.00739 −0.503696 0.863881i \(-0.668027\pi\)
−0.503696 + 0.863881i \(0.668027\pi\)
\(948\) 0 0
\(949\) −882.423 −0.929845
\(950\) 0 0
\(951\) 102.445i 0.107724i
\(952\) 0 0
\(953\) −1105.48 −1.16000 −0.580001 0.814615i \(-0.696948\pi\)
−0.580001 + 0.814615i \(0.696948\pi\)
\(954\) 0 0
\(955\) 500.136i 0.523703i
\(956\) 0 0
\(957\) 80.6205i 0.0842430i
\(958\) 0 0
\(959\) −725.415 1314.78i −0.756429 1.37099i
\(960\) 0 0
\(961\) −630.621 −0.656213
\(962\) 0 0
\(963\) −1183.47 −1.22894
\(964\) 0 0
\(965\) 531.188i 0.550454i
\(966\) 0 0
\(967\) −1508.91 −1.56040 −0.780201 0.625529i \(-0.784883\pi\)
−0.780201 + 0.625529i \(0.784883\pi\)
\(968\) 0 0
\(969\) 436.769i 0.450742i
\(970\) 0 0
\(971\) 1059.05i 1.09068i −0.838216 0.545338i \(-0.816401\pi\)
0.838216 0.545338i \(-0.183599\pi\)
\(972\) 0 0
\(973\) 292.341 161.296i 0.300453 0.165772i
\(974\) 0 0
\(975\) 320.594 0.328814
\(976\) 0 0
\(977\) −1164.21 −1.19161 −0.595807 0.803127i \(-0.703168\pi\)
−0.595807 + 0.803127i \(0.703168\pi\)
\(978\) 0 0
\(979\) 8.05389i 0.00822665i
\(980\) 0 0
\(981\) 868.233 0.885049
\(982\) 0 0
\(983\) 674.013i 0.685669i 0.939396 + 0.342835i \(0.111387\pi\)
−0.939396 + 0.342835i \(0.888613\pi\)
\(984\) 0 0
\(985\) 190.175i 0.193071i
\(986\) 0 0
\(987\) 177.593 + 321.878i 0.179932 + 0.326118i
\(988\) 0 0
\(989\) 1239.10 1.25289
\(990\) 0 0
\(991\) −1482.70 −1.49617 −0.748084 0.663604i \(-0.769026\pi\)
−0.748084 + 0.663604i \(0.769026\pi\)
\(992\) 0 0
\(993\) 118.981i 0.119820i
\(994\) 0 0
\(995\) 31.7102 0.0318696
\(996\) 0 0
\(997\) 102.564i 0.102873i −0.998676 0.0514365i \(-0.983620\pi\)
0.998676 0.0514365i \(-0.0163800\pi\)
\(998\) 0 0
\(999\) 27.4307i 0.0274581i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.c.g.321.4 8
4.3 odd 2 inner 448.3.c.g.321.6 8
7.6 odd 2 inner 448.3.c.g.321.5 8
8.3 odd 2 224.3.c.a.97.3 8
8.5 even 2 224.3.c.a.97.5 yes 8
24.5 odd 2 2016.3.f.c.1441.5 8
24.11 even 2 2016.3.f.c.1441.6 8
28.27 even 2 inner 448.3.c.g.321.3 8
56.13 odd 2 224.3.c.a.97.4 yes 8
56.27 even 2 224.3.c.a.97.6 yes 8
168.83 odd 2 2016.3.f.c.1441.4 8
168.125 even 2 2016.3.f.c.1441.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.3.c.a.97.3 8 8.3 odd 2
224.3.c.a.97.4 yes 8 56.13 odd 2
224.3.c.a.97.5 yes 8 8.5 even 2
224.3.c.a.97.6 yes 8 56.27 even 2
448.3.c.g.321.3 8 28.27 even 2 inner
448.3.c.g.321.4 8 1.1 even 1 trivial
448.3.c.g.321.5 8 7.6 odd 2 inner
448.3.c.g.321.6 8 4.3 odd 2 inner
2016.3.f.c.1441.3 8 168.125 even 2
2016.3.f.c.1441.4 8 168.83 odd 2
2016.3.f.c.1441.5 8 24.5 odd 2
2016.3.f.c.1441.6 8 24.11 even 2