Properties

Label 448.1.bf.a
Level $448$
Weight $1$
Character orbit 448.bf
Analytic conductor $0.224$
Analytic rank $0$
Dimension $8$
Projective image $D_{16}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,1,Mod(13,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.13"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 15, 8])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 448.bf (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.223581125660\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{16}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{16} q^{2} + \zeta_{16}^{2} q^{4} + \zeta_{16}^{5} q^{7} - \zeta_{16}^{3} q^{8} + \zeta_{16}^{3} q^{9} + ( - \zeta_{16}^{7} + \zeta_{16}^{6}) q^{11} - \zeta_{16}^{6} q^{14} + \zeta_{16}^{4} q^{16} + \cdots + (\zeta_{16}^{2} - \zeta_{16}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{22} - 8 q^{44} + 8 q^{56} - 8 q^{63} - 8 q^{67} + 8 q^{74}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{16}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
0.923880 0.382683i
0.923880 + 0.382683i
0.382683 + 0.923880i
−0.382683 + 0.923880i
−0.923880 + 0.382683i
−0.923880 0.382683i
−0.382683 0.923880i
0.382683 0.923880i
−0.923880 + 0.382683i 0 0.707107 0.707107i 0 0 −0.382683 0.923880i −0.382683 + 0.923880i 0.382683 0.923880i 0
69.1 −0.923880 0.382683i 0 0.707107 + 0.707107i 0 0 −0.382683 + 0.923880i −0.382683 0.923880i 0.382683 + 0.923880i 0
125.1 −0.382683 0.923880i 0 −0.707107 + 0.707107i 0 0 0.923880 0.382683i 0.923880 + 0.382683i −0.923880 0.382683i 0
181.1 0.382683 0.923880i 0 −0.707107 0.707107i 0 0 −0.923880 0.382683i −0.923880 + 0.382683i 0.923880 0.382683i 0
237.1 0.923880 0.382683i 0 0.707107 0.707107i 0 0 0.382683 + 0.923880i 0.382683 0.923880i −0.382683 + 0.923880i 0
293.1 0.923880 + 0.382683i 0 0.707107 + 0.707107i 0 0 0.382683 0.923880i 0.382683 + 0.923880i −0.382683 0.923880i 0
349.1 0.382683 + 0.923880i 0 −0.707107 + 0.707107i 0 0 −0.923880 + 0.382683i −0.923880 0.382683i 0.923880 + 0.382683i 0
405.1 −0.382683 + 0.923880i 0 −0.707107 0.707107i 0 0 0.923880 + 0.382683i 0.923880 0.382683i −0.923880 + 0.382683i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
64.i even 16 1 inner
448.bf odd 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.1.bf.a 8
4.b odd 2 1 1792.1.bf.a 8
7.b odd 2 1 CM 448.1.bf.a 8
7.c even 3 2 3136.1.ce.a 16
7.d odd 6 2 3136.1.ce.a 16
8.b even 2 1 3584.1.bf.a 8
8.d odd 2 1 3584.1.bf.b 8
28.d even 2 1 1792.1.bf.a 8
56.e even 2 1 3584.1.bf.b 8
56.h odd 2 1 3584.1.bf.a 8
64.i even 16 1 inner 448.1.bf.a 8
64.i even 16 1 3584.1.bf.a 8
64.j odd 16 1 1792.1.bf.a 8
64.j odd 16 1 3584.1.bf.b 8
448.bd even 16 1 1792.1.bf.a 8
448.bd even 16 1 3584.1.bf.b 8
448.bf odd 16 1 inner 448.1.bf.a 8
448.bf odd 16 1 3584.1.bf.a 8
448.bk odd 48 2 3136.1.ce.a 16
448.bn even 48 2 3136.1.ce.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
448.1.bf.a 8 1.a even 1 1 trivial
448.1.bf.a 8 7.b odd 2 1 CM
448.1.bf.a 8 64.i even 16 1 inner
448.1.bf.a 8 448.bf odd 16 1 inner
1792.1.bf.a 8 4.b odd 2 1
1792.1.bf.a 8 28.d even 2 1
1792.1.bf.a 8 64.j odd 16 1
1792.1.bf.a 8 448.bd even 16 1
3136.1.ce.a 16 7.c even 3 2
3136.1.ce.a 16 7.d odd 6 2
3136.1.ce.a 16 448.bk odd 48 2
3136.1.ce.a 16 448.bn even 48 2
3584.1.bf.a 8 8.b even 2 1
3584.1.bf.a 8 56.h odd 2 1
3584.1.bf.a 8 64.i even 16 1
3584.1.bf.a 8 448.bf odd 16 1
3584.1.bf.b 8 8.d odd 2 1
3584.1.bf.b 8 56.e even 2 1
3584.1.bf.b 8 64.j odd 16 1
3584.1.bf.b 8 448.bd even 16 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(448, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 1 \) Copy content Toggle raw display
$11$ \( T^{8} + 2 T^{4} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 2 T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 8 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} - 8 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} + 4 T^{6} + \cdots + 2 \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} + 4 T^{6} + \cdots + 2 \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} + 8 T^{7} + \cdots + 2 \) Copy content Toggle raw display
$71$ \( T^{8} + 16 \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less