Properties

Label 444.2.w.c.125.9
Level $444$
Weight $2$
Character 444.125
Analytic conductor $3.545$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(29,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 125.9
Character \(\chi\) \(=\) 444.125
Dual form 444.2.w.c.341.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.46554 + 0.923136i) q^{3} +(-0.967937 + 3.61239i) q^{5} +(-0.200342 - 0.347003i) q^{7} +(1.29564 + 2.70579i) q^{9} -4.54763 q^{11} +(0.522156 + 0.139911i) q^{13} +(-4.75328 + 4.40058i) q^{15} +(3.45205 - 0.924974i) q^{17} +(-1.44533 - 0.387274i) q^{19} +(0.0267206 - 0.693491i) q^{21} +(0.783440 + 0.783440i) q^{23} +(-7.78232 - 4.49313i) q^{25} +(-0.599000 + 5.16151i) q^{27} +(1.43664 - 1.43664i) q^{29} +(3.22392 + 3.22392i) q^{31} +(-6.66475 - 4.19808i) q^{33} +(1.44743 - 0.387837i) q^{35} +(3.25206 + 5.14044i) q^{37} +(0.636085 + 0.687067i) q^{39} +(2.79545 + 4.84186i) q^{41} +(8.18323 - 8.18323i) q^{43} +(-11.0285 + 2.06132i) q^{45} -3.05293i q^{47} +(3.41973 - 5.92314i) q^{49} +(5.91301 + 1.83112i) q^{51} +(11.2551 + 6.49812i) q^{53} +(4.40182 - 16.4278i) q^{55} +(-1.76068 - 1.90180i) q^{57} +(-11.1916 + 2.99879i) q^{59} +(-2.09095 + 7.80352i) q^{61} +(0.679347 - 0.991675i) q^{63} +(-1.01083 + 1.75080i) q^{65} +(0.299548 - 0.172944i) q^{67} +(0.424944 + 1.87139i) q^{69} +(2.40554 - 1.38884i) q^{71} +6.01987i q^{73} +(-7.25757 - 13.7690i) q^{75} +(0.911082 + 1.57804i) q^{77} +(13.9480 + 3.73737i) q^{79} +(-5.64264 + 7.01146i) q^{81} +(-8.74947 - 5.05151i) q^{83} +13.3655i q^{85} +(3.43168 - 0.779247i) q^{87} +(-4.30651 - 16.0721i) q^{89} +(-0.0560602 - 0.209220i) q^{91} +(1.74868 + 7.70092i) q^{93} +(2.79797 - 4.84622i) q^{95} +(7.51811 - 7.51811i) q^{97} +(-5.89209 - 12.3049i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 10 q^{9} - 24 q^{19} - 18 q^{21} + 32 q^{31} - 44 q^{37} + 62 q^{39} - 4 q^{43} - 54 q^{45} + 24 q^{49} + 14 q^{51} + 20 q^{55} + 34 q^{57} + 36 q^{61} - 36 q^{63} + 12 q^{67} - 50 q^{69} - 20 q^{75}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.46554 + 0.923136i 0.846132 + 0.532973i
\(4\) 0 0
\(5\) −0.967937 + 3.61239i −0.432874 + 1.61551i 0.313228 + 0.949678i \(0.398590\pi\)
−0.746102 + 0.665831i \(0.768077\pi\)
\(6\) 0 0
\(7\) −0.200342 0.347003i −0.0757222 0.131155i 0.825678 0.564142i \(-0.190793\pi\)
−0.901400 + 0.432987i \(0.857460\pi\)
\(8\) 0 0
\(9\) 1.29564 + 2.70579i 0.431880 + 0.901931i
\(10\) 0 0
\(11\) −4.54763 −1.37116 −0.685581 0.727996i \(-0.740452\pi\)
−0.685581 + 0.727996i \(0.740452\pi\)
\(12\) 0 0
\(13\) 0.522156 + 0.139911i 0.144820 + 0.0388044i 0.330501 0.943806i \(-0.392782\pi\)
−0.185681 + 0.982610i \(0.559449\pi\)
\(14\) 0 0
\(15\) −4.75328 + 4.40058i −1.22729 + 1.13622i
\(16\) 0 0
\(17\) 3.45205 0.924974i 0.837245 0.224339i 0.185373 0.982668i \(-0.440651\pi\)
0.651872 + 0.758329i \(0.273984\pi\)
\(18\) 0 0
\(19\) −1.44533 0.387274i −0.331581 0.0888467i 0.0891879 0.996015i \(-0.471573\pi\)
−0.420768 + 0.907168i \(0.638240\pi\)
\(20\) 0 0
\(21\) 0.0267206 0.693491i 0.00583091 0.151332i
\(22\) 0 0
\(23\) 0.783440 + 0.783440i 0.163358 + 0.163358i 0.784053 0.620694i \(-0.213149\pi\)
−0.620694 + 0.784053i \(0.713149\pi\)
\(24\) 0 0
\(25\) −7.78232 4.49313i −1.55646 0.898625i
\(26\) 0 0
\(27\) −0.599000 + 5.16151i −0.115278 + 0.993333i
\(28\) 0 0
\(29\) 1.43664 1.43664i 0.266778 0.266778i −0.561023 0.827801i \(-0.689592\pi\)
0.827801 + 0.561023i \(0.189592\pi\)
\(30\) 0 0
\(31\) 3.22392 + 3.22392i 0.579034 + 0.579034i 0.934637 0.355603i \(-0.115725\pi\)
−0.355603 + 0.934637i \(0.615725\pi\)
\(32\) 0 0
\(33\) −6.66475 4.19808i −1.16018 0.730792i
\(34\) 0 0
\(35\) 1.44743 0.387837i 0.244660 0.0655564i
\(36\) 0 0
\(37\) 3.25206 + 5.14044i 0.534635 + 0.845083i
\(38\) 0 0
\(39\) 0.636085 + 0.687067i 0.101855 + 0.110019i
\(40\) 0 0
\(41\) 2.79545 + 4.84186i 0.436576 + 0.756172i 0.997423 0.0717476i \(-0.0228576\pi\)
−0.560847 + 0.827920i \(0.689524\pi\)
\(42\) 0 0
\(43\) 8.18323 8.18323i 1.24793 1.24793i 0.291298 0.956632i \(-0.405913\pi\)
0.956632 0.291298i \(-0.0940872\pi\)
\(44\) 0 0
\(45\) −11.0285 + 2.06132i −1.64403 + 0.307283i
\(46\) 0 0
\(47\) 3.05293i 0.445316i −0.974897 0.222658i \(-0.928527\pi\)
0.974897 0.222658i \(-0.0714733\pi\)
\(48\) 0 0
\(49\) 3.41973 5.92314i 0.488532 0.846163i
\(50\) 0 0
\(51\) 5.91301 + 1.83112i 0.827987 + 0.256408i
\(52\) 0 0
\(53\) 11.2551 + 6.49812i 1.54600 + 0.892585i 0.998441 + 0.0558207i \(0.0177775\pi\)
0.547563 + 0.836765i \(0.315556\pi\)
\(54\) 0 0
\(55\) 4.40182 16.4278i 0.593541 2.21512i
\(56\) 0 0
\(57\) −1.76068 1.90180i −0.233208 0.251900i
\(58\) 0 0
\(59\) −11.1916 + 2.99879i −1.45703 + 0.390409i −0.898462 0.439051i \(-0.855315\pi\)
−0.558566 + 0.829460i \(0.688648\pi\)
\(60\) 0 0
\(61\) −2.09095 + 7.80352i −0.267718 + 0.999139i 0.692847 + 0.721085i \(0.256356\pi\)
−0.960565 + 0.278054i \(0.910311\pi\)
\(62\) 0 0
\(63\) 0.679347 0.991675i 0.0855896 0.124939i
\(64\) 0 0
\(65\) −1.01083 + 1.75080i −0.125378 + 0.217161i
\(66\) 0 0
\(67\) 0.299548 0.172944i 0.0365956 0.0211285i −0.481591 0.876396i \(-0.659941\pi\)
0.518186 + 0.855268i \(0.326607\pi\)
\(68\) 0 0
\(69\) 0.424944 + 1.87139i 0.0511572 + 0.225288i
\(70\) 0 0
\(71\) 2.40554 1.38884i 0.285485 0.164825i −0.350419 0.936593i \(-0.613961\pi\)
0.635904 + 0.771768i \(0.280627\pi\)
\(72\) 0 0
\(73\) 6.01987i 0.704572i 0.935892 + 0.352286i \(0.114596\pi\)
−0.935892 + 0.352286i \(0.885404\pi\)
\(74\) 0 0
\(75\) −7.25757 13.7690i −0.838032 1.58991i
\(76\) 0 0
\(77\) 0.911082 + 1.57804i 0.103827 + 0.179834i
\(78\) 0 0
\(79\) 13.9480 + 3.73737i 1.56928 + 0.420486i 0.935586 0.353100i \(-0.114872\pi\)
0.633691 + 0.773586i \(0.281539\pi\)
\(80\) 0 0
\(81\) −5.64264 + 7.01146i −0.626960 + 0.779052i
\(82\) 0 0
\(83\) −8.74947 5.05151i −0.960379 0.554475i −0.0640894 0.997944i \(-0.520414\pi\)
−0.896290 + 0.443469i \(0.853748\pi\)
\(84\) 0 0
\(85\) 13.3655i 1.44969i
\(86\) 0 0
\(87\) 3.43168 0.779247i 0.367915 0.0835440i
\(88\) 0 0
\(89\) −4.30651 16.0721i −0.456489 1.70364i −0.683673 0.729788i \(-0.739619\pi\)
0.227184 0.973852i \(-0.427048\pi\)
\(90\) 0 0
\(91\) −0.0560602 0.209220i −0.00587671 0.0219322i
\(92\) 0 0
\(93\) 1.74868 + 7.70092i 0.181330 + 0.798548i
\(94\) 0 0
\(95\) 2.79797 4.84622i 0.287065 0.497212i
\(96\) 0 0
\(97\) 7.51811 7.51811i 0.763348 0.763348i −0.213578 0.976926i \(-0.568512\pi\)
0.976926 + 0.213578i \(0.0685117\pi\)
\(98\) 0 0
\(99\) −5.89209 12.3049i −0.592177 1.23669i
\(100\) 0 0
\(101\) −4.51005 −0.448767 −0.224384 0.974501i \(-0.572037\pi\)
−0.224384 + 0.974501i \(0.572037\pi\)
\(102\) 0 0
\(103\) −8.37368 8.37368i −0.825083 0.825083i 0.161749 0.986832i \(-0.448287\pi\)
−0.986832 + 0.161749i \(0.948287\pi\)
\(104\) 0 0
\(105\) 2.47929 + 0.767780i 0.241954 + 0.0749277i
\(106\) 0 0
\(107\) 6.38915 3.68878i 0.617662 0.356607i −0.158296 0.987392i \(-0.550600\pi\)
0.775958 + 0.630784i \(0.217267\pi\)
\(108\) 0 0
\(109\) −3.56925 13.3206i −0.341872 1.27589i −0.896224 0.443602i \(-0.853700\pi\)
0.554351 0.832283i \(-0.312966\pi\)
\(110\) 0 0
\(111\) 0.0207083 + 10.5356i 0.00196554 + 0.999998i
\(112\) 0 0
\(113\) 0.365862 + 1.36542i 0.0344174 + 0.128448i 0.980997 0.194023i \(-0.0621535\pi\)
−0.946580 + 0.322470i \(0.895487\pi\)
\(114\) 0 0
\(115\) −3.58841 + 2.07177i −0.334621 + 0.193193i
\(116\) 0 0
\(117\) 0.297955 + 1.59412i 0.0275459 + 0.147376i
\(118\) 0 0
\(119\) −1.01256 1.01256i −0.0928212 0.0928212i
\(120\) 0 0
\(121\) 9.68094 0.880085
\(122\) 0 0
\(123\) −0.372842 + 9.67655i −0.0336181 + 0.872505i
\(124\) 0 0
\(125\) 10.5414 10.5414i 0.942856 0.942856i
\(126\) 0 0
\(127\) 6.46435 11.1966i 0.573618 0.993536i −0.422572 0.906329i \(-0.638873\pi\)
0.996190 0.0872064i \(-0.0277939\pi\)
\(128\) 0 0
\(129\) 19.5471 4.43865i 1.72103 0.390801i
\(130\) 0 0
\(131\) −4.82928 18.0231i −0.421936 1.57469i −0.770523 0.637412i \(-0.780005\pi\)
0.348587 0.937276i \(-0.386662\pi\)
\(132\) 0 0
\(133\) 0.155175 + 0.579119i 0.0134553 + 0.0502160i
\(134\) 0 0
\(135\) −18.0656 7.15983i −1.55484 0.616220i
\(136\) 0 0
\(137\) 3.65206i 0.312017i −0.987756 0.156008i \(-0.950137\pi\)
0.987756 0.156008i \(-0.0498627\pi\)
\(138\) 0 0
\(139\) 10.1738 + 5.87386i 0.862932 + 0.498214i 0.864993 0.501784i \(-0.167323\pi\)
−0.00206117 + 0.999998i \(0.500656\pi\)
\(140\) 0 0
\(141\) 2.81827 4.47420i 0.237341 0.376796i
\(142\) 0 0
\(143\) −2.37457 0.636265i −0.198572 0.0532071i
\(144\) 0 0
\(145\) 3.79913 + 6.58029i 0.315501 + 0.546464i
\(146\) 0 0
\(147\) 10.4796 5.52375i 0.864345 0.455591i
\(148\) 0 0
\(149\) 15.0876i 1.23603i 0.786167 + 0.618014i \(0.212062\pi\)
−0.786167 + 0.618014i \(0.787938\pi\)
\(150\) 0 0
\(151\) 5.44324 3.14266i 0.442964 0.255746i −0.261890 0.965098i \(-0.584346\pi\)
0.704854 + 0.709352i \(0.251012\pi\)
\(152\) 0 0
\(153\) 6.97540 + 8.14210i 0.563928 + 0.658250i
\(154\) 0 0
\(155\) −14.7666 + 8.52551i −1.18608 + 0.684785i
\(156\) 0 0
\(157\) −10.0901 + 17.4766i −0.805279 + 1.39478i 0.110823 + 0.993840i \(0.464651\pi\)
−0.916102 + 0.400945i \(0.868682\pi\)
\(158\) 0 0
\(159\) 10.4962 + 19.9132i 0.832399 + 1.57922i
\(160\) 0 0
\(161\) 0.114900 0.428812i 0.00905537 0.0337951i
\(162\) 0 0
\(163\) −16.0844 + 4.30981i −1.25983 + 0.337570i −0.826126 0.563486i \(-0.809460\pi\)
−0.433703 + 0.901056i \(0.642793\pi\)
\(164\) 0 0
\(165\) 21.6162 20.0122i 1.68282 1.55795i
\(166\) 0 0
\(167\) 5.99171 22.3614i 0.463652 1.73037i −0.197667 0.980269i \(-0.563336\pi\)
0.661319 0.750105i \(-0.269997\pi\)
\(168\) 0 0
\(169\) −11.0053 6.35389i −0.846558 0.488761i
\(170\) 0 0
\(171\) −0.824738 4.41252i −0.0630693 0.337434i
\(172\) 0 0
\(173\) −8.52545 + 14.7665i −0.648178 + 1.12268i 0.335379 + 0.942083i \(0.391136\pi\)
−0.983558 + 0.180595i \(0.942198\pi\)
\(174\) 0 0
\(175\) 3.60065i 0.272183i
\(176\) 0 0
\(177\) −19.1701 5.93655i −1.44092 0.446218i
\(178\) 0 0
\(179\) −3.08154 + 3.08154i −0.230325 + 0.230325i −0.812828 0.582503i \(-0.802073\pi\)
0.582503 + 0.812828i \(0.302073\pi\)
\(180\) 0 0
\(181\) −4.63252 8.02375i −0.344332 0.596401i 0.640900 0.767624i \(-0.278561\pi\)
−0.985232 + 0.171224i \(0.945228\pi\)
\(182\) 0 0
\(183\) −10.2681 + 9.50618i −0.759039 + 0.702717i
\(184\) 0 0
\(185\) −21.7170 + 6.77208i −1.59667 + 0.497893i
\(186\) 0 0
\(187\) −15.6986 + 4.20644i −1.14800 + 0.307605i
\(188\) 0 0
\(189\) 1.91106 0.826214i 0.139009 0.0600982i
\(190\) 0 0
\(191\) 7.86638 + 7.86638i 0.569191 + 0.569191i 0.931902 0.362711i \(-0.118149\pi\)
−0.362711 + 0.931902i \(0.618149\pi\)
\(192\) 0 0
\(193\) −0.180211 + 0.180211i −0.0129719 + 0.0129719i −0.713563 0.700591i \(-0.752920\pi\)
0.700591 + 0.713563i \(0.252920\pi\)
\(194\) 0 0
\(195\) −3.09764 + 1.63275i −0.221827 + 0.116924i
\(196\) 0 0
\(197\) 9.10042 + 5.25413i 0.648378 + 0.374341i 0.787835 0.615887i \(-0.211202\pi\)
−0.139456 + 0.990228i \(0.544536\pi\)
\(198\) 0 0
\(199\) −4.51838 4.51838i −0.320299 0.320299i 0.528583 0.848882i \(-0.322724\pi\)
−0.848882 + 0.528583i \(0.822724\pi\)
\(200\) 0 0
\(201\) 0.598651 + 0.0230663i 0.0422256 + 0.00162697i
\(202\) 0 0
\(203\) −0.786340 0.210699i −0.0551902 0.0147882i
\(204\) 0 0
\(205\) −20.1965 + 5.41164i −1.41059 + 0.377965i
\(206\) 0 0
\(207\) −1.10477 + 3.13488i −0.0767869 + 0.217889i
\(208\) 0 0
\(209\) 6.57281 + 1.76118i 0.454651 + 0.121823i
\(210\) 0 0
\(211\) 11.1919 0.770483 0.385241 0.922816i \(-0.374118\pi\)
0.385241 + 0.922816i \(0.374118\pi\)
\(212\) 0 0
\(213\) 4.80751 + 0.185236i 0.329405 + 0.0126922i
\(214\) 0 0
\(215\) 21.6402 + 37.4818i 1.47585 + 2.55624i
\(216\) 0 0
\(217\) 0.472823 1.76460i 0.0320973 0.119789i
\(218\) 0 0
\(219\) −5.55716 + 8.82238i −0.375518 + 0.596161i
\(220\) 0 0
\(221\) 1.93192 0.129955
\(222\) 0 0
\(223\) −21.3837 −1.43196 −0.715978 0.698122i \(-0.754019\pi\)
−0.715978 + 0.698122i \(0.754019\pi\)
\(224\) 0 0
\(225\) 2.07439 26.8788i 0.138293 1.79192i
\(226\) 0 0
\(227\) −1.33005 + 4.96382i −0.0882786 + 0.329460i −0.995915 0.0902974i \(-0.971218\pi\)
0.907636 + 0.419758i \(0.137885\pi\)
\(228\) 0 0
\(229\) 12.0578 + 20.8848i 0.796804 + 1.38011i 0.921687 + 0.387934i \(0.126811\pi\)
−0.124883 + 0.992172i \(0.539855\pi\)
\(230\) 0 0
\(231\) −0.121515 + 3.15374i −0.00799512 + 0.207501i
\(232\) 0 0
\(233\) −14.1974 −0.930101 −0.465051 0.885284i \(-0.653964\pi\)
−0.465051 + 0.885284i \(0.653964\pi\)
\(234\) 0 0
\(235\) 11.0284 + 2.95504i 0.719412 + 0.192766i
\(236\) 0 0
\(237\) 16.9914 + 18.3532i 1.10371 + 1.19217i
\(238\) 0 0
\(239\) 3.06518 0.821313i 0.198270 0.0531263i −0.158317 0.987388i \(-0.550607\pi\)
0.356587 + 0.934262i \(0.383940\pi\)
\(240\) 0 0
\(241\) 21.0011 + 5.62724i 1.35280 + 0.362482i 0.861169 0.508319i \(-0.169733\pi\)
0.491634 + 0.870802i \(0.336400\pi\)
\(242\) 0 0
\(243\) −14.7421 + 5.06669i −0.945704 + 0.325028i
\(244\) 0 0
\(245\) 18.0866 + 18.0866i 1.15551 + 1.15551i
\(246\) 0 0
\(247\) −0.700502 0.404435i −0.0445718 0.0257336i
\(248\) 0 0
\(249\) −8.15950 15.4802i −0.517088 0.981015i
\(250\) 0 0
\(251\) 6.95415 6.95415i 0.438942 0.438942i −0.452714 0.891656i \(-0.649544\pi\)
0.891656 + 0.452714i \(0.149544\pi\)
\(252\) 0 0
\(253\) −3.56279 3.56279i −0.223991 0.223991i
\(254\) 0 0
\(255\) −12.3381 + 19.5877i −0.772645 + 1.22663i
\(256\) 0 0
\(257\) −5.76497 + 1.54472i −0.359609 + 0.0963569i −0.434100 0.900865i \(-0.642933\pi\)
0.0744909 + 0.997222i \(0.476267\pi\)
\(258\) 0 0
\(259\) 1.13222 2.15832i 0.0703529 0.134111i
\(260\) 0 0
\(261\) 5.74863 + 2.02589i 0.355831 + 0.125399i
\(262\) 0 0
\(263\) 12.3637 + 21.4146i 0.762381 + 1.32048i 0.941620 + 0.336677i \(0.109303\pi\)
−0.179239 + 0.983806i \(0.557364\pi\)
\(264\) 0 0
\(265\) −34.3679 + 34.3679i −2.11121 + 2.11121i
\(266\) 0 0
\(267\) 8.52537 27.5299i 0.521744 1.68480i
\(268\) 0 0
\(269\) 14.4779i 0.882733i −0.897327 0.441367i \(-0.854494\pi\)
0.897327 0.441367i \(-0.145506\pi\)
\(270\) 0 0
\(271\) −11.3828 + 19.7157i −0.691458 + 1.19764i 0.279902 + 0.960029i \(0.409698\pi\)
−0.971360 + 0.237612i \(0.923635\pi\)
\(272\) 0 0
\(273\) 0.110979 0.358372i 0.00671678 0.0216897i
\(274\) 0 0
\(275\) 35.3911 + 20.4331i 2.13416 + 1.23216i
\(276\) 0 0
\(277\) 7.46348 27.8541i 0.448437 1.67359i −0.258260 0.966075i \(-0.583149\pi\)
0.706698 0.707516i \(-0.250184\pi\)
\(278\) 0 0
\(279\) −4.54623 + 12.9003i −0.272176 + 0.772321i
\(280\) 0 0
\(281\) −14.7557 + 3.95378i −0.880251 + 0.235863i −0.670515 0.741896i \(-0.733927\pi\)
−0.209735 + 0.977758i \(0.567260\pi\)
\(282\) 0 0
\(283\) −3.08377 + 11.5088i −0.183311 + 0.684127i 0.811674 + 0.584110i \(0.198556\pi\)
−0.994986 + 0.100017i \(0.968110\pi\)
\(284\) 0 0
\(285\) 8.57427 4.51945i 0.507896 0.267709i
\(286\) 0 0
\(287\) 1.12009 1.94006i 0.0661170 0.114518i
\(288\) 0 0
\(289\) −3.66135 + 2.11388i −0.215374 + 0.124346i
\(290\) 0 0
\(291\) 17.9584 4.07788i 1.05274 0.239050i
\(292\) 0 0
\(293\) 3.48667 2.01303i 0.203693 0.117602i −0.394684 0.918817i \(-0.629146\pi\)
0.598377 + 0.801215i \(0.295813\pi\)
\(294\) 0 0
\(295\) 43.3312i 2.52284i
\(296\) 0 0
\(297\) 2.72403 23.4726i 0.158064 1.36202i
\(298\) 0 0
\(299\) 0.299466 + 0.518690i 0.0173185 + 0.0299966i
\(300\) 0 0
\(301\) −4.47905 1.20016i −0.258168 0.0691759i
\(302\) 0 0
\(303\) −6.60968 4.16339i −0.379716 0.239181i
\(304\) 0 0
\(305\) −26.1654 15.1066i −1.49823 0.865003i
\(306\) 0 0
\(307\) 20.2996i 1.15856i −0.815128 0.579281i \(-0.803333\pi\)
0.815128 0.579281i \(-0.196667\pi\)
\(308\) 0 0
\(309\) −4.54195 20.0020i −0.258382 1.13788i
\(310\) 0 0
\(311\) −3.26840 12.1978i −0.185334 0.691676i −0.994559 0.104177i \(-0.966779\pi\)
0.809225 0.587499i \(-0.199887\pi\)
\(312\) 0 0
\(313\) 1.75350 + 6.54416i 0.0991139 + 0.369898i 0.997611 0.0690814i \(-0.0220068\pi\)
−0.898497 + 0.438979i \(0.855340\pi\)
\(314\) 0 0
\(315\) 2.92475 + 3.41394i 0.164791 + 0.192354i
\(316\) 0 0
\(317\) 15.8266 27.4124i 0.888908 1.53963i 0.0477410 0.998860i \(-0.484798\pi\)
0.841167 0.540775i \(-0.181869\pi\)
\(318\) 0 0
\(319\) −6.53332 + 6.53332i −0.365796 + 0.365796i
\(320\) 0 0
\(321\) 12.7688 + 0.491989i 0.712686 + 0.0274602i
\(322\) 0 0
\(323\) −5.34756 −0.297546
\(324\) 0 0
\(325\) −3.43495 3.43495i −0.190537 0.190537i
\(326\) 0 0
\(327\) 7.06586 22.8169i 0.390743 1.26178i
\(328\) 0 0
\(329\) −1.05938 + 0.611631i −0.0584053 + 0.0337203i
\(330\) 0 0
\(331\) 5.32520 + 19.8739i 0.292700 + 1.09237i 0.943027 + 0.332716i \(0.107965\pi\)
−0.650327 + 0.759654i \(0.725368\pi\)
\(332\) 0 0
\(333\) −9.69548 + 15.4596i −0.531309 + 0.847178i
\(334\) 0 0
\(335\) 0.334797 + 1.24948i 0.0182919 + 0.0682664i
\(336\) 0 0
\(337\) −20.8342 + 12.0286i −1.13491 + 0.655241i −0.945165 0.326593i \(-0.894099\pi\)
−0.189745 + 0.981833i \(0.560766\pi\)
\(338\) 0 0
\(339\) −0.724278 + 2.33882i −0.0393374 + 0.127027i
\(340\) 0 0
\(341\) −14.6612 14.6612i −0.793949 0.793949i
\(342\) 0 0
\(343\) −5.54525 −0.299415
\(344\) 0 0
\(345\) −7.17149 0.276321i −0.386100 0.0148766i
\(346\) 0 0
\(347\) −10.4757 + 10.4757i −0.562364 + 0.562364i −0.929978 0.367615i \(-0.880175\pi\)
0.367615 + 0.929978i \(0.380175\pi\)
\(348\) 0 0
\(349\) −11.2485 + 19.4830i −0.602120 + 1.04290i 0.390379 + 0.920654i \(0.372344\pi\)
−0.992499 + 0.122249i \(0.960989\pi\)
\(350\) 0 0
\(351\) −1.03492 + 2.61131i −0.0552402 + 0.139381i
\(352\) 0 0
\(353\) −2.87775 10.7399i −0.153167 0.571627i −0.999255 0.0385845i \(-0.987715\pi\)
0.846088 0.533043i \(-0.178952\pi\)
\(354\) 0 0
\(355\) 2.68862 + 10.0340i 0.142697 + 0.532552i
\(356\) 0 0
\(357\) −0.549221 2.41868i −0.0290678 0.128010i
\(358\) 0 0
\(359\) 14.9484i 0.788945i −0.918908 0.394472i \(-0.870927\pi\)
0.918908 0.394472i \(-0.129073\pi\)
\(360\) 0 0
\(361\) −14.5155 8.38053i −0.763973 0.441080i
\(362\) 0 0
\(363\) 14.1878 + 8.93682i 0.744668 + 0.469061i
\(364\) 0 0
\(365\) −21.7461 5.82685i −1.13824 0.304991i
\(366\) 0 0
\(367\) 10.8304 + 18.7587i 0.565340 + 0.979198i 0.997018 + 0.0771701i \(0.0245885\pi\)
−0.431678 + 0.902028i \(0.642078\pi\)
\(368\) 0 0
\(369\) −9.47919 + 13.8372i −0.493467 + 0.720337i
\(370\) 0 0
\(371\) 5.20739i 0.270354i
\(372\) 0 0
\(373\) −1.62360 + 0.937384i −0.0840667 + 0.0485359i −0.541444 0.840737i \(-0.682122\pi\)
0.457377 + 0.889273i \(0.348789\pi\)
\(374\) 0 0
\(375\) 25.1801 5.71776i 1.30030 0.295264i
\(376\) 0 0
\(377\) 0.951155 0.549149i 0.0489869 0.0282826i
\(378\) 0 0
\(379\) 4.20204 7.27814i 0.215844 0.373853i −0.737689 0.675140i \(-0.764083\pi\)
0.953533 + 0.301287i \(0.0974164\pi\)
\(380\) 0 0
\(381\) 19.8098 10.4416i 1.01488 0.534940i
\(382\) 0 0
\(383\) 2.51359 9.38085i 0.128439 0.479339i −0.871500 0.490395i \(-0.836853\pi\)
0.999939 + 0.0110557i \(0.00351921\pi\)
\(384\) 0 0
\(385\) −6.58236 + 1.76374i −0.335468 + 0.0898885i
\(386\) 0 0
\(387\) 32.7446 + 11.5396i 1.66450 + 0.586592i
\(388\) 0 0
\(389\) 6.51259 24.3053i 0.330201 1.23233i −0.578777 0.815486i \(-0.696470\pi\)
0.908979 0.416843i \(-0.136863\pi\)
\(390\) 0 0
\(391\) 3.42913 + 1.97981i 0.173419 + 0.100123i
\(392\) 0 0
\(393\) 9.56028 30.8718i 0.482252 1.55728i
\(394\) 0 0
\(395\) −27.0016 + 46.7682i −1.35860 + 2.35316i
\(396\) 0 0
\(397\) 4.93446i 0.247654i 0.992304 + 0.123827i \(0.0395167\pi\)
−0.992304 + 0.123827i \(0.960483\pi\)
\(398\) 0 0
\(399\) −0.307191 + 0.991972i −0.0153788 + 0.0496607i
\(400\) 0 0
\(401\) 18.8678 18.8678i 0.942212 0.942212i −0.0562068 0.998419i \(-0.517901\pi\)
0.998419 + 0.0562068i \(0.0179006\pi\)
\(402\) 0 0
\(403\) 1.23233 + 2.13445i 0.0613866 + 0.106325i
\(404\) 0 0
\(405\) −19.8664 27.1701i −0.987170 1.35009i
\(406\) 0 0
\(407\) −14.7892 23.3768i −0.733071 1.15875i
\(408\) 0 0
\(409\) 35.8678 9.61075i 1.77355 0.475221i 0.784165 0.620552i \(-0.213091\pi\)
0.989383 + 0.145331i \(0.0464247\pi\)
\(410\) 0 0
\(411\) 3.37135 5.35226i 0.166296 0.264007i
\(412\) 0 0
\(413\) 3.28275 + 3.28275i 0.161533 + 0.161533i
\(414\) 0 0
\(415\) 26.7169 26.7169i 1.31148 1.31148i
\(416\) 0 0
\(417\) 9.48781 + 18.0002i 0.464620 + 0.881474i
\(418\) 0 0
\(419\) 12.9550 + 7.47958i 0.632894 + 0.365401i 0.781872 0.623439i \(-0.214265\pi\)
−0.148978 + 0.988840i \(0.547598\pi\)
\(420\) 0 0
\(421\) −2.47407 2.47407i −0.120579 0.120579i 0.644242 0.764821i \(-0.277173\pi\)
−0.764821 + 0.644242i \(0.777173\pi\)
\(422\) 0 0
\(423\) 8.26060 3.95550i 0.401644 0.192323i
\(424\) 0 0
\(425\) −31.0210 8.31205i −1.50474 0.403194i
\(426\) 0 0
\(427\) 3.12675 0.837810i 0.151314 0.0405445i
\(428\) 0 0
\(429\) −2.89268 3.12453i −0.139660 0.150854i
\(430\) 0 0
\(431\) −6.06848 1.62604i −0.292308 0.0783237i 0.109685 0.993966i \(-0.465016\pi\)
−0.401993 + 0.915643i \(0.631682\pi\)
\(432\) 0 0
\(433\) 2.55564 0.122816 0.0614081 0.998113i \(-0.480441\pi\)
0.0614081 + 0.998113i \(0.480441\pi\)
\(434\) 0 0
\(435\) −0.506708 + 13.1508i −0.0242948 + 0.630534i
\(436\) 0 0
\(437\) −0.828920 1.43573i −0.0396526 0.0686804i
\(438\) 0 0
\(439\) 0.849250 3.16944i 0.0405325 0.151269i −0.942694 0.333659i \(-0.891717\pi\)
0.983226 + 0.182390i \(0.0583833\pi\)
\(440\) 0 0
\(441\) 20.4575 + 1.57882i 0.974168 + 0.0751820i
\(442\) 0 0
\(443\) 25.6668 1.21947 0.609733 0.792607i \(-0.291276\pi\)
0.609733 + 0.792607i \(0.291276\pi\)
\(444\) 0 0
\(445\) 62.2271 2.94985
\(446\) 0 0
\(447\) −13.9279 + 22.1116i −0.658769 + 1.04584i
\(448\) 0 0
\(449\) 3.31277 12.3634i 0.156339 0.583467i −0.842648 0.538466i \(-0.819004\pi\)
0.998987 0.0450011i \(-0.0143291\pi\)
\(450\) 0 0
\(451\) −12.7127 22.0190i −0.598617 1.03683i
\(452\) 0 0
\(453\) 10.8784 + 0.419151i 0.511112 + 0.0196934i
\(454\) 0 0
\(455\) 0.810045 0.0379755
\(456\) 0 0
\(457\) 10.0331 + 2.68835i 0.469327 + 0.125756i 0.485729 0.874110i \(-0.338554\pi\)
−0.0164016 + 0.999865i \(0.505221\pi\)
\(458\) 0 0
\(459\) 2.70649 + 18.3719i 0.126328 + 0.857525i
\(460\) 0 0
\(461\) 28.5898 7.66060i 1.33156 0.356790i 0.478262 0.878217i \(-0.341267\pi\)
0.853296 + 0.521427i \(0.174600\pi\)
\(462\) 0 0
\(463\) −32.6190 8.74023i −1.51593 0.406193i −0.597532 0.801845i \(-0.703852\pi\)
−0.918401 + 0.395652i \(0.870519\pi\)
\(464\) 0 0
\(465\) −29.5113 1.13709i −1.36856 0.0527311i
\(466\) 0 0
\(467\) −14.9204 14.9204i −0.690434 0.690434i 0.271894 0.962327i \(-0.412350\pi\)
−0.962327 + 0.271894i \(0.912350\pi\)
\(468\) 0 0
\(469\) −0.120024 0.0692959i −0.00554219 0.00319979i
\(470\) 0 0
\(471\) −30.9208 + 16.2982i −1.42476 + 0.750980i
\(472\) 0 0
\(473\) −37.2143 + 37.2143i −1.71111 + 1.71111i
\(474\) 0 0
\(475\) 9.50792 + 9.50792i 0.436253 + 0.436253i
\(476\) 0 0
\(477\) −3.00006 + 38.8731i −0.137363 + 1.77988i
\(478\) 0 0
\(479\) −8.29683 + 2.22313i −0.379092 + 0.101577i −0.443333 0.896357i \(-0.646204\pi\)
0.0642411 + 0.997934i \(0.479537\pi\)
\(480\) 0 0
\(481\) 0.978876 + 3.13911i 0.0446329 + 0.143131i
\(482\) 0 0
\(483\) 0.564242 0.522374i 0.0256739 0.0237689i
\(484\) 0 0
\(485\) 19.8813 + 34.4354i 0.902762 + 1.56363i
\(486\) 0 0
\(487\) −7.28706 + 7.28706i −0.330208 + 0.330208i −0.852665 0.522457i \(-0.825015\pi\)
0.522457 + 0.852665i \(0.325015\pi\)
\(488\) 0 0
\(489\) −27.5510 8.53190i −1.24590 0.385826i
\(490\) 0 0
\(491\) 36.0804i 1.62829i −0.580664 0.814143i \(-0.697207\pi\)
0.580664 0.814143i \(-0.302793\pi\)
\(492\) 0 0
\(493\) 3.63051 6.28823i 0.163510 0.283207i
\(494\) 0 0
\(495\) 50.1534 9.37410i 2.25423 0.421334i
\(496\) 0 0
\(497\) −0.963862 0.556486i −0.0432351 0.0249618i
\(498\) 0 0
\(499\) −4.42552 + 16.5163i −0.198114 + 0.739370i 0.793325 + 0.608798i \(0.208348\pi\)
−0.991439 + 0.130572i \(0.958319\pi\)
\(500\) 0 0
\(501\) 29.4237 27.2404i 1.31455 1.21701i
\(502\) 0 0
\(503\) −29.7452 + 7.97019i −1.32627 + 0.355373i −0.851324 0.524641i \(-0.824200\pi\)
−0.474947 + 0.880014i \(0.657533\pi\)
\(504\) 0 0
\(505\) 4.36544 16.2921i 0.194260 0.724987i
\(506\) 0 0
\(507\) −10.2632 19.4713i −0.455804 0.864749i
\(508\) 0 0
\(509\) 4.38414 7.59354i 0.194323 0.336578i −0.752355 0.658758i \(-0.771082\pi\)
0.946679 + 0.322180i \(0.104416\pi\)
\(510\) 0 0
\(511\) 2.08891 1.20603i 0.0924079 0.0533517i
\(512\) 0 0
\(513\) 2.86467 7.22809i 0.126478 0.319128i
\(514\) 0 0
\(515\) 38.3542 22.1438i 1.69009 0.975772i
\(516\) 0 0
\(517\) 13.8836i 0.610600i
\(518\) 0 0
\(519\) −26.1259 + 13.7708i −1.14680 + 0.604472i
\(520\) 0 0
\(521\) −5.71195 9.89338i −0.250245 0.433437i 0.713348 0.700810i \(-0.247178\pi\)
−0.963593 + 0.267373i \(0.913844\pi\)
\(522\) 0 0
\(523\) −7.19523 1.92796i −0.314626 0.0843037i 0.0980507 0.995181i \(-0.468739\pi\)
−0.412676 + 0.910878i \(0.635406\pi\)
\(524\) 0 0
\(525\) −3.32389 + 5.27691i −0.145066 + 0.230303i
\(526\) 0 0
\(527\) 14.1112 + 8.14710i 0.614693 + 0.354893i
\(528\) 0 0
\(529\) 21.7724i 0.946628i
\(530\) 0 0
\(531\) −22.6144 26.3969i −0.981383 1.14553i
\(532\) 0 0
\(533\) 0.782230 + 2.91932i 0.0338822 + 0.126450i
\(534\) 0 0
\(535\) 7.14100 + 26.6506i 0.308732 + 1.15221i
\(536\) 0 0
\(537\) −7.36082 + 1.67145i −0.317643 + 0.0721285i
\(538\) 0 0
\(539\) −15.5516 + 26.9362i −0.669857 + 1.16023i
\(540\) 0 0
\(541\) −12.5374 + 12.5374i −0.539023 + 0.539023i −0.923242 0.384219i \(-0.874471\pi\)
0.384219 + 0.923242i \(0.374471\pi\)
\(542\) 0 0
\(543\) 0.617860 16.0356i 0.0265149 0.688154i
\(544\) 0 0
\(545\) 51.5741 2.20919
\(546\) 0 0
\(547\) 7.81206 + 7.81206i 0.334019 + 0.334019i 0.854111 0.520091i \(-0.174102\pi\)
−0.520091 + 0.854111i \(0.674102\pi\)
\(548\) 0 0
\(549\) −23.8238 + 4.45288i −1.01678 + 0.190044i
\(550\) 0 0
\(551\) −2.63279 + 1.52004i −0.112161 + 0.0647560i
\(552\) 0 0
\(553\) −1.49750 5.58876i −0.0636803 0.237658i
\(554\) 0 0
\(555\) −38.0788 10.1230i −1.61636 0.429698i
\(556\) 0 0
\(557\) −2.74596 10.2481i −0.116350 0.434224i 0.883034 0.469308i \(-0.155497\pi\)
−0.999384 + 0.0350842i \(0.988830\pi\)
\(558\) 0 0
\(559\) 5.41785 3.12799i 0.229150 0.132300i
\(560\) 0 0
\(561\) −26.8902 8.32727i −1.13530 0.351577i
\(562\) 0 0
\(563\) 2.80007 + 2.80007i 0.118009 + 0.118009i 0.763645 0.645636i \(-0.223408\pi\)
−0.645636 + 0.763645i \(0.723408\pi\)
\(564\) 0 0
\(565\) −5.28654 −0.222407
\(566\) 0 0
\(567\) 3.56346 + 0.553319i 0.149651 + 0.0232372i
\(568\) 0 0
\(569\) 30.7198 30.7198i 1.28784 1.28784i 0.351743 0.936097i \(-0.385589\pi\)
0.936097 0.351743i \(-0.114411\pi\)
\(570\) 0 0
\(571\) −14.4323 + 24.9975i −0.603974 + 1.04611i 0.388238 + 0.921559i \(0.373084\pi\)
−0.992213 + 0.124555i \(0.960250\pi\)
\(572\) 0 0
\(573\) 4.26679 + 18.7903i 0.178248 + 0.784975i
\(574\) 0 0
\(575\) −2.57689 9.61707i −0.107464 0.401060i
\(576\) 0 0
\(577\) −5.63570 21.0327i −0.234617 0.875604i −0.978321 0.207095i \(-0.933599\pi\)
0.743703 0.668510i \(-0.233067\pi\)
\(578\) 0 0
\(579\) −0.430466 + 0.0977478i −0.0178896 + 0.00406226i
\(580\) 0 0
\(581\) 4.04812i 0.167944i
\(582\) 0 0
\(583\) −51.1839 29.5510i −2.11982 1.22388i
\(584\) 0 0
\(585\) −6.04698 0.466680i −0.250012 0.0192948i
\(586\) 0 0
\(587\) −14.4941 3.88367i −0.598234 0.160296i −0.0530202 0.998593i \(-0.516885\pi\)
−0.545214 + 0.838297i \(0.683551\pi\)
\(588\) 0 0
\(589\) −3.41108 5.90816i −0.140551 0.243442i
\(590\) 0 0
\(591\) 8.48679 + 16.1011i 0.349100 + 0.662310i
\(592\) 0 0
\(593\) 38.7388i 1.59081i 0.606076 + 0.795407i \(0.292743\pi\)
−0.606076 + 0.795407i \(0.707257\pi\)
\(594\) 0 0
\(595\) 4.63785 2.67767i 0.190133 0.109774i
\(596\) 0 0
\(597\) −2.45080 10.7930i −0.100305 0.441726i
\(598\) 0 0
\(599\) −11.4197 + 6.59315i −0.466595 + 0.269389i −0.714813 0.699315i \(-0.753488\pi\)
0.248218 + 0.968704i \(0.420155\pi\)
\(600\) 0 0
\(601\) 17.7850 30.8045i 0.725465 1.25654i −0.233317 0.972401i \(-0.574958\pi\)
0.958782 0.284142i \(-0.0917086\pi\)
\(602\) 0 0
\(603\) 0.856056 + 0.586441i 0.0348613 + 0.0238817i
\(604\) 0 0
\(605\) −9.37053 + 34.9713i −0.380966 + 1.42179i
\(606\) 0 0
\(607\) −19.2009 + 5.14486i −0.779340 + 0.208824i −0.626494 0.779426i \(-0.715511\pi\)
−0.152846 + 0.988250i \(0.548844\pi\)
\(608\) 0 0
\(609\) −0.957911 1.03469i −0.0388165 0.0419276i
\(610\) 0 0
\(611\) 0.427139 1.59411i 0.0172802 0.0644906i
\(612\) 0 0
\(613\) −24.4792 14.1331i −0.988707 0.570830i −0.0838193 0.996481i \(-0.526712\pi\)
−0.904887 + 0.425651i \(0.860045\pi\)
\(614\) 0 0
\(615\) −34.5946 10.7131i −1.39499 0.431995i
\(616\) 0 0
\(617\) −14.1785 + 24.5579i −0.570806 + 0.988664i 0.425678 + 0.904875i \(0.360036\pi\)
−0.996483 + 0.0837895i \(0.973298\pi\)
\(618\) 0 0
\(619\) 17.0435i 0.685037i −0.939511 0.342519i \(-0.888720\pi\)
0.939511 0.342519i \(-0.111280\pi\)
\(620\) 0 0
\(621\) −4.51301 + 3.57445i −0.181101 + 0.143438i
\(622\) 0 0
\(623\) −4.71429 + 4.71429i −0.188874 + 0.188874i
\(624\) 0 0
\(625\) 5.41072 + 9.37164i 0.216429 + 0.374866i
\(626\) 0 0
\(627\) 8.00693 + 8.64868i 0.319766 + 0.345395i
\(628\) 0 0
\(629\) 15.9810 + 14.7370i 0.637206 + 0.587602i
\(630\) 0 0
\(631\) 26.8138 7.18473i 1.06744 0.286019i 0.317999 0.948091i \(-0.396989\pi\)
0.749440 + 0.662072i \(0.230323\pi\)
\(632\) 0 0
\(633\) 16.4022 + 10.3317i 0.651930 + 0.410647i
\(634\) 0 0
\(635\) 34.1893 + 34.1893i 1.35676 + 1.35676i
\(636\) 0 0
\(637\) 2.61434 2.61434i 0.103584 0.103584i
\(638\) 0 0
\(639\) 6.87462 + 4.70946i 0.271956 + 0.186303i
\(640\) 0 0
\(641\) 34.1211 + 19.6998i 1.34770 + 0.778096i 0.987924 0.154942i \(-0.0495191\pi\)
0.359778 + 0.933038i \(0.382852\pi\)
\(642\) 0 0
\(643\) 17.1426 + 17.1426i 0.676039 + 0.676039i 0.959102 0.283062i \(-0.0913503\pi\)
−0.283062 + 0.959102i \(0.591350\pi\)
\(644\) 0 0
\(645\) −2.88625 + 74.9081i −0.113646 + 2.94950i
\(646\) 0 0
\(647\) −14.5312 3.89362i −0.571280 0.153074i −0.0383963 0.999263i \(-0.512225\pi\)
−0.532883 + 0.846189i \(0.678892\pi\)
\(648\) 0 0
\(649\) 50.8954 13.6374i 1.99782 0.535315i
\(650\) 0 0
\(651\) 2.32191 2.14962i 0.0910027 0.0842501i
\(652\) 0 0
\(653\) −1.65353 0.443061i −0.0647075 0.0173383i 0.226320 0.974053i \(-0.427330\pi\)
−0.291028 + 0.956715i \(0.593997\pi\)
\(654\) 0 0
\(655\) 69.7810 2.72657
\(656\) 0 0
\(657\) −16.2885 + 7.79957i −0.635475 + 0.304290i
\(658\) 0 0
\(659\) 1.95850 + 3.39222i 0.0762922 + 0.132142i 0.901647 0.432472i \(-0.142358\pi\)
−0.825355 + 0.564614i \(0.809025\pi\)
\(660\) 0 0
\(661\) −6.79931 + 25.3754i −0.264463 + 0.986988i 0.698116 + 0.715985i \(0.254022\pi\)
−0.962578 + 0.271003i \(0.912645\pi\)
\(662\) 0 0
\(663\) 2.83132 + 1.78343i 0.109959 + 0.0692626i
\(664\) 0 0
\(665\) −2.24220 −0.0869489
\(666\) 0 0
\(667\) 2.25105 0.0871609
\(668\) 0 0
\(669\) −31.3387 19.7400i −1.21163 0.763194i
\(670\) 0 0
\(671\) 9.50885 35.4875i 0.367085 1.36998i
\(672\) 0 0
\(673\) −12.3036 21.3105i −0.474270 0.821460i 0.525296 0.850920i \(-0.323955\pi\)
−0.999566 + 0.0294596i \(0.990621\pi\)
\(674\) 0 0
\(675\) 27.8529 37.4772i 1.07206 1.44250i
\(676\) 0 0
\(677\) 11.1846 0.429857 0.214929 0.976630i \(-0.431048\pi\)
0.214929 + 0.976630i \(0.431048\pi\)
\(678\) 0 0
\(679\) −4.11500 1.10261i −0.157919 0.0423143i
\(680\) 0 0
\(681\) −6.53153 + 6.04688i −0.250289 + 0.231717i
\(682\) 0 0
\(683\) −43.9177 + 11.7677i −1.68047 + 0.450279i −0.967902 0.251328i \(-0.919133\pi\)
−0.712563 + 0.701608i \(0.752466\pi\)
\(684\) 0 0
\(685\) 13.1927 + 3.53496i 0.504066 + 0.135064i
\(686\) 0 0
\(687\) −1.60821 + 41.7386i −0.0613570 + 1.59243i
\(688\) 0 0
\(689\) 4.96774 + 4.96774i 0.189256 + 0.189256i
\(690\) 0 0
\(691\) −25.7644 14.8751i −0.980125 0.565876i −0.0778173 0.996968i \(-0.524795\pi\)
−0.902308 + 0.431092i \(0.858128\pi\)
\(692\) 0 0
\(693\) −3.08942 + 4.50977i −0.117357 + 0.171312i
\(694\) 0 0
\(695\) −31.0663 + 31.0663i −1.17841 + 1.17841i
\(696\) 0 0
\(697\) 14.1286 + 14.1286i 0.535160 + 0.535160i
\(698\) 0 0
\(699\) −20.8069 13.1061i −0.786989 0.495719i
\(700\) 0 0
\(701\) −14.5329 + 3.89409i −0.548902 + 0.147078i −0.522603 0.852576i \(-0.675039\pi\)
−0.0262989 + 0.999654i \(0.508372\pi\)
\(702\) 0 0
\(703\) −2.70953 8.68905i −0.102192 0.327714i
\(704\) 0 0
\(705\) 13.4347 + 14.5114i 0.505978 + 0.546532i
\(706\) 0 0
\(707\) 0.903554 + 1.56500i 0.0339816 + 0.0588579i
\(708\) 0 0
\(709\) 23.3288 23.3288i 0.876132 0.876132i −0.117000 0.993132i \(-0.537328\pi\)
0.993132 + 0.117000i \(0.0373278\pi\)
\(710\) 0 0
\(711\) 7.95908 + 42.5828i 0.298489 + 1.59698i
\(712\) 0 0
\(713\) 5.05150i 0.189180i
\(714\) 0 0
\(715\) 4.59687 7.96201i 0.171913 0.297762i
\(716\) 0 0
\(717\) 5.25034 + 1.62591i 0.196078 + 0.0607207i
\(718\) 0 0
\(719\) 27.8606 + 16.0853i 1.03903 + 0.599882i 0.919557 0.392956i \(-0.128547\pi\)
0.119469 + 0.992838i \(0.461881\pi\)
\(720\) 0 0
\(721\) −1.22809 + 4.58329i −0.0457364 + 0.170691i
\(722\) 0 0
\(723\) 25.5834 + 27.6339i 0.951457 + 1.02772i
\(724\) 0 0
\(725\) −17.6354 + 4.72540i −0.654964 + 0.175497i
\(726\) 0 0
\(727\) −8.54781 + 31.9009i −0.317021 + 1.18314i 0.605072 + 0.796170i \(0.293144\pi\)
−0.922093 + 0.386968i \(0.873523\pi\)
\(728\) 0 0
\(729\) −26.2824 6.18349i −0.973422 0.229018i
\(730\) 0 0
\(731\) 20.6796 35.8182i 0.764864 1.32478i
\(732\) 0 0
\(733\) −23.0689 + 13.3188i −0.852070 + 0.491943i −0.861349 0.508014i \(-0.830380\pi\)
0.00927885 + 0.999957i \(0.497046\pi\)
\(734\) 0 0
\(735\) 9.81032 + 43.2031i 0.361859 + 1.59357i
\(736\) 0 0
\(737\) −1.36223 + 0.786485i −0.0501785 + 0.0289705i
\(738\) 0 0
\(739\) 14.2028i 0.522457i 0.965277 + 0.261229i \(0.0841276\pi\)
−0.965277 + 0.261229i \(0.915872\pi\)
\(740\) 0 0
\(741\) −0.653268 1.23938i −0.0239984 0.0455296i
\(742\) 0 0
\(743\) 5.82579 + 10.0906i 0.213727 + 0.370187i 0.952878 0.303353i \(-0.0981062\pi\)
−0.739151 + 0.673540i \(0.764773\pi\)
\(744\) 0 0
\(745\) −54.5024 14.6039i −1.99681 0.535045i
\(746\) 0 0
\(747\) 2.33218 30.2192i 0.0853302 1.10566i
\(748\) 0 0
\(749\) −2.56003 1.47803i −0.0935415 0.0540062i
\(750\) 0 0
\(751\) 29.7920i 1.08713i −0.839368 0.543563i \(-0.817075\pi\)
0.839368 0.543563i \(-0.182925\pi\)
\(752\) 0 0
\(753\) 16.6112 3.77198i 0.605347 0.137459i
\(754\) 0 0
\(755\) 6.08378 + 22.7050i 0.221411 + 0.826319i
\(756\) 0 0
\(757\) 6.37067 + 23.7757i 0.231546 + 0.864142i 0.979676 + 0.200589i \(0.0642855\pi\)
−0.748129 + 0.663553i \(0.769048\pi\)
\(758\) 0 0
\(759\) −1.93249 8.51037i −0.0701448 0.308907i
\(760\) 0 0
\(761\) −2.21508 + 3.83664i −0.0802967 + 0.139078i −0.903377 0.428846i \(-0.858920\pi\)
0.823081 + 0.567925i \(0.192253\pi\)
\(762\) 0 0
\(763\) −3.90722 + 3.90722i −0.141451 + 0.141451i
\(764\) 0 0
\(765\) −36.1642 + 17.3168i −1.30752 + 0.626091i
\(766\) 0 0
\(767\) −6.26335 −0.226156
\(768\) 0 0
\(769\) 13.5540 + 13.5540i 0.488769 + 0.488769i 0.907918 0.419149i \(-0.137671\pi\)
−0.419149 + 0.907918i \(0.637671\pi\)
\(770\) 0 0
\(771\) −9.87480 3.05800i −0.355632 0.110131i
\(772\) 0 0
\(773\) −12.6701 + 7.31511i −0.455713 + 0.263106i −0.710240 0.703960i \(-0.751414\pi\)
0.254527 + 0.967066i \(0.418080\pi\)
\(774\) 0 0
\(775\) −10.6041 39.5751i −0.380911 1.42158i
\(776\) 0 0
\(777\) 3.65175 2.11792i 0.131006 0.0759799i
\(778\) 0 0
\(779\) −2.16521 8.08068i −0.0775767 0.289520i
\(780\) 0 0
\(781\) −10.9395 + 6.31592i −0.391446 + 0.226002i
\(782\) 0 0
\(783\) 6.55470 + 8.27580i 0.234246 + 0.295753i
\(784\) 0 0
\(785\) −53.3657 53.3657i −1.90470 1.90470i
\(786\) 0 0
\(787\) 55.0389 1.96192 0.980962 0.194199i \(-0.0622109\pi\)
0.980962 + 0.194199i \(0.0622109\pi\)
\(788\) 0 0
\(789\) −1.64901 + 42.7975i −0.0587063 + 1.52363i
\(790\) 0 0
\(791\) 0.400506 0.400506i 0.0142403 0.0142403i
\(792\) 0 0
\(793\) −2.18360 + 3.78211i −0.0775419 + 0.134307i
\(794\) 0 0
\(795\) −82.0940 + 18.6414i −2.91157 + 0.661144i
\(796\) 0 0
\(797\) 2.75041 + 10.2647i 0.0974247 + 0.363594i 0.997376 0.0723968i \(-0.0230648\pi\)
−0.899951 + 0.435991i \(0.856398\pi\)
\(798\) 0 0
\(799\) −2.82388 10.5389i −0.0999018 0.372839i
\(800\) 0 0
\(801\) 37.9081 32.4762i 1.33942 1.14749i
\(802\) 0 0
\(803\) 27.3761i 0.966082i
\(804\) 0 0
\(805\) 1.43782 + 0.830125i 0.0506764 + 0.0292581i
\(806\) 0 0
\(807\) 13.3651 21.2180i 0.470473 0.746909i
\(808\) 0 0
\(809\) −0.0547801 0.0146783i −0.00192597 0.000516061i 0.257856 0.966183i \(-0.416984\pi\)
−0.259782 + 0.965667i \(0.583651\pi\)
\(810\) 0 0
\(811\) −20.3327 35.2173i −0.713978 1.23665i −0.963353 0.268238i \(-0.913558\pi\)
0.249375 0.968407i \(-0.419775\pi\)
\(812\) 0 0
\(813\) −34.8823 + 18.3863i −1.22338 + 0.644834i
\(814\) 0 0
\(815\) 62.2748i 2.18139i
\(816\) 0 0
\(817\) −14.9966 + 8.65828i −0.524664 + 0.302915i
\(818\) 0 0
\(819\) 0.493471 0.422761i 0.0172433 0.0147725i
\(820\) 0 0
\(821\) −7.62925 + 4.40475i −0.266263 + 0.153727i −0.627188 0.778868i \(-0.715794\pi\)
0.360925 + 0.932595i \(0.382461\pi\)
\(822\) 0 0
\(823\) 5.26829 9.12495i 0.183641 0.318076i −0.759477 0.650535i \(-0.774545\pi\)
0.943118 + 0.332459i \(0.107878\pi\)
\(824\) 0 0
\(825\) 33.0047 + 62.6164i 1.14908 + 2.18002i
\(826\) 0 0
\(827\) 8.37001 31.2373i 0.291054 1.08623i −0.653247 0.757144i \(-0.726594\pi\)
0.944301 0.329083i \(-0.106739\pi\)
\(828\) 0 0
\(829\) −10.5225 + 2.81949i −0.365461 + 0.0979249i −0.436876 0.899522i \(-0.643915\pi\)
0.0714151 + 0.997447i \(0.477248\pi\)
\(830\) 0 0
\(831\) 36.6512 33.9316i 1.27142 1.17707i
\(832\) 0 0
\(833\) 6.32632 23.6101i 0.219194 0.818043i
\(834\) 0 0
\(835\) 74.9783 + 43.2888i 2.59473 + 1.49807i
\(836\) 0 0
\(837\) −18.5714 + 14.7092i −0.641923 + 0.508424i
\(838\) 0 0
\(839\) −22.9664 + 39.7790i −0.792889 + 1.37332i 0.131282 + 0.991345i \(0.458091\pi\)
−0.924171 + 0.381979i \(0.875243\pi\)
\(840\) 0 0
\(841\) 24.8721i 0.857659i
\(842\) 0 0
\(843\) −25.2750 7.82708i −0.870517 0.269579i
\(844\) 0 0
\(845\) 33.6051 33.6051i 1.15605 1.15605i
\(846\) 0 0
\(847\) −1.93950 3.35931i −0.0666420 0.115427i
\(848\) 0 0
\(849\) −15.1436 + 14.0199i −0.519727 + 0.481162i
\(850\) 0 0
\(851\) −1.47943 + 6.57501i −0.0507143 + 0.225389i
\(852\) 0 0
\(853\) −18.1100 + 4.85256i −0.620075 + 0.166149i −0.555162 0.831742i \(-0.687344\pi\)
−0.0649132 + 0.997891i \(0.520677\pi\)
\(854\) 0 0
\(855\) 16.7380 + 1.29177i 0.572429 + 0.0441775i
\(856\) 0 0
\(857\) 38.2384 + 38.2384i 1.30620 + 1.30620i 0.924138 + 0.382060i \(0.124785\pi\)
0.382060 + 0.924138i \(0.375215\pi\)
\(858\) 0 0
\(859\) 31.9246 31.9246i 1.08925 1.08925i 0.0936494 0.995605i \(-0.470147\pi\)
0.995605 0.0936494i \(-0.0298533\pi\)
\(860\) 0 0
\(861\) 3.43249 1.80924i 0.116979 0.0616588i
\(862\) 0 0
\(863\) 5.39825 + 3.11668i 0.183759 + 0.106093i 0.589057 0.808091i \(-0.299499\pi\)
−0.405299 + 0.914184i \(0.632833\pi\)
\(864\) 0 0
\(865\) −45.0903 45.0903i −1.53312 1.53312i
\(866\) 0 0
\(867\) −7.31728 0.281939i −0.248508 0.00957514i
\(868\) 0 0
\(869\) −63.4305 16.9962i −2.15173 0.576555i
\(870\) 0 0
\(871\) 0.180607 0.0483936i 0.00611965 0.00163975i
\(872\) 0 0
\(873\) 30.0832 + 10.6017i 1.01816 + 0.358813i
\(874\) 0 0
\(875\) −5.76981 1.54602i −0.195055 0.0522648i
\(876\) 0 0
\(877\) 13.4153 0.453001 0.226501 0.974011i \(-0.427271\pi\)
0.226501 + 0.974011i \(0.427271\pi\)
\(878\) 0 0
\(879\) 6.96816 + 0.268487i 0.235030 + 0.00905584i
\(880\) 0 0
\(881\) −0.791101 1.37023i −0.0266529 0.0461641i 0.852391 0.522904i \(-0.175152\pi\)
−0.879044 + 0.476740i \(0.841818\pi\)
\(882\) 0 0
\(883\) −6.84824 + 25.5580i −0.230462 + 0.860094i 0.749681 + 0.661799i \(0.230207\pi\)
−0.980142 + 0.198295i \(0.936460\pi\)
\(884\) 0 0
\(885\) 40.0006 63.5038i 1.34461 2.13466i
\(886\) 0 0
\(887\) −34.8765 −1.17104 −0.585518 0.810659i \(-0.699109\pi\)
−0.585518 + 0.810659i \(0.699109\pi\)
\(888\) 0 0
\(889\) −5.18032 −0.173743
\(890\) 0 0
\(891\) 25.6606 31.8855i 0.859663 1.06821i
\(892\) 0 0
\(893\) −1.18232 + 4.41248i −0.0395649 + 0.147658i
\(894\) 0 0
\(895\) −8.14899 14.1145i −0.272391 0.471794i
\(896\) 0 0
\(897\) −0.0399411 + 1.03661i −0.00133360 + 0.0346114i
\(898\) 0 0
\(899\) 9.26326 0.308947
\(900\) 0 0
\(901\) 44.8637 + 12.0212i 1.49463 + 0.400484i
\(902\) 0 0
\(903\) −5.45633 5.89365i −0.181575 0.196129i
\(904\) 0 0
\(905\) 33.4689 8.96796i 1.11254 0.298105i
\(906\) 0 0
\(907\) 2.28696 + 0.612788i 0.0759371 + 0.0203473i 0.296588 0.955006i \(-0.404151\pi\)
−0.220650 + 0.975353i \(0.570818\pi\)
\(908\) 0 0
\(909\) −5.84340 12.2033i −0.193813 0.404757i
\(910\) 0 0
\(911\) 1.06913 + 1.06913i 0.0354218 + 0.0354218i 0.724596 0.689174i \(-0.242026\pi\)
−0.689174 + 0.724596i \(0.742026\pi\)
\(912\) 0 0
\(913\) 39.7894 + 22.9724i 1.31684 + 0.760275i
\(914\) 0 0
\(915\) −24.4011 46.2937i −0.806677 1.53042i
\(916\) 0 0
\(917\) −5.28657 + 5.28657i −0.174578 + 0.174578i
\(918\) 0 0
\(919\) −0.102572 0.102572i −0.00338353 0.00338353i 0.705413 0.708797i \(-0.250762\pi\)
−0.708797 + 0.705413i \(0.750762\pi\)
\(920\) 0 0
\(921\) 18.7393 29.7500i 0.617482 0.980296i
\(922\) 0 0
\(923\) 1.45038 0.388628i 0.0477399 0.0127919i
\(924\) 0 0
\(925\) −2.21192 54.6165i −0.0727274 1.79578i
\(926\) 0 0
\(927\) 11.8082 33.5067i 0.387832 1.10050i
\(928\) 0 0
\(929\) −2.08718 3.61510i −0.0684781 0.118608i 0.829753 0.558130i \(-0.188481\pi\)
−0.898232 + 0.439522i \(0.855148\pi\)
\(930\) 0 0
\(931\) −7.23650 + 7.23650i −0.237167 + 0.237167i
\(932\) 0 0
\(933\) 6.47028 20.8936i 0.211827 0.684027i
\(934\) 0 0
\(935\) 60.7812i 1.98776i
\(936\) 0 0
\(937\) 27.0778 46.9001i 0.884593 1.53216i 0.0384128 0.999262i \(-0.487770\pi\)
0.846180 0.532897i \(-0.178897\pi\)
\(938\) 0 0
\(939\) −3.47132 + 11.2095i −0.113282 + 0.365808i
\(940\) 0 0
\(941\) −22.9494 13.2499i −0.748131 0.431933i 0.0768875 0.997040i \(-0.475502\pi\)
−0.825018 + 0.565106i \(0.808835\pi\)
\(942\) 0 0
\(943\) −1.60324 + 5.98338i −0.0522087 + 0.194846i
\(944\) 0 0
\(945\) 1.13482 + 7.70323i 0.0369156 + 0.250586i
\(946\) 0 0
\(947\) 28.7227 7.69622i 0.933362 0.250094i 0.240074 0.970754i \(-0.422828\pi\)
0.693288 + 0.720661i \(0.256162\pi\)
\(948\) 0 0
\(949\) −0.842247 + 3.14331i −0.0273405 + 0.102036i
\(950\) 0 0
\(951\) 48.4999 25.5640i 1.57272 0.828970i
\(952\) 0 0
\(953\) −3.52226 + 6.10073i −0.114097 + 0.197622i −0.917418 0.397924i \(-0.869731\pi\)
0.803321 + 0.595546i \(0.203064\pi\)
\(954\) 0 0
\(955\) −36.0306 + 20.8023i −1.16592 + 0.673145i
\(956\) 0 0
\(957\) −15.6060 + 3.54373i −0.504471 + 0.114552i
\(958\) 0 0
\(959\) −1.26727 + 0.731662i −0.0409224 + 0.0236266i
\(960\) 0 0
\(961\) 10.2126i 0.329440i
\(962\) 0 0
\(963\) 18.2591 + 12.5084i 0.588391 + 0.403077i
\(964\) 0 0
\(965\) −0.476559 0.825424i −0.0153410 0.0265714i
\(966\) 0 0
\(967\) 8.85398 + 2.37242i 0.284725 + 0.0762918i 0.398355 0.917231i \(-0.369581\pi\)
−0.113630 + 0.993523i \(0.536248\pi\)
\(968\) 0 0
\(969\) −7.83708 4.93652i −0.251763 0.158584i
\(970\) 0 0
\(971\) 27.5167 + 15.8868i 0.883053 + 0.509831i 0.871664 0.490104i \(-0.163041\pi\)
0.0113894 + 0.999935i \(0.496375\pi\)
\(972\) 0 0
\(973\) 4.70712i 0.150903i
\(974\) 0 0
\(975\) −1.86314 8.20499i −0.0596683 0.262770i
\(976\) 0 0
\(977\) 8.56426 + 31.9622i 0.273995 + 1.02256i 0.956512 + 0.291693i \(0.0942186\pi\)
−0.682517 + 0.730870i \(0.739115\pi\)
\(978\) 0 0
\(979\) 19.5844 + 73.0900i 0.625920 + 2.33597i
\(980\) 0 0
\(981\) 31.4184 26.9164i 1.00311 0.859374i
\(982\) 0 0
\(983\) −2.63711 + 4.56762i −0.0841109 + 0.145684i −0.905012 0.425386i \(-0.860138\pi\)
0.820901 + 0.571070i \(0.193472\pi\)
\(984\) 0 0
\(985\) −27.7886 + 27.7886i −0.885418 + 0.885418i
\(986\) 0 0
\(987\) −2.11718 0.0815760i −0.0673906 0.00259659i
\(988\) 0 0
\(989\) 12.8221 0.407720
\(990\) 0 0
\(991\) −1.54450 1.54450i −0.0490626 0.0490626i 0.682150 0.731212i \(-0.261045\pi\)
−0.731212 + 0.682150i \(0.761045\pi\)
\(992\) 0 0
\(993\) −10.5420 + 34.0420i −0.334541 + 1.08029i
\(994\) 0 0
\(995\) 20.6956 11.9486i 0.656096 0.378797i
\(996\) 0 0
\(997\) −11.1481 41.6053i −0.353064 1.31765i −0.882903 0.469555i \(-0.844414\pi\)
0.529839 0.848098i \(-0.322252\pi\)
\(998\) 0 0
\(999\) −28.4804 + 13.7064i −0.901081 + 0.433652i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 444.2.w.c.125.9 yes 40
3.2 odd 2 inner 444.2.w.c.125.5 40
37.8 odd 12 inner 444.2.w.c.341.5 yes 40
111.8 even 12 inner 444.2.w.c.341.9 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.w.c.125.5 40 3.2 odd 2 inner
444.2.w.c.125.9 yes 40 1.1 even 1 trivial
444.2.w.c.341.5 yes 40 37.8 odd 12 inner
444.2.w.c.341.9 yes 40 111.8 even 12 inner