Properties

Label 444.2.w.c.125.7
Level $444$
Weight $2$
Character 444.125
Analytic conductor $3.545$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(29,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 125.7
Character \(\chi\) \(=\) 444.125
Dual form 444.2.w.c.341.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10038 - 1.33759i) q^{3} +(-0.662862 + 2.47384i) q^{5} +(1.02662 + 1.77815i) q^{7} +(-0.578306 - 2.94373i) q^{9} +2.87686 q^{11} +(3.09226 + 0.828569i) q^{13} +(2.57958 + 3.60881i) q^{15} +(-1.46072 + 0.391399i) q^{17} +(-0.779971 - 0.208993i) q^{19} +(3.50811 + 0.583457i) q^{21} +(5.03244 + 5.03244i) q^{23} +(-1.35035 - 0.779626i) q^{25} +(-4.57387 - 2.46570i) q^{27} +(2.13411 - 2.13411i) q^{29} +(0.584817 + 0.584817i) q^{31} +(3.16566 - 3.84807i) q^{33} +(-5.07936 + 1.36101i) q^{35} +(-2.93536 - 5.32763i) q^{37} +(4.51097 - 3.22444i) q^{39} +(-4.03149 - 6.98275i) q^{41} +(-4.93052 + 4.93052i) q^{43} +(7.66565 + 0.520655i) q^{45} -10.0236i q^{47} +(1.39212 - 2.41122i) q^{49} +(-1.08382 + 2.38454i) q^{51} +(0.0121765 + 0.00703009i) q^{53} +(-1.90696 + 7.11689i) q^{55} +(-1.13782 + 0.813311i) q^{57} +(3.81761 - 1.02293i) q^{59} +(-0.418368 + 1.56137i) q^{61} +(4.64070 - 4.05040i) q^{63} +(-4.09949 + 7.10052i) q^{65} +(-12.3056 + 7.10465i) q^{67} +(12.2690 - 1.19373i) q^{69} +(-13.4744 + 7.77944i) q^{71} +9.50559i q^{73} +(-2.52873 + 0.948331i) q^{75} +(2.95343 + 5.11550i) q^{77} +(-5.78976 - 1.55136i) q^{79} +(-8.33112 + 3.40476i) q^{81} +(-5.18141 - 2.99149i) q^{83} -3.87303i q^{85} +(-0.506226 - 5.20291i) q^{87} +(0.0713475 + 0.266272i) q^{89} +(1.70124 + 6.34913i) q^{91} +(1.42577 - 0.138723i) q^{93} +(1.03403 - 1.79099i) q^{95} +(1.33676 - 1.33676i) q^{97} +(-1.66371 - 8.46872i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 10 q^{9} - 24 q^{19} - 18 q^{21} + 32 q^{31} - 44 q^{37} + 62 q^{39} - 4 q^{43} - 54 q^{45} + 24 q^{49} + 14 q^{51} + 20 q^{55} + 34 q^{57} + 36 q^{61} - 36 q^{63} + 12 q^{67} - 50 q^{69} - 20 q^{75}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.10038 1.33759i 0.635308 0.772259i
\(4\) 0 0
\(5\) −0.662862 + 2.47384i −0.296441 + 1.10633i 0.643625 + 0.765341i \(0.277430\pi\)
−0.940066 + 0.340992i \(0.889237\pi\)
\(6\) 0 0
\(7\) 1.02662 + 1.77815i 0.388024 + 0.672078i 0.992184 0.124786i \(-0.0398244\pi\)
−0.604159 + 0.796863i \(0.706491\pi\)
\(8\) 0 0
\(9\) −0.578306 2.94373i −0.192769 0.981244i
\(10\) 0 0
\(11\) 2.87686 0.867407 0.433703 0.901056i \(-0.357207\pi\)
0.433703 + 0.901056i \(0.357207\pi\)
\(12\) 0 0
\(13\) 3.09226 + 0.828569i 0.857639 + 0.229804i 0.660735 0.750619i \(-0.270245\pi\)
0.196904 + 0.980423i \(0.436911\pi\)
\(14\) 0 0
\(15\) 2.57958 + 3.60881i 0.666045 + 0.931791i
\(16\) 0 0
\(17\) −1.46072 + 0.391399i −0.354277 + 0.0949283i −0.431568 0.902080i \(-0.642040\pi\)
0.0772910 + 0.997009i \(0.475373\pi\)
\(18\) 0 0
\(19\) −0.779971 0.208993i −0.178938 0.0479462i 0.168238 0.985746i \(-0.446192\pi\)
−0.347175 + 0.937800i \(0.612859\pi\)
\(20\) 0 0
\(21\) 3.50811 + 0.583457i 0.765533 + 0.127321i
\(22\) 0 0
\(23\) 5.03244 + 5.03244i 1.04934 + 1.04934i 0.998718 + 0.0506173i \(0.0161189\pi\)
0.0506173 + 0.998718i \(0.483881\pi\)
\(24\) 0 0
\(25\) −1.35035 0.779626i −0.270070 0.155925i
\(26\) 0 0
\(27\) −4.57387 2.46570i −0.880242 0.474524i
\(28\) 0 0
\(29\) 2.13411 2.13411i 0.396294 0.396294i −0.480630 0.876924i \(-0.659592\pi\)
0.876924 + 0.480630i \(0.159592\pi\)
\(30\) 0 0
\(31\) 0.584817 + 0.584817i 0.105036 + 0.105036i 0.757672 0.652636i \(-0.226337\pi\)
−0.652636 + 0.757672i \(0.726337\pi\)
\(32\) 0 0
\(33\) 3.16566 3.84807i 0.551070 0.669863i
\(34\) 0 0
\(35\) −5.07936 + 1.36101i −0.858568 + 0.230053i
\(36\) 0 0
\(37\) −2.93536 5.32763i −0.482571 0.875857i
\(38\) 0 0
\(39\) 4.51097 3.22444i 0.722333 0.516324i
\(40\) 0 0
\(41\) −4.03149 6.98275i −0.629613 1.09052i −0.987629 0.156806i \(-0.949880\pi\)
0.358016 0.933715i \(-0.383453\pi\)
\(42\) 0 0
\(43\) −4.93052 + 4.93052i −0.751897 + 0.751897i −0.974833 0.222936i \(-0.928436\pi\)
0.222936 + 0.974833i \(0.428436\pi\)
\(44\) 0 0
\(45\) 7.66565 + 0.520655i 1.14273 + 0.0776147i
\(46\) 0 0
\(47\) 10.0236i 1.46209i −0.682330 0.731045i \(-0.739033\pi\)
0.682330 0.731045i \(-0.260967\pi\)
\(48\) 0 0
\(49\) 1.39212 2.41122i 0.198874 0.344461i
\(50\) 0 0
\(51\) −1.08382 + 2.38454i −0.151766 + 0.333903i
\(52\) 0 0
\(53\) 0.0121765 + 0.00703009i 0.00167257 + 0.000965658i 0.500836 0.865542i \(-0.333026\pi\)
−0.499163 + 0.866508i \(0.666359\pi\)
\(54\) 0 0
\(55\) −1.90696 + 7.11689i −0.257135 + 0.959641i
\(56\) 0 0
\(57\) −1.13782 + 0.813311i −0.150707 + 0.107726i
\(58\) 0 0
\(59\) 3.81761 1.02293i 0.497011 0.133174i −0.00160139 0.999999i \(-0.500510\pi\)
0.498613 + 0.866825i \(0.333843\pi\)
\(60\) 0 0
\(61\) −0.418368 + 1.56137i −0.0535665 + 0.199913i −0.987523 0.157473i \(-0.949665\pi\)
0.933957 + 0.357386i \(0.116332\pi\)
\(62\) 0 0
\(63\) 4.64070 4.05040i 0.584673 0.510302i
\(64\) 0 0
\(65\) −4.09949 + 7.10052i −0.508479 + 0.880711i
\(66\) 0 0
\(67\) −12.3056 + 7.10465i −1.50337 + 0.867971i −0.503377 + 0.864067i \(0.667909\pi\)
−0.999992 + 0.00390432i \(0.998757\pi\)
\(68\) 0 0
\(69\) 12.2690 1.19373i 1.47701 0.143708i
\(70\) 0 0
\(71\) −13.4744 + 7.77944i −1.59912 + 0.923250i −0.607457 + 0.794352i \(0.707810\pi\)
−0.991658 + 0.128897i \(0.958856\pi\)
\(72\) 0 0
\(73\) 9.50559i 1.11255i 0.831000 + 0.556273i \(0.187769\pi\)
−0.831000 + 0.556273i \(0.812231\pi\)
\(74\) 0 0
\(75\) −2.52873 + 0.948331i −0.291992 + 0.109504i
\(76\) 0 0
\(77\) 2.95343 + 5.11550i 0.336575 + 0.582965i
\(78\) 0 0
\(79\) −5.78976 1.55136i −0.651399 0.174542i −0.0820376 0.996629i \(-0.526143\pi\)
−0.569361 + 0.822087i \(0.692809\pi\)
\(80\) 0 0
\(81\) −8.33112 + 3.40476i −0.925680 + 0.378306i
\(82\) 0 0
\(83\) −5.18141 2.99149i −0.568734 0.328359i 0.187910 0.982186i \(-0.439829\pi\)
−0.756643 + 0.653828i \(0.773162\pi\)
\(84\) 0 0
\(85\) 3.87303i 0.420089i
\(86\) 0 0
\(87\) −0.506226 5.20291i −0.0542731 0.557810i
\(88\) 0 0
\(89\) 0.0713475 + 0.266272i 0.00756282 + 0.0282248i 0.969604 0.244679i \(-0.0786826\pi\)
−0.962041 + 0.272904i \(0.912016\pi\)
\(90\) 0 0
\(91\) 1.70124 + 6.34913i 0.178339 + 0.665569i
\(92\) 0 0
\(93\) 1.42577 0.138723i 0.147845 0.0143849i
\(94\) 0 0
\(95\) 1.03403 1.79099i 0.106089 0.183751i
\(96\) 0 0
\(97\) 1.33676 1.33676i 0.135728 0.135728i −0.635979 0.771707i \(-0.719403\pi\)
0.771707 + 0.635979i \(0.219403\pi\)
\(98\) 0 0
\(99\) −1.66371 8.46872i −0.167209 0.851138i
\(100\) 0 0
\(101\) 16.7021 1.66192 0.830961 0.556331i \(-0.187791\pi\)
0.830961 + 0.556331i \(0.187791\pi\)
\(102\) 0 0
\(103\) −4.70047 4.70047i −0.463151 0.463151i 0.436536 0.899687i \(-0.356205\pi\)
−0.899687 + 0.436536i \(0.856205\pi\)
\(104\) 0 0
\(105\) −3.76877 + 8.29174i −0.367794 + 0.809191i
\(106\) 0 0
\(107\) 12.7883 7.38335i 1.23630 0.713776i 0.267961 0.963430i \(-0.413650\pi\)
0.968335 + 0.249654i \(0.0803169\pi\)
\(108\) 0 0
\(109\) −1.88602 7.03873i −0.180648 0.674188i −0.995520 0.0945475i \(-0.969860\pi\)
0.814872 0.579641i \(-0.196807\pi\)
\(110\) 0 0
\(111\) −10.3562 1.93613i −0.982969 0.183769i
\(112\) 0 0
\(113\) −0.760983 2.84003i −0.0715872 0.267167i 0.920851 0.389916i \(-0.127496\pi\)
−0.992438 + 0.122748i \(0.960829\pi\)
\(114\) 0 0
\(115\) −15.7852 + 9.11361i −1.47198 + 0.849848i
\(116\) 0 0
\(117\) 0.650812 9.58196i 0.0601676 0.885852i
\(118\) 0 0
\(119\) −2.19557 2.19557i −0.201267 0.201267i
\(120\) 0 0
\(121\) −2.72366 −0.247605
\(122\) 0 0
\(123\) −13.7763 2.29122i −1.24216 0.206592i
\(124\) 0 0
\(125\) −6.23110 + 6.23110i −0.557327 + 0.557327i
\(126\) 0 0
\(127\) −6.27676 + 10.8717i −0.556972 + 0.964705i 0.440775 + 0.897618i \(0.354704\pi\)
−0.997747 + 0.0670868i \(0.978630\pi\)
\(128\) 0 0
\(129\) 1.16956 + 12.0205i 0.102974 + 1.05835i
\(130\) 0 0
\(131\) −5.31985 19.8539i −0.464797 1.73465i −0.657561 0.753402i \(-0.728412\pi\)
0.192764 0.981245i \(-0.438255\pi\)
\(132\) 0 0
\(133\) −0.429110 1.60146i −0.0372086 0.138864i
\(134\) 0 0
\(135\) 9.13159 9.68059i 0.785922 0.833173i
\(136\) 0 0
\(137\) 11.2283i 0.959301i −0.877460 0.479650i \(-0.840764\pi\)
0.877460 0.479650i \(-0.159236\pi\)
\(138\) 0 0
\(139\) −1.30956 0.756076i −0.111076 0.0641295i 0.443433 0.896308i \(-0.353760\pi\)
−0.554509 + 0.832178i \(0.687094\pi\)
\(140\) 0 0
\(141\) −13.4075 11.0298i −1.12911 0.928876i
\(142\) 0 0
\(143\) 8.89601 + 2.38368i 0.743922 + 0.199333i
\(144\) 0 0
\(145\) 3.86481 + 6.69405i 0.320955 + 0.555911i
\(146\) 0 0
\(147\) −1.69337 4.51536i −0.139666 0.372421i
\(148\) 0 0
\(149\) 0.732971i 0.0600473i −0.999549 0.0300237i \(-0.990442\pi\)
0.999549 0.0300237i \(-0.00955826\pi\)
\(150\) 0 0
\(151\) −1.32289 + 0.763770i −0.107655 + 0.0621547i −0.552861 0.833274i \(-0.686464\pi\)
0.445206 + 0.895428i \(0.353131\pi\)
\(152\) 0 0
\(153\) 1.99692 + 4.07363i 0.161441 + 0.329333i
\(154\) 0 0
\(155\) −1.83439 + 1.05909i −0.147342 + 0.0850680i
\(156\) 0 0
\(157\) 9.79030 16.9573i 0.781351 1.35334i −0.149804 0.988716i \(-0.547864\pi\)
0.931155 0.364624i \(-0.118802\pi\)
\(158\) 0 0
\(159\) 0.0228022 0.00855136i 0.00180833 0.000678167i
\(160\) 0 0
\(161\) −3.78205 + 14.1148i −0.298067 + 1.11240i
\(162\) 0 0
\(163\) 9.58339 2.56786i 0.750629 0.201130i 0.136832 0.990594i \(-0.456308\pi\)
0.613797 + 0.789464i \(0.289641\pi\)
\(164\) 0 0
\(165\) 7.42110 + 10.3821i 0.577732 + 0.808242i
\(166\) 0 0
\(167\) −5.09381 + 19.0103i −0.394171 + 1.47106i 0.429017 + 0.903296i \(0.358860\pi\)
−0.823188 + 0.567769i \(0.807807\pi\)
\(168\) 0 0
\(169\) −2.38277 1.37570i −0.183290 0.105823i
\(170\) 0 0
\(171\) −0.164156 + 2.41689i −0.0125533 + 0.184824i
\(172\) 0 0
\(173\) −0.593573 + 1.02810i −0.0451285 + 0.0781649i −0.887707 0.460408i \(-0.847703\pi\)
0.842579 + 0.538573i \(0.181036\pi\)
\(174\) 0 0
\(175\) 3.20150i 0.242011i
\(176\) 0 0
\(177\) 2.83259 6.23203i 0.212910 0.468428i
\(178\) 0 0
\(179\) −6.02413 + 6.02413i −0.450264 + 0.450264i −0.895442 0.445178i \(-0.853140\pi\)
0.445178 + 0.895442i \(0.353140\pi\)
\(180\) 0 0
\(181\) −6.63278 11.4883i −0.493010 0.853919i 0.506957 0.861971i \(-0.330770\pi\)
−0.999968 + 0.00805227i \(0.997437\pi\)
\(182\) 0 0
\(183\) 1.62811 + 2.27771i 0.120353 + 0.168373i
\(184\) 0 0
\(185\) 15.1254 3.73012i 1.11204 0.274244i
\(186\) 0 0
\(187\) −4.20230 + 1.12600i −0.307303 + 0.0823415i
\(188\) 0 0
\(189\) −0.311223 10.6644i −0.0226381 0.775718i
\(190\) 0 0
\(191\) 14.7464 + 14.7464i 1.06701 + 1.06701i 0.997587 + 0.0694219i \(0.0221155\pi\)
0.0694219 + 0.997587i \(0.477885\pi\)
\(192\) 0 0
\(193\) 16.1890 16.1890i 1.16531 1.16531i 0.182013 0.983296i \(-0.441739\pi\)
0.983296 0.182013i \(-0.0582614\pi\)
\(194\) 0 0
\(195\) 4.98659 + 13.2968i 0.357097 + 0.952200i
\(196\) 0 0
\(197\) 2.89250 + 1.66999i 0.206082 + 0.118982i 0.599489 0.800383i \(-0.295370\pi\)
−0.393407 + 0.919364i \(0.628704\pi\)
\(198\) 0 0
\(199\) 12.0201 + 12.0201i 0.852083 + 0.852083i 0.990389 0.138307i \(-0.0441660\pi\)
−0.138307 + 0.990389i \(0.544166\pi\)
\(200\) 0 0
\(201\) −4.03779 + 24.2777i −0.284804 + 1.71242i
\(202\) 0 0
\(203\) 5.98567 + 1.60386i 0.420112 + 0.112569i
\(204\) 0 0
\(205\) 19.9465 5.34465i 1.39312 0.373286i
\(206\) 0 0
\(207\) 11.9039 17.7244i 0.827375 1.23193i
\(208\) 0 0
\(209\) −2.24387 0.601243i −0.155212 0.0415889i
\(210\) 0 0
\(211\) 8.11642 0.558757 0.279379 0.960181i \(-0.409872\pi\)
0.279379 + 0.960181i \(0.409872\pi\)
\(212\) 0 0
\(213\) −4.42129 + 26.5836i −0.302942 + 1.82148i
\(214\) 0 0
\(215\) −8.92904 15.4656i −0.608956 1.05474i
\(216\) 0 0
\(217\) −0.439510 + 1.64027i −0.0298359 + 0.111349i
\(218\) 0 0
\(219\) 12.7146 + 10.4598i 0.859173 + 0.706808i
\(220\) 0 0
\(221\) −4.84124 −0.325657
\(222\) 0 0
\(223\) 22.8725 1.53166 0.765828 0.643045i \(-0.222329\pi\)
0.765828 + 0.643045i \(0.222329\pi\)
\(224\) 0 0
\(225\) −1.51409 + 4.42594i −0.100940 + 0.295062i
\(226\) 0 0
\(227\) −1.77918 + 6.63998i −0.118088 + 0.440711i −0.999499 0.0316388i \(-0.989927\pi\)
0.881411 + 0.472350i \(0.156594\pi\)
\(228\) 0 0
\(229\) −13.1005 22.6907i −0.865703 1.49944i −0.866347 0.499443i \(-0.833538\pi\)
0.000643475 1.00000i \(-0.499795\pi\)
\(230\) 0 0
\(231\) 10.0924 + 1.67853i 0.664029 + 0.110439i
\(232\) 0 0
\(233\) −24.5611 −1.60905 −0.804526 0.593918i \(-0.797580\pi\)
−0.804526 + 0.593918i \(0.797580\pi\)
\(234\) 0 0
\(235\) 24.7967 + 6.64425i 1.61756 + 0.433423i
\(236\) 0 0
\(237\) −8.44605 + 6.03724i −0.548630 + 0.392161i
\(238\) 0 0
\(239\) −23.7109 + 6.35331i −1.53373 + 0.410961i −0.924233 0.381828i \(-0.875295\pi\)
−0.609495 + 0.792790i \(0.708628\pi\)
\(240\) 0 0
\(241\) 15.9973 + 4.28646i 1.03048 + 0.276115i 0.734162 0.678975i \(-0.237575\pi\)
0.296315 + 0.955090i \(0.404242\pi\)
\(242\) 0 0
\(243\) −4.61327 + 14.8902i −0.295941 + 0.955206i
\(244\) 0 0
\(245\) 5.04219 + 5.04219i 0.322134 + 0.322134i
\(246\) 0 0
\(247\) −2.23871 1.29252i −0.142446 0.0822410i
\(248\) 0 0
\(249\) −9.70294 + 3.63883i −0.614899 + 0.230601i
\(250\) 0 0
\(251\) 5.09873 5.09873i 0.321829 0.321829i −0.527639 0.849469i \(-0.676923\pi\)
0.849469 + 0.527639i \(0.176923\pi\)
\(252\) 0 0
\(253\) 14.4776 + 14.4776i 0.910201 + 0.910201i
\(254\) 0 0
\(255\) −5.18054 4.26183i −0.324418 0.266886i
\(256\) 0 0
\(257\) 16.5361 4.43082i 1.03149 0.276387i 0.296908 0.954906i \(-0.404045\pi\)
0.734583 + 0.678519i \(0.237378\pi\)
\(258\) 0 0
\(259\) 6.45984 10.6889i 0.401395 0.664179i
\(260\) 0 0
\(261\) −7.51641 5.04808i −0.465254 0.312468i
\(262\) 0 0
\(263\) −0.208125 0.360484i −0.0128336 0.0222284i 0.859537 0.511073i \(-0.170752\pi\)
−0.872371 + 0.488845i \(0.837418\pi\)
\(264\) 0 0
\(265\) −0.0254626 + 0.0254626i −0.00156416 + 0.00156416i
\(266\) 0 0
\(267\) 0.434674 + 0.197568i 0.0266016 + 0.0120910i
\(268\) 0 0
\(269\) 15.6753i 0.955742i −0.878430 0.477871i \(-0.841409\pi\)
0.878430 0.477871i \(-0.158591\pi\)
\(270\) 0 0
\(271\) −3.83078 + 6.63510i −0.232703 + 0.403054i −0.958603 0.284747i \(-0.908090\pi\)
0.725899 + 0.687801i \(0.241424\pi\)
\(272\) 0 0
\(273\) 10.3646 + 4.71091i 0.627292 + 0.285117i
\(274\) 0 0
\(275\) −3.88478 2.24288i −0.234261 0.135251i
\(276\) 0 0
\(277\) 5.39948 20.1511i 0.324423 1.21076i −0.590467 0.807062i \(-0.701057\pi\)
0.914890 0.403702i \(-0.132277\pi\)
\(278\) 0 0
\(279\) 1.38334 2.05975i 0.0828185 0.123314i
\(280\) 0 0
\(281\) −13.1554 + 3.52498i −0.784786 + 0.210283i −0.628893 0.777491i \(-0.716492\pi\)
−0.155892 + 0.987774i \(0.549825\pi\)
\(282\) 0 0
\(283\) 5.53641 20.6622i 0.329105 1.22824i −0.581015 0.813893i \(-0.697344\pi\)
0.910120 0.414345i \(-0.135989\pi\)
\(284\) 0 0
\(285\) −1.25778 3.35388i −0.0745046 0.198667i
\(286\) 0 0
\(287\) 8.27758 14.3372i 0.488610 0.846298i
\(288\) 0 0
\(289\) −12.7419 + 7.35655i −0.749524 + 0.432738i
\(290\) 0 0
\(291\) −0.317090 3.25900i −0.0185881 0.191046i
\(292\) 0 0
\(293\) 9.08241 5.24373i 0.530600 0.306342i −0.210661 0.977559i \(-0.567562\pi\)
0.741261 + 0.671217i \(0.234228\pi\)
\(294\) 0 0
\(295\) 10.1222i 0.589338i
\(296\) 0 0
\(297\) −13.1584 7.09348i −0.763528 0.411606i
\(298\) 0 0
\(299\) 11.3919 + 19.7313i 0.658810 + 1.14109i
\(300\) 0 0
\(301\) −13.8290 3.70546i −0.797088 0.213579i
\(302\) 0 0
\(303\) 18.3787 22.3406i 1.05583 1.28343i
\(304\) 0 0
\(305\) −3.58525 2.06995i −0.205291 0.118525i
\(306\) 0 0
\(307\) 11.6594i 0.665436i −0.943026 0.332718i \(-0.892034\pi\)
0.943026 0.332718i \(-0.107966\pi\)
\(308\) 0 0
\(309\) −11.4596 + 1.11499i −0.651916 + 0.0634294i
\(310\) 0 0
\(311\) −0.0284178 0.106057i −0.00161143 0.00601392i 0.965115 0.261825i \(-0.0843242\pi\)
−0.966727 + 0.255811i \(0.917658\pi\)
\(312\) 0 0
\(313\) 6.74334 + 25.1665i 0.381156 + 1.42249i 0.844138 + 0.536126i \(0.180113\pi\)
−0.462982 + 0.886368i \(0.653221\pi\)
\(314\) 0 0
\(315\) 6.94387 + 14.1652i 0.391243 + 0.798118i
\(316\) 0 0
\(317\) −1.59586 + 2.76411i −0.0896325 + 0.155248i −0.907356 0.420363i \(-0.861903\pi\)
0.817723 + 0.575611i \(0.195236\pi\)
\(318\) 0 0
\(319\) 6.13954 6.13954i 0.343748 0.343748i
\(320\) 0 0
\(321\) 4.19618 25.2301i 0.234208 1.40821i
\(322\) 0 0
\(323\) 1.22112 0.0679450
\(324\) 0 0
\(325\) −3.52967 3.52967i −0.195791 0.195791i
\(326\) 0 0
\(327\) −11.4903 5.22258i −0.635415 0.288810i
\(328\) 0 0
\(329\) 17.8234 10.2904i 0.982638 0.567326i
\(330\) 0 0
\(331\) −2.30806 8.61380i −0.126863 0.473457i 0.873037 0.487655i \(-0.162147\pi\)
−0.999899 + 0.0141971i \(0.995481\pi\)
\(332\) 0 0
\(333\) −13.9856 + 11.7219i −0.766405 + 0.642357i
\(334\) 0 0
\(335\) −9.41881 35.1515i −0.514604 1.92053i
\(336\) 0 0
\(337\) −26.4629 + 15.2784i −1.44153 + 0.832266i −0.997952 0.0639716i \(-0.979623\pi\)
−0.443575 + 0.896237i \(0.646290\pi\)
\(338\) 0 0
\(339\) −4.63617 2.10724i −0.251802 0.114449i
\(340\) 0 0
\(341\) 1.68244 + 1.68244i 0.0911091 + 0.0911091i
\(342\) 0 0
\(343\) 20.0893 1.08472
\(344\) 0 0
\(345\) −5.17954 + 31.1427i −0.278857 + 1.67667i
\(346\) 0 0
\(347\) −6.01005 + 6.01005i −0.322636 + 0.322636i −0.849778 0.527141i \(-0.823264\pi\)
0.527141 + 0.849778i \(0.323264\pi\)
\(348\) 0 0
\(349\) −7.04813 + 12.2077i −0.377278 + 0.653464i −0.990665 0.136318i \(-0.956473\pi\)
0.613388 + 0.789782i \(0.289806\pi\)
\(350\) 0 0
\(351\) −12.1006 11.4144i −0.645883 0.609254i
\(352\) 0 0
\(353\) 9.27651 + 34.6204i 0.493739 + 1.84266i 0.536983 + 0.843593i \(0.319564\pi\)
−0.0432438 + 0.999065i \(0.513769\pi\)
\(354\) 0 0
\(355\) −10.3134 38.4901i −0.547378 2.04284i
\(356\) 0 0
\(357\) −5.35274 + 0.520805i −0.283297 + 0.0275639i
\(358\) 0 0
\(359\) 32.8714i 1.73489i 0.497537 + 0.867443i \(0.334238\pi\)
−0.497537 + 0.867443i \(0.665762\pi\)
\(360\) 0 0
\(361\) −15.8898 9.17398i −0.836306 0.482841i
\(362\) 0 0
\(363\) −2.99707 + 3.64314i −0.157305 + 0.191215i
\(364\) 0 0
\(365\) −23.5153 6.30090i −1.23085 0.329804i
\(366\) 0 0
\(367\) 0.980581 + 1.69842i 0.0511859 + 0.0886566i 0.890483 0.455016i \(-0.150367\pi\)
−0.839297 + 0.543673i \(0.817033\pi\)
\(368\) 0 0
\(369\) −18.2239 + 15.9058i −0.948698 + 0.828023i
\(370\) 0 0
\(371\) 0.0288688i 0.00149879i
\(372\) 0 0
\(373\) 25.0523 14.4639i 1.29716 0.748914i 0.317244 0.948344i \(-0.397242\pi\)
0.979912 + 0.199430i \(0.0639091\pi\)
\(374\) 0 0
\(375\) 1.47806 + 15.1913i 0.0763269 + 0.784475i
\(376\) 0 0
\(377\) 8.36748 4.83096i 0.430947 0.248807i
\(378\) 0 0
\(379\) −12.1950 + 21.1223i −0.626414 + 1.08498i 0.361852 + 0.932236i \(0.382145\pi\)
−0.988266 + 0.152745i \(0.951189\pi\)
\(380\) 0 0
\(381\) 7.63501 + 20.3588i 0.391153 + 1.04301i
\(382\) 0 0
\(383\) −3.14534 + 11.7386i −0.160719 + 0.599813i 0.837828 + 0.545934i \(0.183825\pi\)
−0.998547 + 0.0538788i \(0.982842\pi\)
\(384\) 0 0
\(385\) −14.6126 + 3.91544i −0.744728 + 0.199549i
\(386\) 0 0
\(387\) 17.3655 + 11.6628i 0.882737 + 0.592852i
\(388\) 0 0
\(389\) 2.98050 11.1234i 0.151117 0.563977i −0.848289 0.529533i \(-0.822367\pi\)
0.999407 0.0344442i \(-0.0109661\pi\)
\(390\) 0 0
\(391\) −9.32069 5.38130i −0.471367 0.272144i
\(392\) 0 0
\(393\) −32.4104 14.7312i −1.63489 0.743090i
\(394\) 0 0
\(395\) 7.67563 13.2946i 0.386203 0.668923i
\(396\) 0 0
\(397\) 3.07799i 0.154480i 0.997013 + 0.0772400i \(0.0246108\pi\)
−0.997013 + 0.0772400i \(0.975389\pi\)
\(398\) 0 0
\(399\) −2.61429 1.18825i −0.130878 0.0594868i
\(400\) 0 0
\(401\) 3.58968 3.58968i 0.179260 0.179260i −0.611773 0.791033i \(-0.709543\pi\)
0.791033 + 0.611773i \(0.209543\pi\)
\(402\) 0 0
\(403\) 1.32385 + 2.29297i 0.0659454 + 0.114221i
\(404\) 0 0
\(405\) −2.90042 22.8667i −0.144123 1.13626i
\(406\) 0 0
\(407\) −8.44463 15.3269i −0.418585 0.759725i
\(408\) 0 0
\(409\) −23.1675 + 6.20770i −1.14556 + 0.306951i −0.781183 0.624302i \(-0.785384\pi\)
−0.364374 + 0.931253i \(0.618717\pi\)
\(410\) 0 0
\(411\) −15.0189 12.3555i −0.740829 0.609451i
\(412\) 0 0
\(413\) 5.73814 + 5.73814i 0.282355 + 0.282355i
\(414\) 0 0
\(415\) 10.8350 10.8350i 0.531870 0.531870i
\(416\) 0 0
\(417\) −2.45234 + 0.919685i −0.120092 + 0.0450372i
\(418\) 0 0
\(419\) 2.13096 + 1.23031i 0.104104 + 0.0601046i 0.551148 0.834407i \(-0.314190\pi\)
−0.447044 + 0.894512i \(0.647523\pi\)
\(420\) 0 0
\(421\) 10.7557 + 10.7557i 0.524203 + 0.524203i 0.918838 0.394635i \(-0.129129\pi\)
−0.394635 + 0.918838i \(0.629129\pi\)
\(422\) 0 0
\(423\) −29.5067 + 5.79670i −1.43467 + 0.281845i
\(424\) 0 0
\(425\) 2.27763 + 0.610290i 0.110482 + 0.0296034i
\(426\) 0 0
\(427\) −3.20585 + 0.859005i −0.155142 + 0.0415702i
\(428\) 0 0
\(429\) 12.9774 9.27628i 0.626556 0.447863i
\(430\) 0 0
\(431\) 31.4266 + 8.42073i 1.51377 + 0.405612i 0.917684 0.397311i \(-0.130057\pi\)
0.596082 + 0.802924i \(0.296723\pi\)
\(432\) 0 0
\(433\) 15.7898 0.758810 0.379405 0.925231i \(-0.376129\pi\)
0.379405 + 0.925231i \(0.376129\pi\)
\(434\) 0 0
\(435\) 13.2067 + 2.19649i 0.633213 + 0.105314i
\(436\) 0 0
\(437\) −2.87341 4.97690i −0.137454 0.238077i
\(438\) 0 0
\(439\) −3.12653 + 11.6684i −0.149221 + 0.556901i 0.850310 + 0.526282i \(0.176414\pi\)
−0.999531 + 0.0306186i \(0.990252\pi\)
\(440\) 0 0
\(441\) −7.90307 2.70361i −0.376337 0.128743i
\(442\) 0 0
\(443\) 1.00366 0.0476853 0.0238427 0.999716i \(-0.492410\pi\)
0.0238427 + 0.999716i \(0.492410\pi\)
\(444\) 0 0
\(445\) −0.706008 −0.0334680
\(446\) 0 0
\(447\) −0.980416 0.806550i −0.0463721 0.0381485i
\(448\) 0 0
\(449\) 10.2672 38.3178i 0.484540 1.80833i −0.0975848 0.995227i \(-0.531112\pi\)
0.582125 0.813100i \(-0.302222\pi\)
\(450\) 0 0
\(451\) −11.5980 20.0884i −0.546131 0.945926i
\(452\) 0 0
\(453\) −0.434074 + 2.60993i −0.0203946 + 0.122625i
\(454\) 0 0
\(455\) −16.8344 −0.789209
\(456\) 0 0
\(457\) 19.2760 + 5.16499i 0.901694 + 0.241608i 0.679744 0.733450i \(-0.262091\pi\)
0.221950 + 0.975058i \(0.428758\pi\)
\(458\) 0 0
\(459\) 7.64623 + 1.81149i 0.356896 + 0.0845533i
\(460\) 0 0
\(461\) −31.1013 + 8.33358i −1.44853 + 0.388134i −0.895514 0.445034i \(-0.853192\pi\)
−0.553020 + 0.833168i \(0.686525\pi\)
\(462\) 0 0
\(463\) 6.31133 + 1.69112i 0.293312 + 0.0785928i 0.402475 0.915431i \(-0.368150\pi\)
−0.109162 + 0.994024i \(0.534817\pi\)
\(464\) 0 0
\(465\) −0.601912 + 3.61908i −0.0279130 + 0.167831i
\(466\) 0 0
\(467\) 13.6292 + 13.6292i 0.630683 + 0.630683i 0.948239 0.317556i \(-0.102862\pi\)
−0.317556 + 0.948239i \(0.602862\pi\)
\(468\) 0 0
\(469\) −25.2663 14.5875i −1.16669 0.673588i
\(470\) 0 0
\(471\) −11.9089 31.7550i −0.548731 1.46319i
\(472\) 0 0
\(473\) −14.1844 + 14.1844i −0.652201 + 0.652201i
\(474\) 0 0
\(475\) 0.890299 + 0.890299i 0.0408497 + 0.0408497i
\(476\) 0 0
\(477\) 0.0136530 0.0399098i 0.000625127 0.00182735i
\(478\) 0 0
\(479\) −8.16021 + 2.18652i −0.372849 + 0.0999047i −0.440378 0.897813i \(-0.645155\pi\)
0.0675282 + 0.997717i \(0.478489\pi\)
\(480\) 0 0
\(481\) −4.66260 18.9066i −0.212596 0.862066i
\(482\) 0 0
\(483\) 14.7181 + 20.5906i 0.669699 + 0.936903i
\(484\) 0 0
\(485\) 2.42084 + 4.19302i 0.109925 + 0.190395i
\(486\) 0 0
\(487\) −28.7786 + 28.7786i −1.30408 + 1.30408i −0.378468 + 0.925614i \(0.623549\pi\)
−0.925614 + 0.378468i \(0.876451\pi\)
\(488\) 0 0
\(489\) 7.11066 15.6443i 0.321555 0.707460i
\(490\) 0 0
\(491\) 27.6804i 1.24920i 0.780945 + 0.624600i \(0.214738\pi\)
−0.780945 + 0.624600i \(0.785262\pi\)
\(492\) 0 0
\(493\) −2.28205 + 3.95263i −0.102778 + 0.178017i
\(494\) 0 0
\(495\) 22.0530 + 1.49785i 0.991210 + 0.0673235i
\(496\) 0 0
\(497\) −27.6660 15.9730i −1.24099 0.716486i
\(498\) 0 0
\(499\) 6.83888 25.5231i 0.306150 1.14257i −0.625800 0.779983i \(-0.715227\pi\)
0.931951 0.362585i \(-0.118106\pi\)
\(500\) 0 0
\(501\) 19.8229 + 27.7321i 0.885624 + 1.23898i
\(502\) 0 0
\(503\) 27.3029 7.31579i 1.21738 0.326195i 0.407724 0.913105i \(-0.366323\pi\)
0.809652 + 0.586911i \(0.199656\pi\)
\(504\) 0 0
\(505\) −11.0712 + 41.3183i −0.492662 + 1.83864i
\(506\) 0 0
\(507\) −4.46209 + 1.67339i −0.198168 + 0.0743177i
\(508\) 0 0
\(509\) 1.07119 1.85536i 0.0474798 0.0822374i −0.841309 0.540555i \(-0.818214\pi\)
0.888789 + 0.458317i \(0.151548\pi\)
\(510\) 0 0
\(511\) −16.9024 + 9.75859i −0.747717 + 0.431694i
\(512\) 0 0
\(513\) 3.05218 + 2.87908i 0.134757 + 0.127115i
\(514\) 0 0
\(515\) 14.7440 8.51243i 0.649697 0.375103i
\(516\) 0 0
\(517\) 28.8365i 1.26823i
\(518\) 0 0
\(519\) 0.722018 + 1.92526i 0.0316931 + 0.0845096i
\(520\) 0 0
\(521\) −15.1367 26.2176i −0.663152 1.14861i −0.979783 0.200065i \(-0.935885\pi\)
0.316630 0.948549i \(-0.397449\pi\)
\(522\) 0 0
\(523\) 31.3860 + 8.40985i 1.37241 + 0.367737i 0.868359 0.495936i \(-0.165175\pi\)
0.504053 + 0.863672i \(0.331841\pi\)
\(524\) 0 0
\(525\) −4.28231 3.52289i −0.186895 0.153751i
\(526\) 0 0
\(527\) −1.08315 0.625358i −0.0471828 0.0272410i
\(528\) 0 0
\(529\) 27.6508i 1.20221i
\(530\) 0 0
\(531\) −5.21897 10.6465i −0.226484 0.462018i
\(532\) 0 0
\(533\) −6.68074 24.9328i −0.289375 1.07996i
\(534\) 0 0
\(535\) 9.78829 + 36.5304i 0.423185 + 1.57935i
\(536\) 0 0
\(537\) 1.42897 + 14.6867i 0.0616645 + 0.633777i
\(538\) 0 0
\(539\) 4.00494 6.93676i 0.172505 0.298788i
\(540\) 0 0
\(541\) −12.0582 + 12.0582i −0.518422 + 0.518422i −0.917094 0.398671i \(-0.869471\pi\)
0.398671 + 0.917094i \(0.369471\pi\)
\(542\) 0 0
\(543\) −22.6653 3.76961i −0.972660 0.161769i
\(544\) 0 0
\(545\) 18.6628 0.799428
\(546\) 0 0
\(547\) −14.9813 14.9813i −0.640553 0.640553i 0.310138 0.950691i \(-0.399625\pi\)
−0.950691 + 0.310138i \(0.899625\pi\)
\(548\) 0 0
\(549\) 4.83820 + 0.328613i 0.206489 + 0.0140249i
\(550\) 0 0
\(551\) −2.11055 + 1.21853i −0.0899127 + 0.0519111i
\(552\) 0 0
\(553\) −3.18530 11.8877i −0.135453 0.505517i
\(554\) 0 0
\(555\) 11.6544 24.3362i 0.494702 1.03302i
\(556\) 0 0
\(557\) 11.2809 + 42.1010i 0.477988 + 1.78388i 0.609750 + 0.792594i \(0.291270\pi\)
−0.131762 + 0.991281i \(0.542063\pi\)
\(558\) 0 0
\(559\) −19.3317 + 11.1612i −0.817645 + 0.472068i
\(560\) 0 0
\(561\) −3.11801 + 6.86000i −0.131643 + 0.289629i
\(562\) 0 0
\(563\) 9.09523 + 9.09523i 0.383318 + 0.383318i 0.872296 0.488978i \(-0.162630\pi\)
−0.488978 + 0.872296i \(0.662630\pi\)
\(564\) 0 0
\(565\) 7.53019 0.316797
\(566\) 0 0
\(567\) −14.6070 11.3186i −0.613438 0.475337i
\(568\) 0 0
\(569\) −20.3741 + 20.3741i −0.854127 + 0.854127i −0.990638 0.136512i \(-0.956411\pi\)
0.136512 + 0.990638i \(0.456411\pi\)
\(570\) 0 0
\(571\) −6.88764 + 11.9297i −0.288239 + 0.499244i −0.973389 0.229157i \(-0.926403\pi\)
0.685151 + 0.728401i \(0.259736\pi\)
\(572\) 0 0
\(573\) 35.9513 3.49795i 1.50189 0.146129i
\(574\) 0 0
\(575\) −2.87214 10.7190i −0.119777 0.447012i
\(576\) 0 0
\(577\) −1.68875 6.30249i −0.0703035 0.262376i 0.921824 0.387609i \(-0.126699\pi\)
−0.992127 + 0.125233i \(0.960032\pi\)
\(578\) 0 0
\(579\) −3.84015 39.4684i −0.159591 1.64025i
\(580\) 0 0
\(581\) 12.2844i 0.509644i
\(582\) 0 0
\(583\) 0.0350301 + 0.0202246i 0.00145080 + 0.000837618i
\(584\) 0 0
\(585\) 23.2728 + 7.96152i 0.962212 + 0.329168i
\(586\) 0 0
\(587\) −20.6523 5.53376i −0.852411 0.228403i −0.193944 0.981013i \(-0.562128\pi\)
−0.658467 + 0.752610i \(0.728795\pi\)
\(588\) 0 0
\(589\) −0.333918 0.578362i −0.0137588 0.0238310i
\(590\) 0 0
\(591\) 5.41662 2.03136i 0.222810 0.0835589i
\(592\) 0 0
\(593\) 28.2289i 1.15922i 0.814894 + 0.579610i \(0.196795\pi\)
−0.814894 + 0.579610i \(0.803205\pi\)
\(594\) 0 0
\(595\) 6.88683 3.97612i 0.282333 0.163005i
\(596\) 0 0
\(597\) 29.3047 2.85126i 1.19936 0.116694i
\(598\) 0 0
\(599\) 17.1386 9.89496i 0.700263 0.404297i −0.107182 0.994239i \(-0.534183\pi\)
0.807446 + 0.589942i \(0.200849\pi\)
\(600\) 0 0
\(601\) 4.31244 7.46936i 0.175908 0.304682i −0.764567 0.644544i \(-0.777047\pi\)
0.940475 + 0.339863i \(0.110381\pi\)
\(602\) 0 0
\(603\) 28.0306 + 32.1158i 1.14149 + 1.30786i
\(604\) 0 0
\(605\) 1.80541 6.73788i 0.0734004 0.273934i
\(606\) 0 0
\(607\) −18.0031 + 4.82393i −0.730725 + 0.195797i −0.604952 0.796262i \(-0.706808\pi\)
−0.125773 + 0.992059i \(0.540141\pi\)
\(608\) 0 0
\(609\) 8.73185 6.24153i 0.353832 0.252920i
\(610\) 0 0
\(611\) 8.30523 30.9955i 0.335994 1.25395i
\(612\) 0 0
\(613\) 29.0476 + 16.7706i 1.17322 + 0.677360i 0.954437 0.298413i \(-0.0964574\pi\)
0.218785 + 0.975773i \(0.429791\pi\)
\(614\) 0 0
\(615\) 14.7999 32.5614i 0.596788 1.31300i
\(616\) 0 0
\(617\) −13.9410 + 24.1464i −0.561242 + 0.972099i 0.436147 + 0.899876i \(0.356343\pi\)
−0.997388 + 0.0722235i \(0.976991\pi\)
\(618\) 0 0
\(619\) 2.03682i 0.0818667i −0.999162 0.0409333i \(-0.986967\pi\)
0.999162 0.0409333i \(-0.0130331\pi\)
\(620\) 0 0
\(621\) −10.6092 35.4262i −0.425734 1.42160i
\(622\) 0 0
\(623\) −0.400226 + 0.400226i −0.0160347 + 0.0160347i
\(624\) 0 0
\(625\) −15.1825 26.2969i −0.607300 1.05187i
\(626\) 0 0
\(627\) −3.27334 + 2.33978i −0.130725 + 0.0934420i
\(628\) 0 0
\(629\) 6.37298 + 6.63329i 0.254107 + 0.264487i
\(630\) 0 0
\(631\) −14.3283 + 3.83926i −0.570401 + 0.152838i −0.532480 0.846442i \(-0.678740\pi\)
−0.0379205 + 0.999281i \(0.512073\pi\)
\(632\) 0 0
\(633\) 8.93118 10.8565i 0.354983 0.431505i
\(634\) 0 0
\(635\) −22.7341 22.7341i −0.902175 0.902175i
\(636\) 0 0
\(637\) 6.30267 6.30267i 0.249721 0.249721i
\(638\) 0 0
\(639\) 30.6929 + 35.1661i 1.21419 + 1.39115i
\(640\) 0 0
\(641\) −9.79637 5.65593i −0.386933 0.223396i 0.293897 0.955837i \(-0.405048\pi\)
−0.680830 + 0.732441i \(0.738381\pi\)
\(642\) 0 0
\(643\) −1.62868 1.62868i −0.0642291 0.0642291i 0.674263 0.738492i \(-0.264462\pi\)
−0.738492 + 0.674263i \(0.764462\pi\)
\(644\) 0 0
\(645\) −30.5120 5.07464i −1.20141 0.199814i
\(646\) 0 0
\(647\) −34.3218 9.19650i −1.34933 0.361552i −0.489443 0.872036i \(-0.662800\pi\)
−0.859887 + 0.510484i \(0.829466\pi\)
\(648\) 0 0
\(649\) 10.9828 2.94282i 0.431111 0.115516i
\(650\) 0 0
\(651\) 1.71039 + 2.39282i 0.0670354 + 0.0937819i
\(652\) 0 0
\(653\) −12.2798 3.29036i −0.480546 0.128762i 0.0104109 0.999946i \(-0.496686\pi\)
−0.490957 + 0.871184i \(0.663353\pi\)
\(654\) 0 0
\(655\) 52.6417 2.05688
\(656\) 0 0
\(657\) 27.9819 5.49714i 1.09168 0.214464i
\(658\) 0 0
\(659\) 14.1723 + 24.5472i 0.552076 + 0.956223i 0.998125 + 0.0612145i \(0.0194974\pi\)
−0.446049 + 0.895009i \(0.647169\pi\)
\(660\) 0 0
\(661\) 6.23683 23.2762i 0.242584 0.905338i −0.731998 0.681307i \(-0.761412\pi\)
0.974582 0.224030i \(-0.0719215\pi\)
\(662\) 0 0
\(663\) −5.32723 + 6.47560i −0.206892 + 0.251492i
\(664\) 0 0
\(665\) 4.24619 0.164660
\(666\) 0 0
\(667\) 21.4795 0.831690
\(668\) 0 0
\(669\) 25.1686 30.5941i 0.973073 1.18284i
\(670\) 0 0
\(671\) −1.20359 + 4.49185i −0.0464639 + 0.173406i
\(672\) 0 0
\(673\) 11.4091 + 19.7612i 0.439789 + 0.761737i 0.997673 0.0681823i \(-0.0217200\pi\)
−0.557884 + 0.829919i \(0.688387\pi\)
\(674\) 0 0
\(675\) 4.25401 + 6.89547i 0.163737 + 0.265407i
\(676\) 0 0
\(677\) 28.4018 1.09157 0.545785 0.837925i \(-0.316231\pi\)
0.545785 + 0.837925i \(0.316231\pi\)
\(678\) 0 0
\(679\) 3.74931 + 1.00462i 0.143885 + 0.0385539i
\(680\) 0 0
\(681\) 6.92381 + 9.68635i 0.265321 + 0.371182i
\(682\) 0 0
\(683\) −30.9316 + 8.28809i −1.18356 + 0.317135i −0.796339 0.604850i \(-0.793233\pi\)
−0.387225 + 0.921985i \(0.626566\pi\)
\(684\) 0 0
\(685\) 27.7770 + 7.44283i 1.06131 + 0.284376i
\(686\) 0 0
\(687\) −44.7664 7.44539i −1.70795 0.284059i
\(688\) 0 0
\(689\) 0.0318279 + 0.0318279i 0.00121255 + 0.00121255i
\(690\) 0 0
\(691\) −31.1411 17.9793i −1.18466 0.683965i −0.227574 0.973761i \(-0.573079\pi\)
−0.957088 + 0.289796i \(0.906413\pi\)
\(692\) 0 0
\(693\) 13.3507 11.6524i 0.507150 0.442640i
\(694\) 0 0
\(695\) 2.73847 2.73847i 0.103876 0.103876i
\(696\) 0 0
\(697\) 8.62193 + 8.62193i 0.326579 + 0.326579i
\(698\) 0 0
\(699\) −27.0267 + 32.8527i −1.02224 + 1.24260i
\(700\) 0 0
\(701\) 45.8279 12.2796i 1.73090 0.463793i 0.750508 0.660861i \(-0.229809\pi\)
0.980390 + 0.197069i \(0.0631422\pi\)
\(702\) 0 0
\(703\) 1.17606 + 4.76887i 0.0443560 + 0.179861i
\(704\) 0 0
\(705\) 36.1732 25.8566i 1.36236 0.973817i
\(706\) 0 0
\(707\) 17.1466 + 29.6989i 0.644866 + 1.11694i
\(708\) 0 0
\(709\) −21.7903 + 21.7903i −0.818353 + 0.818353i −0.985869 0.167516i \(-0.946425\pi\)
0.167516 + 0.985869i \(0.446425\pi\)
\(710\) 0 0
\(711\) −1.21854 + 17.9407i −0.0456988 + 0.672828i
\(712\) 0 0
\(713\) 5.88611i 0.220436i
\(714\) 0 0
\(715\) −11.7937 + 20.4272i −0.441058 + 0.763935i
\(716\) 0 0
\(717\) −17.5929 + 38.7066i −0.657021 + 1.44552i
\(718\) 0 0
\(719\) 10.3547 + 5.97829i 0.386165 + 0.222953i 0.680497 0.732751i \(-0.261764\pi\)
−0.294332 + 0.955703i \(0.595097\pi\)
\(720\) 0 0
\(721\) 3.53257 13.1837i 0.131560 0.490988i
\(722\) 0 0
\(723\) 23.3367 16.6811i 0.867902 0.620377i
\(724\) 0 0
\(725\) −4.54560 + 1.21799i −0.168819 + 0.0452350i
\(726\) 0 0
\(727\) −8.30741 + 31.0037i −0.308105 + 1.14986i 0.622135 + 0.782910i \(0.286266\pi\)
−0.930240 + 0.366953i \(0.880401\pi\)
\(728\) 0 0
\(729\) 14.8406 + 22.5556i 0.549653 + 0.835393i
\(730\) 0 0
\(731\) 5.27232 9.13192i 0.195004 0.337756i
\(732\) 0 0
\(733\) 10.5003 6.06232i 0.387836 0.223917i −0.293386 0.955994i \(-0.594782\pi\)
0.681222 + 0.732077i \(0.261449\pi\)
\(734\) 0 0
\(735\) 12.2927 1.19604i 0.453425 0.0441168i
\(736\) 0 0
\(737\) −35.4016 + 20.4391i −1.30403 + 0.752884i
\(738\) 0 0
\(739\) 10.7299i 0.394706i −0.980333 0.197353i \(-0.936766\pi\)
0.980333 0.197353i \(-0.0632345\pi\)
\(740\) 0 0
\(741\) −4.19231 + 1.57221i −0.154008 + 0.0577566i
\(742\) 0 0
\(743\) −3.47635 6.02121i −0.127535 0.220897i 0.795186 0.606365i \(-0.207373\pi\)
−0.922721 + 0.385469i \(0.874040\pi\)
\(744\) 0 0
\(745\) 1.81325 + 0.485859i 0.0664323 + 0.0178005i
\(746\) 0 0
\(747\) −5.80970 + 16.9827i −0.212566 + 0.621364i
\(748\) 0 0
\(749\) 26.2574 + 15.1597i 0.959425 + 0.553924i
\(750\) 0 0
\(751\) 25.7348i 0.939075i −0.882913 0.469537i \(-0.844421\pi\)
0.882913 0.469537i \(-0.155579\pi\)
\(752\) 0 0
\(753\) −1.20946 12.4306i −0.0440751 0.452996i
\(754\) 0 0
\(755\) −1.01255 3.77888i −0.0368504 0.137528i
\(756\) 0 0
\(757\) 13.9345 + 52.0042i 0.506458 + 1.89013i 0.452901 + 0.891561i \(0.350389\pi\)
0.0535561 + 0.998565i \(0.482944\pi\)
\(758\) 0 0
\(759\) 35.2961 3.43420i 1.28117 0.124654i
\(760\) 0 0
\(761\) 13.0209 22.5528i 0.472006 0.817538i −0.527481 0.849567i \(-0.676863\pi\)
0.999487 + 0.0320287i \(0.0101968\pi\)
\(762\) 0 0
\(763\) 10.5797 10.5797i 0.383011 0.383011i
\(764\) 0 0
\(765\) −11.4012 + 2.23980i −0.412210 + 0.0809801i
\(766\) 0 0
\(767\) 12.6526 0.456860
\(768\) 0 0
\(769\) −26.6867 26.6867i −0.962346 0.962346i 0.0369706 0.999316i \(-0.488229\pi\)
−0.999316 + 0.0369706i \(0.988229\pi\)
\(770\) 0 0
\(771\) 12.2694 26.9941i 0.441871 0.972169i
\(772\) 0 0
\(773\) −26.2263 + 15.1418i −0.943296 + 0.544612i −0.890992 0.454019i \(-0.849990\pi\)
−0.0523040 + 0.998631i \(0.516656\pi\)
\(774\) 0 0
\(775\) −0.333770 1.24565i −0.0119894 0.0447449i
\(776\) 0 0
\(777\) −7.18914 20.4026i −0.257909 0.731939i
\(778\) 0 0
\(779\) 1.68510 + 6.28889i 0.0603751 + 0.225323i
\(780\) 0 0
\(781\) −38.7640 + 22.3804i −1.38708 + 0.800833i
\(782\) 0 0
\(783\) −15.0232 + 4.49907i −0.536886 + 0.160784i
\(784\) 0 0
\(785\) 35.4600 + 35.4600i 1.26562 + 1.26562i
\(786\) 0 0
\(787\) 31.5199 1.12356 0.561782 0.827285i \(-0.310116\pi\)
0.561782 + 0.827285i \(0.310116\pi\)
\(788\) 0 0
\(789\) −0.711198 0.118284i −0.0253193 0.00421102i
\(790\) 0 0
\(791\) 4.26876 4.26876i 0.151780 0.151780i
\(792\) 0 0
\(793\) −2.58740 + 4.48152i −0.0918814 + 0.159143i
\(794\) 0 0
\(795\) 0.00603992 + 0.0620773i 0.000214214 + 0.00220166i
\(796\) 0 0
\(797\) 1.72799 + 6.44896i 0.0612087 + 0.228434i 0.989754 0.142786i \(-0.0456062\pi\)
−0.928545 + 0.371220i \(0.878940\pi\)
\(798\) 0 0
\(799\) 3.92322 + 14.6417i 0.138794 + 0.517985i
\(800\) 0 0
\(801\) 0.742574 0.364015i 0.0262376 0.0128618i
\(802\) 0 0
\(803\) 27.3463i 0.965029i
\(804\) 0 0
\(805\) −32.4107 18.7123i −1.14233 0.659524i
\(806\) 0 0
\(807\) −20.9672 17.2489i −0.738081 0.607190i
\(808\) 0 0
\(809\) 7.72620 + 2.07023i 0.271639 + 0.0727854i 0.392067 0.919937i \(-0.371760\pi\)
−0.120428 + 0.992722i \(0.538427\pi\)
\(810\) 0 0
\(811\) 9.92137 + 17.1843i 0.348386 + 0.603423i 0.985963 0.166964i \(-0.0533964\pi\)
−0.637577 + 0.770387i \(0.720063\pi\)
\(812\) 0 0
\(813\) 4.65973 + 12.4252i 0.163424 + 0.435770i
\(814\) 0 0
\(815\) 25.4099i 0.890069i
\(816\) 0 0
\(817\) 4.87610 2.81522i 0.170593 0.0984921i
\(818\) 0 0
\(819\) 17.7063 8.67975i 0.618708 0.303295i
\(820\) 0 0
\(821\) 12.2606 7.07868i 0.427899 0.247048i −0.270552 0.962705i \(-0.587206\pi\)
0.698451 + 0.715658i \(0.253873\pi\)
\(822\) 0 0
\(823\) −7.03250 + 12.1807i −0.245138 + 0.424591i −0.962170 0.272449i \(-0.912166\pi\)
0.717033 + 0.697040i \(0.245500\pi\)
\(824\) 0 0
\(825\) −7.27481 + 2.72822i −0.253276 + 0.0949844i
\(826\) 0 0
\(827\) 2.42928 9.06620i 0.0844744 0.315263i −0.910740 0.412981i \(-0.864488\pi\)
0.995214 + 0.0977180i \(0.0311543\pi\)
\(828\) 0 0
\(829\) −43.1854 + 11.5715i −1.49989 + 0.401894i −0.913063 0.407818i \(-0.866290\pi\)
−0.586827 + 0.809713i \(0.699623\pi\)
\(830\) 0 0
\(831\) −21.0125 29.3963i −0.728915 1.01975i
\(832\) 0 0
\(833\) −1.08975 + 4.06701i −0.0377576 + 0.140913i
\(834\) 0 0
\(835\) −43.6520 25.2025i −1.51064 0.872168i
\(836\) 0 0
\(837\) −1.23289 4.11686i −0.0426151 0.142300i
\(838\) 0 0
\(839\) −1.90898 + 3.30645i −0.0659054 + 0.114151i −0.897095 0.441837i \(-0.854327\pi\)
0.831190 + 0.555989i \(0.187660\pi\)
\(840\) 0 0
\(841\) 19.8912i 0.685902i
\(842\) 0 0
\(843\) −9.76102 + 21.4754i −0.336187 + 0.739652i
\(844\) 0 0
\(845\) 4.98270 4.98270i 0.171410 0.171410i
\(846\) 0 0
\(847\) −2.79615 4.84307i −0.0960768 0.166410i
\(848\) 0 0
\(849\) −21.5454 30.1418i −0.739435 1.03446i
\(850\) 0 0
\(851\) 12.0389 41.5830i 0.412690 1.42545i
\(852\) 0 0
\(853\) 37.4976 10.0475i 1.28389 0.344018i 0.448556 0.893755i \(-0.351939\pi\)
0.835338 + 0.549737i \(0.185272\pi\)
\(854\) 0 0
\(855\) −5.87017 2.00816i −0.200756 0.0686776i
\(856\) 0 0
\(857\) −36.8816 36.8816i −1.25985 1.25985i −0.951163 0.308688i \(-0.900110\pi\)
−0.308688 0.951163i \(-0.599890\pi\)
\(858\) 0 0
\(859\) 33.8361 33.8361i 1.15447 1.15447i 0.168828 0.985646i \(-0.446002\pi\)
0.985646 0.168828i \(-0.0539982\pi\)
\(860\) 0 0
\(861\) −10.0688 26.8485i −0.343144 0.914993i
\(862\) 0 0
\(863\) −13.6328 7.87091i −0.464067 0.267929i 0.249686 0.968327i \(-0.419673\pi\)
−0.713753 + 0.700398i \(0.753006\pi\)
\(864\) 0 0
\(865\) −2.14989 2.14989i −0.0730984 0.0730984i
\(866\) 0 0
\(867\) −4.18095 + 25.1385i −0.141992 + 0.853749i
\(868\) 0 0
\(869\) −16.6563 4.46306i −0.565028 0.151399i
\(870\) 0 0
\(871\) −43.9389 + 11.7734i −1.48881 + 0.398926i
\(872\) 0 0
\(873\) −4.70813 3.16201i −0.159346 0.107018i
\(874\) 0 0
\(875\) −17.4768 4.68289i −0.590823 0.158311i
\(876\) 0 0
\(877\) 13.0731 0.441448 0.220724 0.975336i \(-0.429158\pi\)
0.220724 + 0.975336i \(0.429158\pi\)
\(878\) 0 0
\(879\) 2.98017 17.9187i 0.100519 0.604382i
\(880\) 0 0
\(881\) 10.5047 + 18.1947i 0.353912 + 0.612994i 0.986931 0.161143i \(-0.0515179\pi\)
−0.633019 + 0.774136i \(0.718185\pi\)
\(882\) 0 0
\(883\) −11.0370 + 41.1908i −0.371426 + 1.38618i 0.487071 + 0.873362i \(0.338065\pi\)
−0.858497 + 0.512818i \(0.828601\pi\)
\(884\) 0 0
\(885\) 13.5394 + 11.1383i 0.455122 + 0.374411i
\(886\) 0 0
\(887\) 26.8301 0.900867 0.450434 0.892810i \(-0.351269\pi\)
0.450434 + 0.892810i \(0.351269\pi\)
\(888\) 0 0
\(889\) −25.7753 −0.864475
\(890\) 0 0
\(891\) −23.9675 + 9.79502i −0.802942 + 0.328146i
\(892\) 0 0
\(893\) −2.09485 + 7.81810i −0.0701016 + 0.261623i
\(894\) 0 0
\(895\) −10.9095 18.8959i −0.364665 0.631619i
\(896\) 0 0
\(897\) 38.9279 + 6.47435i 1.29977 + 0.216172i
\(898\) 0 0
\(899\) 2.49612 0.0832504
\(900\) 0 0
\(901\) −0.0205380 0.00550315i −0.000684221 0.000183337i
\(902\) 0 0
\(903\) −20.1736 + 14.4201i −0.671334 + 0.479870i
\(904\) 0 0
\(905\) 32.8168 8.79324i 1.09087 0.292297i
\(906\) 0 0
\(907\) −38.8092 10.3989i −1.28864 0.345290i −0.451495 0.892273i \(-0.649109\pi\)
−0.837143 + 0.546984i \(0.815776\pi\)
\(908\) 0 0
\(909\) −9.65893 49.1665i −0.320367 1.63075i
\(910\) 0 0
\(911\) −14.4690 14.4690i −0.479379 0.479379i 0.425554 0.904933i \(-0.360079\pi\)
−0.904933 + 0.425554i \(0.860079\pi\)
\(912\) 0 0
\(913\) −14.9062 8.60610i −0.493323 0.284820i
\(914\) 0 0
\(915\) −6.71390 + 2.51787i −0.221955 + 0.0832381i
\(916\) 0 0
\(917\) 29.8419 29.8419i 0.985465 0.985465i
\(918\) 0 0
\(919\) 27.5170 + 27.5170i 0.907703 + 0.907703i 0.996086 0.0883840i \(-0.0281702\pi\)
−0.0883840 + 0.996086i \(0.528170\pi\)
\(920\) 0 0
\(921\) −15.5955 12.8298i −0.513889 0.422756i
\(922\) 0 0
\(923\) −48.1121 + 12.8916i −1.58363 + 0.424332i
\(924\) 0 0
\(925\) −0.189788 + 9.48266i −0.00624020 + 0.311788i
\(926\) 0 0
\(927\) −11.1186 + 16.5552i −0.365183 + 0.543746i
\(928\) 0 0
\(929\) −28.3785 49.1530i −0.931068 1.61266i −0.781500 0.623905i \(-0.785545\pi\)
−0.149568 0.988751i \(-0.547788\pi\)
\(930\) 0 0
\(931\) −1.58974 + 1.58974i −0.0521017 + 0.0521017i
\(932\) 0 0
\(933\) −0.173131 0.0786917i −0.00566806 0.00257625i
\(934\) 0 0
\(935\) 11.1422i 0.364388i
\(936\) 0 0
\(937\) 4.87283 8.43999i 0.159188 0.275723i −0.775388 0.631485i \(-0.782446\pi\)
0.934576 + 0.355763i \(0.115779\pi\)
\(938\) 0 0
\(939\) 41.0827 + 18.6730i 1.34068 + 0.609369i
\(940\) 0 0
\(941\) −12.6302 7.29208i −0.411734 0.237715i 0.279800 0.960058i \(-0.409732\pi\)
−0.691535 + 0.722343i \(0.743065\pi\)
\(942\) 0 0
\(943\) 14.8520 55.4284i 0.483648 1.80500i
\(944\) 0 0
\(945\) 26.5882 + 6.29909i 0.864914 + 0.204909i
\(946\) 0 0
\(947\) −28.3632 + 7.59989i −0.921679 + 0.246963i −0.688303 0.725423i \(-0.741644\pi\)
−0.233376 + 0.972387i \(0.574977\pi\)
\(948\) 0 0
\(949\) −7.87604 + 29.3938i −0.255667 + 0.954162i
\(950\) 0 0
\(951\) 1.94119 + 5.17620i 0.0629475 + 0.167850i
\(952\) 0 0
\(953\) 15.9221 27.5778i 0.515766 0.893333i −0.484067 0.875031i \(-0.660841\pi\)
0.999833 0.0183017i \(-0.00582593\pi\)
\(954\) 0 0
\(955\) −46.2549 + 26.7053i −1.49677 + 0.864162i
\(956\) 0 0
\(957\) −1.45634 14.9681i −0.0470769 0.483848i
\(958\) 0 0
\(959\) 19.9656 11.5272i 0.644724 0.372232i
\(960\) 0 0
\(961\) 30.3160i 0.977935i
\(962\) 0 0
\(963\) −29.1302 33.3756i −0.938707 1.07551i
\(964\) 0 0
\(965\) 29.3178 + 50.7800i 0.943775 + 1.63467i
\(966\) 0 0
\(967\) 27.4652 + 7.35927i 0.883221 + 0.236658i 0.671796 0.740736i \(-0.265523\pi\)
0.211425 + 0.977394i \(0.432190\pi\)
\(968\) 0 0
\(969\) 1.34370 1.63336i 0.0431660 0.0524711i
\(970\) 0 0
\(971\) −24.9854 14.4253i −0.801820 0.462931i 0.0422873 0.999105i \(-0.486536\pi\)
−0.844107 + 0.536175i \(0.819869\pi\)
\(972\) 0 0
\(973\) 3.10480i 0.0995352i
\(974\) 0 0
\(975\) −8.60525 + 0.837263i −0.275589 + 0.0268139i
\(976\) 0 0
\(977\) −8.80958 32.8778i −0.281844 1.05185i −0.951115 0.308837i \(-0.900060\pi\)
0.669272 0.743018i \(-0.266606\pi\)
\(978\) 0 0
\(979\) 0.205257 + 0.766029i 0.00656004 + 0.0244824i
\(980\) 0 0
\(981\) −19.6294 + 9.62249i −0.626720 + 0.307222i
\(982\) 0 0
\(983\) 15.7517 27.2827i 0.502401 0.870184i −0.497595 0.867409i \(-0.665783\pi\)
0.999996 0.00277464i \(-0.000883198\pi\)
\(984\) 0 0
\(985\) −6.04860 + 6.04860i −0.192724 + 0.192724i
\(986\) 0 0
\(987\) 5.84833 35.1638i 0.186154 1.11928i
\(988\) 0 0
\(989\) −49.6250 −1.57798
\(990\) 0 0
\(991\) −2.59065 2.59065i −0.0822946 0.0822946i 0.664761 0.747056i \(-0.268533\pi\)
−0.747056 + 0.664761i \(0.768533\pi\)
\(992\) 0 0
\(993\) −14.0615 6.39125i −0.446229 0.202820i
\(994\) 0 0
\(995\) −37.7034 + 21.7681i −1.19528 + 0.690095i
\(996\) 0 0
\(997\) −4.00115 14.9325i −0.126718 0.472917i 0.873177 0.487403i \(-0.162056\pi\)
−0.999895 + 0.0144855i \(0.995389\pi\)
\(998\) 0 0
\(999\) 0.289629 + 31.6056i 0.00916345 + 0.999958i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 444.2.w.c.125.7 40
3.2 odd 2 inner 444.2.w.c.125.10 yes 40
37.8 odd 12 inner 444.2.w.c.341.10 yes 40
111.8 even 12 inner 444.2.w.c.341.7 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.w.c.125.7 40 1.1 even 1 trivial
444.2.w.c.125.10 yes 40 3.2 odd 2 inner
444.2.w.c.341.7 yes 40 111.8 even 12 inner
444.2.w.c.341.10 yes 40 37.8 odd 12 inner