Properties

Label 444.2.bg.b.209.10
Level $444$
Weight $2$
Character 444.209
Analytic conductor $3.545$
Analytic rank $0$
Dimension $144$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(5,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.5"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 18, 23])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.bg (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(12\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 209.10
Character \(\chi\) \(=\) 444.209
Dual form 444.2.bg.b.17.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.21110 + 1.23824i) q^{3} +(2.99415 + 0.261955i) q^{5} +(-1.57171 + 1.31882i) q^{7} +(-0.0664970 + 2.99926i) q^{9} +(0.410422 - 0.710872i) q^{11} +(-0.481628 + 0.224587i) q^{13} +(3.30184 + 4.02475i) q^{15} +(4.05183 + 1.88940i) q^{17} +(-4.58845 - 3.21287i) q^{19} +(-3.53651 - 0.348942i) q^{21} +(0.683726 - 2.55170i) q^{23} +(3.97230 + 0.700424i) q^{25} +(-3.79435 + 3.55005i) q^{27} +(-0.751047 - 2.80295i) q^{29} +(-2.52461 - 2.52461i) q^{31} +(1.37729 - 0.352731i) q^{33} +(-5.05141 + 3.53704i) q^{35} +(4.92239 + 3.57352i) q^{37} +(-0.861391 - 0.324377i) q^{39} +(0.623643 + 0.226987i) q^{41} +(6.36347 - 6.36347i) q^{43} +(-0.984773 + 8.96284i) q^{45} +(0.943574 - 0.544773i) q^{47} +(-0.484555 + 2.74805i) q^{49} +(2.56762 + 7.30541i) q^{51} +(-2.73760 + 3.26255i) q^{53} +(1.41508 - 2.02095i) q^{55} +(-1.57873 - 9.57270i) q^{57} +(0.898184 + 10.2663i) q^{59} +(-2.73787 - 5.87138i) q^{61} +(-3.85098 - 4.80167i) q^{63} +(-1.50090 + 0.546284i) q^{65} +(-4.31473 - 5.14209i) q^{67} +(3.98769 - 2.24373i) q^{69} +(-0.471211 + 0.0830872i) q^{71} -10.2572i q^{73} +(3.94354 + 5.76696i) q^{75} +(0.292448 + 1.65856i) q^{77} +(1.33048 - 15.2074i) q^{79} +(-8.99116 - 0.398884i) q^{81} +(-1.15221 - 3.16568i) q^{83} +(11.6369 + 6.71856i) q^{85} +(2.56114 - 4.32461i) q^{87} +(16.7368 - 1.46428i) q^{89} +(0.460790 - 0.988167i) q^{91} +(0.0685405 - 6.18363i) q^{93} +(-12.8969 - 10.8218i) q^{95} +(-5.38204 - 1.44211i) q^{97} +(2.10480 + 1.27823i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 6 q^{9} - 6 q^{15} + 18 q^{21} - 54 q^{27} + 48 q^{31} + 84 q^{37} - 54 q^{39} + 24 q^{43} + 72 q^{45} + 84 q^{49} - 36 q^{57} - 36 q^{63} - 12 q^{67} - 78 q^{69} - 216 q^{75} - 24 q^{79} - 66 q^{81}+ \cdots - 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.21110 + 1.23824i 0.699226 + 0.714901i
\(4\) 0 0
\(5\) 2.99415 + 0.261955i 1.33903 + 0.117150i 0.734051 0.679094i \(-0.237627\pi\)
0.604976 + 0.796244i \(0.293183\pi\)
\(6\) 0 0
\(7\) −1.57171 + 1.31882i −0.594050 + 0.498467i −0.889527 0.456883i \(-0.848966\pi\)
0.295477 + 0.955350i \(0.404522\pi\)
\(8\) 0 0
\(9\) −0.0664970 + 2.99926i −0.0221657 + 0.999754i
\(10\) 0 0
\(11\) 0.410422 0.710872i 0.123747 0.214336i −0.797495 0.603325i \(-0.793842\pi\)
0.921242 + 0.388989i \(0.127176\pi\)
\(12\) 0 0
\(13\) −0.481628 + 0.224587i −0.133580 + 0.0622892i −0.488259 0.872699i \(-0.662368\pi\)
0.354679 + 0.934988i \(0.384590\pi\)
\(14\) 0 0
\(15\) 3.30184 + 4.02475i 0.852532 + 1.03919i
\(16\) 0 0
\(17\) 4.05183 + 1.88940i 0.982714 + 0.458247i 0.846475 0.532429i \(-0.178721\pi\)
0.136239 + 0.990676i \(0.456498\pi\)
\(18\) 0 0
\(19\) −4.58845 3.21287i −1.05266 0.737082i −0.0868228 0.996224i \(-0.527671\pi\)
−0.965839 + 0.259142i \(0.916560\pi\)
\(20\) 0 0
\(21\) −3.53651 0.348942i −0.771730 0.0761455i
\(22\) 0 0
\(23\) 0.683726 2.55170i 0.142567 0.532067i −0.857285 0.514842i \(-0.827850\pi\)
0.999852 0.0172242i \(-0.00548291\pi\)
\(24\) 0 0
\(25\) 3.97230 + 0.700424i 0.794461 + 0.140085i
\(26\) 0 0
\(27\) −3.79435 + 3.55005i −0.730224 + 0.683208i
\(28\) 0 0
\(29\) −0.751047 2.80295i −0.139466 0.520494i −0.999940 0.0109989i \(-0.996499\pi\)
0.860474 0.509495i \(-0.170168\pi\)
\(30\) 0 0
\(31\) −2.52461 2.52461i −0.453434 0.453434i 0.443059 0.896492i \(-0.353893\pi\)
−0.896492 + 0.443059i \(0.853893\pi\)
\(32\) 0 0
\(33\) 1.37729 0.352731i 0.239756 0.0614026i
\(34\) 0 0
\(35\) −5.05141 + 3.53704i −0.853844 + 0.597868i
\(36\) 0 0
\(37\) 4.92239 + 3.57352i 0.809237 + 0.587483i
\(38\) 0 0
\(39\) −0.861391 0.324377i −0.137933 0.0519419i
\(40\) 0 0
\(41\) 0.623643 + 0.226987i 0.0973967 + 0.0354495i 0.390259 0.920705i \(-0.372386\pi\)
−0.292862 + 0.956155i \(0.594608\pi\)
\(42\) 0 0
\(43\) 6.36347 6.36347i 0.970420 0.970420i −0.0291545 0.999575i \(-0.509281\pi\)
0.999575 + 0.0291545i \(0.00928147\pi\)
\(44\) 0 0
\(45\) −0.984773 + 8.96284i −0.146801 + 1.33610i
\(46\) 0 0
\(47\) 0.943574 0.544773i 0.137634 0.0794632i −0.429602 0.903018i \(-0.641346\pi\)
0.567236 + 0.823555i \(0.308013\pi\)
\(48\) 0 0
\(49\) −0.484555 + 2.74805i −0.0692222 + 0.392578i
\(50\) 0 0
\(51\) 2.56762 + 7.30541i 0.359538 + 1.02296i
\(52\) 0 0
\(53\) −2.73760 + 3.26255i −0.376039 + 0.448146i −0.920560 0.390602i \(-0.872267\pi\)
0.544521 + 0.838747i \(0.316711\pi\)
\(54\) 0 0
\(55\) 1.41508 2.02095i 0.190810 0.272505i
\(56\) 0 0
\(57\) −1.57873 9.57270i −0.209109 1.26794i
\(58\) 0 0
\(59\) 0.898184 + 10.2663i 0.116934 + 1.33656i 0.797255 + 0.603643i \(0.206285\pi\)
−0.680321 + 0.732914i \(0.738160\pi\)
\(60\) 0 0
\(61\) −2.73787 5.87138i −0.350548 0.751753i 0.649414 0.760435i \(-0.275014\pi\)
−0.999962 + 0.00868202i \(0.997236\pi\)
\(62\) 0 0
\(63\) −3.85098 4.80167i −0.485177 0.604953i
\(64\) 0 0
\(65\) −1.50090 + 0.546284i −0.186164 + 0.0677581i
\(66\) 0 0
\(67\) −4.31473 5.14209i −0.527128 0.628207i 0.435123 0.900371i \(-0.356705\pi\)
−0.962251 + 0.272164i \(0.912261\pi\)
\(68\) 0 0
\(69\) 3.98769 2.24373i 0.480061 0.270114i
\(70\) 0 0
\(71\) −0.471211 + 0.0830872i −0.0559224 + 0.00986063i −0.201539 0.979480i \(-0.564594\pi\)
0.145617 + 0.989341i \(0.453483\pi\)
\(72\) 0 0
\(73\) 10.2572i 1.20051i −0.799808 0.600256i \(-0.795065\pi\)
0.799808 0.600256i \(-0.204935\pi\)
\(74\) 0 0
\(75\) 3.94354 + 5.76696i 0.455361 + 0.665911i
\(76\) 0 0
\(77\) 0.292448 + 1.65856i 0.0333276 + 0.189010i
\(78\) 0 0
\(79\) 1.33048 15.2074i 0.149690 1.71097i −0.435597 0.900142i \(-0.643463\pi\)
0.585288 0.810826i \(-0.300982\pi\)
\(80\) 0 0
\(81\) −8.99116 0.398884i −0.999017 0.0443204i
\(82\) 0 0
\(83\) −1.15221 3.16568i −0.126472 0.347479i 0.860256 0.509863i \(-0.170304\pi\)
−0.986728 + 0.162384i \(0.948082\pi\)
\(84\) 0 0
\(85\) 11.6369 + 6.71856i 1.26220 + 0.728730i
\(86\) 0 0
\(87\) 2.56114 4.32461i 0.274583 0.463647i
\(88\) 0 0
\(89\) 16.7368 1.46428i 1.77409 0.155213i 0.847381 0.530986i \(-0.178178\pi\)
0.926712 + 0.375773i \(0.122623\pi\)
\(90\) 0 0
\(91\) 0.460790 0.988167i 0.0483039 0.103588i
\(92\) 0 0
\(93\) 0.0685405 6.18363i 0.00710732 0.641213i
\(94\) 0 0
\(95\) −12.8969 10.8218i −1.32319 1.11029i
\(96\) 0 0
\(97\) −5.38204 1.44211i −0.546463 0.146424i −0.0249833 0.999688i \(-0.507953\pi\)
−0.521480 + 0.853263i \(0.674620\pi\)
\(98\) 0 0
\(99\) 2.10480 + 1.27823i 0.211540 + 0.128467i
\(100\) 0 0
\(101\) −8.53934 14.7906i −0.849696 1.47172i −0.881480 0.472222i \(-0.843452\pi\)
0.0317839 0.999495i \(-0.489881\pi\)
\(102\) 0 0
\(103\) −10.4904 + 2.81090i −1.03365 + 0.276966i −0.735480 0.677546i \(-0.763043\pi\)
−0.298171 + 0.954512i \(0.596377\pi\)
\(104\) 0 0
\(105\) −10.4975 1.97119i −1.02445 0.192369i
\(106\) 0 0
\(107\) −5.85728 + 16.0927i −0.566244 + 1.55574i 0.244076 + 0.969756i \(0.421515\pi\)
−0.810320 + 0.585988i \(0.800707\pi\)
\(108\) 0 0
\(109\) −0.160749 0.229573i −0.0153969 0.0219891i 0.811380 0.584519i \(-0.198717\pi\)
−0.826777 + 0.562530i \(0.809828\pi\)
\(110\) 0 0
\(111\) 1.53660 + 10.4230i 0.145848 + 0.989307i
\(112\) 0 0
\(113\) −11.1943 15.9871i −1.05307 1.50394i −0.851420 0.524484i \(-0.824258\pi\)
−0.201651 0.979457i \(-0.564631\pi\)
\(114\) 0 0
\(115\) 2.71561 7.46108i 0.253232 0.695750i
\(116\) 0 0
\(117\) −0.641569 1.45946i −0.0593131 0.134928i
\(118\) 0 0
\(119\) −8.86009 + 2.37405i −0.812203 + 0.217629i
\(120\) 0 0
\(121\) 5.16311 + 8.94276i 0.469373 + 0.812979i
\(122\) 0 0
\(123\) 0.474225 + 1.04713i 0.0427594 + 0.0944161i
\(124\) 0 0
\(125\) −2.80568 0.751780i −0.250948 0.0672413i
\(126\) 0 0
\(127\) −1.58109 1.32669i −0.140299 0.117725i 0.569937 0.821688i \(-0.306967\pi\)
−0.710236 + 0.703963i \(0.751412\pi\)
\(128\) 0 0
\(129\) 15.5863 + 0.172762i 1.37230 + 0.0152108i
\(130\) 0 0
\(131\) 0.887718 1.90372i 0.0775603 0.166329i −0.863704 0.504000i \(-0.831861\pi\)
0.941264 + 0.337671i \(0.109639\pi\)
\(132\) 0 0
\(133\) 11.4489 1.00165i 0.992745 0.0868540i
\(134\) 0 0
\(135\) −12.2908 + 9.63546i −1.05783 + 0.829288i
\(136\) 0 0
\(137\) 14.0715 + 8.12416i 1.20221 + 0.694094i 0.961045 0.276392i \(-0.0891386\pi\)
0.241160 + 0.970485i \(0.422472\pi\)
\(138\) 0 0
\(139\) 6.68166 + 18.3577i 0.566731 + 1.55708i 0.809576 + 0.587015i \(0.199697\pi\)
−0.242845 + 0.970065i \(0.578081\pi\)
\(140\) 0 0
\(141\) 1.81732 + 0.508603i 0.153046 + 0.0428321i
\(142\) 0 0
\(143\) −0.0380183 + 0.434552i −0.00317925 + 0.0363390i
\(144\) 0 0
\(145\) −1.51451 8.58919i −0.125773 0.713294i
\(146\) 0 0
\(147\) −3.98960 + 2.72815i −0.329057 + 0.225014i
\(148\) 0 0
\(149\) 9.90807i 0.811701i −0.913940 0.405850i \(-0.866975\pi\)
0.913940 0.405850i \(-0.133025\pi\)
\(150\) 0 0
\(151\) −15.1398 + 2.66955i −1.23206 + 0.217245i −0.751510 0.659722i \(-0.770674\pi\)
−0.480550 + 0.876968i \(0.659563\pi\)
\(152\) 0 0
\(153\) −5.93625 + 12.0269i −0.479917 + 0.972315i
\(154\) 0 0
\(155\) −6.89774 8.22041i −0.554040 0.660279i
\(156\) 0 0
\(157\) 17.3550 6.31672i 1.38508 0.504129i 0.461368 0.887209i \(-0.347359\pi\)
0.923715 + 0.383080i \(0.125137\pi\)
\(158\) 0 0
\(159\) −7.35533 + 0.561436i −0.583316 + 0.0445247i
\(160\) 0 0
\(161\) 2.29062 + 4.91225i 0.180526 + 0.387139i
\(162\) 0 0
\(163\) −1.60382 18.3318i −0.125621 1.43586i −0.753451 0.657505i \(-0.771612\pi\)
0.627829 0.778351i \(-0.283944\pi\)
\(164\) 0 0
\(165\) 4.21623 0.695342i 0.328233 0.0541323i
\(166\) 0 0
\(167\) 5.13764 7.33732i 0.397563 0.567779i −0.569604 0.821919i \(-0.692904\pi\)
0.967167 + 0.254140i \(0.0817925\pi\)
\(168\) 0 0
\(169\) −8.17471 + 9.74224i −0.628824 + 0.749403i
\(170\) 0 0
\(171\) 9.94135 13.5483i 0.760234 1.03607i
\(172\) 0 0
\(173\) 1.89107 10.7248i 0.143776 0.815392i −0.824567 0.565765i \(-0.808581\pi\)
0.968342 0.249627i \(-0.0803080\pi\)
\(174\) 0 0
\(175\) −7.16704 + 4.13789i −0.541777 + 0.312795i
\(176\) 0 0
\(177\) −11.6244 + 13.5456i −0.873743 + 1.01815i
\(178\) 0 0
\(179\) −10.7982 + 10.7982i −0.807098 + 0.807098i −0.984194 0.177096i \(-0.943330\pi\)
0.177096 + 0.984194i \(0.443330\pi\)
\(180\) 0 0
\(181\) −13.8429 5.03841i −1.02894 0.374502i −0.228260 0.973600i \(-0.573304\pi\)
−0.800675 + 0.599098i \(0.795526\pi\)
\(182\) 0 0
\(183\) 3.95438 10.5009i 0.292316 0.776252i
\(184\) 0 0
\(185\) 13.8023 + 11.9891i 1.01477 + 0.881457i
\(186\) 0 0
\(187\) 3.00609 2.10488i 0.219827 0.153924i
\(188\) 0 0
\(189\) 1.28174 10.5837i 0.0932327 0.769853i
\(190\) 0 0
\(191\) 7.68038 + 7.68038i 0.555733 + 0.555733i 0.928090 0.372357i \(-0.121450\pi\)
−0.372357 + 0.928090i \(0.621450\pi\)
\(192\) 0 0
\(193\) 4.60645 + 17.1915i 0.331579 + 1.23747i 0.907530 + 0.419987i \(0.137965\pi\)
−0.575951 + 0.817484i \(0.695368\pi\)
\(194\) 0 0
\(195\) −2.49417 1.19688i −0.178611 0.0857105i
\(196\) 0 0
\(197\) 10.2982 + 1.81585i 0.733714 + 0.129374i 0.528007 0.849240i \(-0.322939\pi\)
0.205707 + 0.978614i \(0.434051\pi\)
\(198\) 0 0
\(199\) −6.45287 + 24.0824i −0.457432 + 1.70716i 0.223408 + 0.974725i \(0.428282\pi\)
−0.680839 + 0.732433i \(0.738385\pi\)
\(200\) 0 0
\(201\) 1.14162 11.5703i 0.0805237 0.816103i
\(202\) 0 0
\(203\) 4.87701 + 3.41492i 0.342299 + 0.239680i
\(204\) 0 0
\(205\) 1.80782 + 0.843002i 0.126264 + 0.0588778i
\(206\) 0 0
\(207\) 7.60776 + 2.22036i 0.528776 + 0.154325i
\(208\) 0 0
\(209\) −4.16714 + 1.94317i −0.288247 + 0.134412i
\(210\) 0 0
\(211\) −8.30416 + 14.3832i −0.571682 + 0.990183i 0.424711 + 0.905329i \(0.360376\pi\)
−0.996393 + 0.0848537i \(0.972958\pi\)
\(212\) 0 0
\(213\) −0.673563 0.482847i −0.0461518 0.0330842i
\(214\) 0 0
\(215\) 20.7202 17.3863i 1.41310 1.18573i
\(216\) 0 0
\(217\) 7.29746 + 0.638445i 0.495384 + 0.0433405i
\(218\) 0 0
\(219\) 12.7009 12.4224i 0.858247 0.839429i
\(220\) 0 0
\(221\) −2.37581 −0.159815
\(222\) 0 0
\(223\) 7.48319 0.501112 0.250556 0.968102i \(-0.419387\pi\)
0.250556 + 0.968102i \(0.419387\pi\)
\(224\) 0 0
\(225\) −2.36490 + 11.8674i −0.157660 + 0.791160i
\(226\) 0 0
\(227\) 16.9550 + 1.48337i 1.12534 + 0.0984545i 0.634592 0.772847i \(-0.281168\pi\)
0.490748 + 0.871302i \(0.336724\pi\)
\(228\) 0 0
\(229\) −5.52665 + 4.63741i −0.365211 + 0.306449i −0.806864 0.590737i \(-0.798837\pi\)
0.441652 + 0.897186i \(0.354392\pi\)
\(230\) 0 0
\(231\) −1.69952 + 2.37079i −0.111820 + 0.155987i
\(232\) 0 0
\(233\) −12.7340 + 22.0559i −0.834231 + 1.44493i 0.0604245 + 0.998173i \(0.480755\pi\)
−0.894655 + 0.446757i \(0.852579\pi\)
\(234\) 0 0
\(235\) 2.96791 1.38396i 0.193605 0.0902796i
\(236\) 0 0
\(237\) 20.4418 16.7702i 1.32784 1.08934i
\(238\) 0 0
\(239\) 18.5381 + 8.64444i 1.19913 + 0.559162i 0.916487 0.400064i \(-0.131012\pi\)
0.282640 + 0.959226i \(0.408790\pi\)
\(240\) 0 0
\(241\) 7.87365 + 5.51319i 0.507186 + 0.355136i 0.798992 0.601342i \(-0.205367\pi\)
−0.291805 + 0.956478i \(0.594256\pi\)
\(242\) 0 0
\(243\) −10.3952 11.6163i −0.666854 0.745188i
\(244\) 0 0
\(245\) −2.17070 + 8.10115i −0.138681 + 0.517564i
\(246\) 0 0
\(247\) 2.93149 + 0.516902i 0.186527 + 0.0328897i
\(248\) 0 0
\(249\) 2.52445 5.26067i 0.159980 0.333381i
\(250\) 0 0
\(251\) 4.62723 + 17.2690i 0.292068 + 1.09001i 0.943518 + 0.331321i \(0.107494\pi\)
−0.651450 + 0.758692i \(0.725839\pi\)
\(252\) 0 0
\(253\) −1.53332 1.53332i −0.0963988 0.0963988i
\(254\) 0 0
\(255\) 5.77416 + 22.5461i 0.361592 + 1.41189i
\(256\) 0 0
\(257\) −20.7051 + 14.4979i −1.29155 + 0.904351i −0.998658 0.0517951i \(-0.983506\pi\)
−0.292890 + 0.956146i \(0.594617\pi\)
\(258\) 0 0
\(259\) −12.4494 + 0.875222i −0.773568 + 0.0543837i
\(260\) 0 0
\(261\) 8.45671 2.06620i 0.523457 0.127895i
\(262\) 0 0
\(263\) 9.53968 + 3.47216i 0.588242 + 0.214102i 0.618956 0.785426i \(-0.287556\pi\)
−0.0307142 + 0.999528i \(0.509778\pi\)
\(264\) 0 0
\(265\) −9.05145 + 9.05145i −0.556026 + 0.556026i
\(266\) 0 0
\(267\) 22.0829 + 18.9508i 1.35145 + 1.15977i
\(268\) 0 0
\(269\) 8.17337 4.71890i 0.498339 0.287716i −0.229688 0.973264i \(-0.573771\pi\)
0.728027 + 0.685548i \(0.240437\pi\)
\(270\) 0 0
\(271\) −0.218445 + 1.23887i −0.0132696 + 0.0752557i −0.990723 0.135894i \(-0.956609\pi\)
0.977454 + 0.211149i \(0.0677206\pi\)
\(272\) 0 0
\(273\) 1.78165 0.626194i 0.107831 0.0378990i
\(274\) 0 0
\(275\) 2.12823 2.53633i 0.128337 0.152946i
\(276\) 0 0
\(277\) −6.08707 + 8.69324i −0.365737 + 0.522326i −0.959273 0.282481i \(-0.908843\pi\)
0.593536 + 0.804807i \(0.297731\pi\)
\(278\) 0 0
\(279\) 7.73985 7.40409i 0.463373 0.443272i
\(280\) 0 0
\(281\) 0.292507 + 3.34337i 0.0174495 + 0.199449i 0.999915 + 0.0130066i \(0.00414024\pi\)
−0.982466 + 0.186442i \(0.940304\pi\)
\(282\) 0 0
\(283\) −2.57695 5.52629i −0.153184 0.328504i 0.814708 0.579872i \(-0.196897\pi\)
−0.967892 + 0.251368i \(0.919120\pi\)
\(284\) 0 0
\(285\) −2.21936 29.0757i −0.131464 1.72230i
\(286\) 0 0
\(287\) −1.27954 + 0.465715i −0.0755289 + 0.0274903i
\(288\) 0 0
\(289\) 1.92014 + 2.28833i 0.112949 + 0.134608i
\(290\) 0 0
\(291\) −4.73247 8.41082i −0.277423 0.493051i
\(292\) 0 0
\(293\) −25.0104 + 4.41001i −1.46112 + 0.257635i −0.847007 0.531581i \(-0.821598\pi\)
−0.614115 + 0.789217i \(0.710487\pi\)
\(294\) 0 0
\(295\) 30.9741i 1.80338i
\(296\) 0 0
\(297\) 0.966347 + 4.15432i 0.0560731 + 0.241058i
\(298\) 0 0
\(299\) 0.243777 + 1.38253i 0.0140980 + 0.0799537i
\(300\) 0 0
\(301\) −1.60925 + 18.3938i −0.0927556 + 1.06020i
\(302\) 0 0
\(303\) 7.97238 28.4866i 0.458001 1.63651i
\(304\) 0 0
\(305\) −6.65957 18.2970i −0.381326 1.04768i
\(306\) 0 0
\(307\) 1.15252 + 0.665407i 0.0657777 + 0.0379768i 0.532528 0.846412i \(-0.321242\pi\)
−0.466750 + 0.884389i \(0.654575\pi\)
\(308\) 0 0
\(309\) −16.1855 9.58543i −0.920759 0.545296i
\(310\) 0 0
\(311\) 15.8577 1.38737i 0.899206 0.0786703i 0.371829 0.928301i \(-0.378731\pi\)
0.527378 + 0.849631i \(0.323175\pi\)
\(312\) 0 0
\(313\) 0.139202 0.298520i 0.00786818 0.0168734i −0.902334 0.431037i \(-0.858148\pi\)
0.910203 + 0.414163i \(0.135926\pi\)
\(314\) 0 0
\(315\) −10.2726 15.3857i −0.578795 0.866887i
\(316\) 0 0
\(317\) −8.74100 7.33457i −0.490943 0.411950i 0.363421 0.931625i \(-0.381609\pi\)
−0.854364 + 0.519675i \(0.826053\pi\)
\(318\) 0 0
\(319\) −2.30078 0.616493i −0.128819 0.0345170i
\(320\) 0 0
\(321\) −27.0205 + 12.2371i −1.50814 + 0.683008i
\(322\) 0 0
\(323\) −12.5212 21.6874i −0.696700 1.20672i
\(324\) 0 0
\(325\) −2.07048 + 0.554784i −0.114850 + 0.0307739i
\(326\) 0 0
\(327\) 0.0895853 0.477080i 0.00495408 0.0263826i
\(328\) 0 0
\(329\) −0.764566 + 2.10063i −0.0421519 + 0.115811i
\(330\) 0 0
\(331\) 6.33413 + 9.04608i 0.348155 + 0.497217i 0.954593 0.297914i \(-0.0962908\pi\)
−0.606437 + 0.795131i \(0.707402\pi\)
\(332\) 0 0
\(333\) −11.0452 + 14.5259i −0.605276 + 0.796016i
\(334\) 0 0
\(335\) −11.5720 16.5265i −0.632244 0.902938i
\(336\) 0 0
\(337\) −4.51437 + 12.4031i −0.245913 + 0.675641i 0.753913 + 0.656975i \(0.228164\pi\)
−0.999826 + 0.0186663i \(0.994058\pi\)
\(338\) 0 0
\(339\) 6.23859 33.2232i 0.338834 1.80444i
\(340\) 0 0
\(341\) −2.83083 + 0.758519i −0.153298 + 0.0410761i
\(342\) 0 0
\(343\) −10.0436 17.3961i −0.542305 0.939300i
\(344\) 0 0
\(345\) 12.5275 5.67349i 0.674458 0.305451i
\(346\) 0 0
\(347\) 19.1680 + 5.13604i 1.02899 + 0.275717i 0.733544 0.679642i \(-0.237865\pi\)
0.295447 + 0.955359i \(0.404532\pi\)
\(348\) 0 0
\(349\) −11.9804 10.0527i −0.641295 0.538110i 0.263121 0.964763i \(-0.415248\pi\)
−0.904416 + 0.426653i \(0.859693\pi\)
\(350\) 0 0
\(351\) 1.03017 2.56197i 0.0549866 0.136748i
\(352\) 0 0
\(353\) −4.65761 + 9.98827i −0.247899 + 0.531622i −0.990401 0.138222i \(-0.955861\pi\)
0.742502 + 0.669844i \(0.233639\pi\)
\(354\) 0 0
\(355\) −1.43264 + 0.125340i −0.0760368 + 0.00665236i
\(356\) 0 0
\(357\) −13.6701 8.09575i −0.723497 0.428472i
\(358\) 0 0
\(359\) −24.3763 14.0737i −1.28653 0.742780i −0.308498 0.951225i \(-0.599826\pi\)
−0.978034 + 0.208445i \(0.933160\pi\)
\(360\) 0 0
\(361\) 4.23296 + 11.6300i 0.222787 + 0.612104i
\(362\) 0 0
\(363\) −4.82031 + 17.2237i −0.253001 + 0.904011i
\(364\) 0 0
\(365\) 2.68692 30.7116i 0.140640 1.60752i
\(366\) 0 0
\(367\) −5.47520 31.0514i −0.285803 1.62087i −0.702403 0.711780i \(-0.747889\pi\)
0.416600 0.909090i \(-0.363222\pi\)
\(368\) 0 0
\(369\) −0.722265 + 1.85538i −0.0375996 + 0.0965870i
\(370\) 0 0
\(371\) 8.73819i 0.453664i
\(372\) 0 0
\(373\) −0.957299 + 0.168798i −0.0495671 + 0.00874001i −0.198377 0.980126i \(-0.563567\pi\)
0.148810 + 0.988866i \(0.452456\pi\)
\(374\) 0 0
\(375\) −2.46706 4.38460i −0.127399 0.226420i
\(376\) 0 0
\(377\) 0.991231 + 1.18130i 0.0510510 + 0.0608402i
\(378\) 0 0
\(379\) 19.0871 6.94713i 0.980438 0.356850i 0.198427 0.980116i \(-0.436417\pi\)
0.782010 + 0.623265i \(0.214194\pi\)
\(380\) 0 0
\(381\) −0.272082 3.56452i −0.0139392 0.182616i
\(382\) 0 0
\(383\) 13.1335 + 28.1648i 0.671090 + 1.43916i 0.886545 + 0.462643i \(0.153099\pi\)
−0.215455 + 0.976514i \(0.569123\pi\)
\(384\) 0 0
\(385\) 0.441169 + 5.04259i 0.0224841 + 0.256994i
\(386\) 0 0
\(387\) 18.6626 + 19.5089i 0.948672 + 0.991692i
\(388\) 0 0
\(389\) −5.17340 + 7.38838i −0.262302 + 0.374606i −0.928602 0.371078i \(-0.878988\pi\)
0.666300 + 0.745684i \(0.267877\pi\)
\(390\) 0 0
\(391\) 7.59154 9.04724i 0.383920 0.457539i
\(392\) 0 0
\(393\) 3.43238 1.20637i 0.173141 0.0608534i
\(394\) 0 0
\(395\) 7.96730 45.1848i 0.400878 2.27349i
\(396\) 0 0
\(397\) 11.8431 6.83764i 0.594390 0.343171i −0.172441 0.985020i \(-0.555165\pi\)
0.766832 + 0.641848i \(0.221832\pi\)
\(398\) 0 0
\(399\) 15.1060 + 12.9634i 0.756245 + 0.648984i
\(400\) 0 0
\(401\) −17.3330 + 17.3330i −0.865567 + 0.865567i −0.991978 0.126411i \(-0.959654\pi\)
0.126411 + 0.991978i \(0.459654\pi\)
\(402\) 0 0
\(403\) 1.78292 + 0.648930i 0.0888136 + 0.0323255i
\(404\) 0 0
\(405\) −26.8164 3.54959i −1.33252 0.176381i
\(406\) 0 0
\(407\) 4.56057 2.03254i 0.226059 0.100749i
\(408\) 0 0
\(409\) −11.8091 + 8.26882i −0.583923 + 0.408867i −0.827869 0.560922i \(-0.810447\pi\)
0.243946 + 0.969789i \(0.421558\pi\)
\(410\) 0 0
\(411\) 6.98218 + 27.2630i 0.344406 + 1.34479i
\(412\) 0 0
\(413\) −14.9511 14.9511i −0.735695 0.735695i
\(414\) 0 0
\(415\) −2.62064 9.78037i −0.128642 0.480100i
\(416\) 0 0
\(417\) −14.6392 + 30.5065i −0.716885 + 1.49391i
\(418\) 0 0
\(419\) −20.8797 3.68166i −1.02004 0.179861i −0.361474 0.932382i \(-0.617726\pi\)
−0.658568 + 0.752522i \(0.728837\pi\)
\(420\) 0 0
\(421\) 1.30622 4.87487i 0.0636611 0.237586i −0.926763 0.375647i \(-0.877420\pi\)
0.990424 + 0.138061i \(0.0440870\pi\)
\(422\) 0 0
\(423\) 1.57117 + 2.86625i 0.0763930 + 0.139362i
\(424\) 0 0
\(425\) 14.7717 + 10.3433i 0.716534 + 0.501723i
\(426\) 0 0
\(427\) 12.0464 + 5.61734i 0.582967 + 0.271842i
\(428\) 0 0
\(429\) −0.584125 + 0.479207i −0.0282018 + 0.0231364i
\(430\) 0 0
\(431\) 1.41928 0.661823i 0.0683645 0.0318789i −0.388135 0.921602i \(-0.626881\pi\)
0.456500 + 0.889723i \(0.349103\pi\)
\(432\) 0 0
\(433\) 15.4921 26.8332i 0.744505 1.28952i −0.205921 0.978569i \(-0.566019\pi\)
0.950426 0.310951i \(-0.100648\pi\)
\(434\) 0 0
\(435\) 8.80131 12.2777i 0.421990 0.588669i
\(436\) 0 0
\(437\) −11.3355 + 9.51163i −0.542251 + 0.455003i
\(438\) 0 0
\(439\) −10.9791 0.960551i −0.524006 0.0458446i −0.177916 0.984046i \(-0.556935\pi\)
−0.346090 + 0.938201i \(0.612491\pi\)
\(440\) 0 0
\(441\) −8.20990 1.63605i −0.390948 0.0779069i
\(442\) 0 0
\(443\) −10.6373 −0.505392 −0.252696 0.967546i \(-0.581317\pi\)
−0.252696 + 0.967546i \(0.581317\pi\)
\(444\) 0 0
\(445\) 50.4960 2.39374
\(446\) 0 0
\(447\) 12.2686 11.9996i 0.580285 0.567562i
\(448\) 0 0
\(449\) 14.1791 + 1.24051i 0.669153 + 0.0585433i 0.416669 0.909058i \(-0.363197\pi\)
0.252483 + 0.967601i \(0.418753\pi\)
\(450\) 0 0
\(451\) 0.417316 0.350170i 0.0196506 0.0164888i
\(452\) 0 0
\(453\) −21.6413 15.5137i −1.01680 0.728896i
\(454\) 0 0
\(455\) 1.63853 2.83802i 0.0768155 0.133048i
\(456\) 0 0
\(457\) −11.9884 + 5.59030i −0.560795 + 0.261503i −0.682281 0.731090i \(-0.739012\pi\)
0.121486 + 0.992593i \(0.461234\pi\)
\(458\) 0 0
\(459\) −22.0816 + 7.21517i −1.03068 + 0.336775i
\(460\) 0 0
\(461\) 30.7821 + 14.3539i 1.43366 + 0.668529i 0.975431 0.220304i \(-0.0707048\pi\)
0.458233 + 0.888832i \(0.348483\pi\)
\(462\) 0 0
\(463\) 7.93697 + 5.55752i 0.368862 + 0.258280i 0.743281 0.668980i \(-0.233269\pi\)
−0.374418 + 0.927260i \(0.622158\pi\)
\(464\) 0 0
\(465\) 1.82505 18.4968i 0.0846347 0.857768i
\(466\) 0 0
\(467\) −2.20083 + 8.21360i −0.101842 + 0.380080i −0.997968 0.0637204i \(-0.979703\pi\)
0.896126 + 0.443800i \(0.146370\pi\)
\(468\) 0 0
\(469\) 13.5630 + 2.39152i 0.626281 + 0.110430i
\(470\) 0 0
\(471\) 28.8403 + 13.8396i 1.32889 + 0.637697i
\(472\) 0 0
\(473\) −1.91190 7.13533i −0.0879095 0.328083i
\(474\) 0 0
\(475\) −15.9763 15.9763i −0.733045 0.733045i
\(476\) 0 0
\(477\) −9.60320 8.42774i −0.439700 0.385880i
\(478\) 0 0
\(479\) −17.5604 + 12.2959i −0.802357 + 0.561816i −0.901259 0.433281i \(-0.857356\pi\)
0.0989023 + 0.995097i \(0.468467\pi\)
\(480\) 0 0
\(481\) −3.17333 0.615602i −0.144691 0.0280691i
\(482\) 0 0
\(483\) −3.30840 + 8.78554i −0.150538 + 0.399756i
\(484\) 0 0
\(485\) −15.7369 5.72776i −0.714575 0.260084i
\(486\) 0 0
\(487\) −10.7631 + 10.7631i −0.487723 + 0.487723i −0.907587 0.419864i \(-0.862078\pi\)
0.419864 + 0.907587i \(0.362078\pi\)
\(488\) 0 0
\(489\) 20.7568 24.1874i 0.938656 1.09379i
\(490\) 0 0
\(491\) 4.50686 2.60204i 0.203392 0.117428i −0.394845 0.918748i \(-0.629202\pi\)
0.598237 + 0.801320i \(0.295868\pi\)
\(492\) 0 0
\(493\) 2.25277 12.7761i 0.101460 0.575407i
\(494\) 0 0
\(495\) 5.96726 + 4.37860i 0.268208 + 0.196803i
\(496\) 0 0
\(497\) 0.631029 0.752031i 0.0283055 0.0337332i
\(498\) 0 0
\(499\) −5.77465 + 8.24705i −0.258509 + 0.369189i −0.927336 0.374229i \(-0.877908\pi\)
0.668828 + 0.743417i \(0.266796\pi\)
\(500\) 0 0
\(501\) 15.3076 2.52453i 0.683892 0.112788i
\(502\) 0 0
\(503\) −1.91601 21.9001i −0.0854307 0.976478i −0.911062 0.412268i \(-0.864737\pi\)
0.825632 0.564209i \(-0.190819\pi\)
\(504\) 0 0
\(505\) −21.6936 46.5222i −0.965354 2.07021i
\(506\) 0 0
\(507\) −21.9636 + 1.67649i −0.975439 + 0.0744557i
\(508\) 0 0
\(509\) 22.0861 8.03868i 0.978949 0.356308i 0.197517 0.980299i \(-0.436712\pi\)
0.781431 + 0.623991i \(0.214490\pi\)
\(510\) 0 0
\(511\) 13.5274 + 16.1213i 0.598416 + 0.713165i
\(512\) 0 0
\(513\) 28.8160 4.09848i 1.27226 0.180953i
\(514\) 0 0
\(515\) −32.1463 + 5.66825i −1.41653 + 0.249773i
\(516\) 0 0
\(517\) 0.894347i 0.0393333i
\(518\) 0 0
\(519\) 15.5702 10.6472i 0.683456 0.467358i
\(520\) 0 0
\(521\) 7.15095 + 40.5551i 0.313289 + 1.77675i 0.581658 + 0.813434i \(0.302404\pi\)
−0.268369 + 0.963316i \(0.586485\pi\)
\(522\) 0 0
\(523\) 2.61732 29.9161i 0.114447 1.30814i −0.694173 0.719808i \(-0.744230\pi\)
0.808620 0.588331i \(-0.200215\pi\)
\(524\) 0 0
\(525\) −13.8037 3.86316i −0.602442 0.168602i
\(526\) 0 0
\(527\) −5.45930 14.9993i −0.237811 0.653380i
\(528\) 0 0
\(529\) 13.8749 + 8.01067i 0.603256 + 0.348290i
\(530\) 0 0
\(531\) −30.8510 + 2.01121i −1.33882 + 0.0872792i
\(532\) 0 0
\(533\) −0.351343 + 0.0307385i −0.0152183 + 0.00133143i
\(534\) 0 0
\(535\) −21.7532 + 46.6498i −0.940471 + 2.01685i
\(536\) 0 0
\(537\) −26.4485 0.293161i −1.14134 0.0126508i
\(538\) 0 0
\(539\) 1.75464 + 1.47232i 0.0755777 + 0.0634172i
\(540\) 0 0
\(541\) −33.7425 9.04127i −1.45070 0.388715i −0.554435 0.832227i \(-0.687066\pi\)
−0.896268 + 0.443512i \(0.853732\pi\)
\(542\) 0 0
\(543\) −10.5263 23.2429i −0.451727 0.997448i
\(544\) 0 0
\(545\) −0.421168 0.729485i −0.0180409 0.0312477i
\(546\) 0 0
\(547\) 27.5734 7.38827i 1.17895 0.315900i 0.384442 0.923149i \(-0.374394\pi\)
0.794511 + 0.607249i \(0.207727\pi\)
\(548\) 0 0
\(549\) 17.7919 7.82116i 0.759338 0.333799i
\(550\) 0 0
\(551\) −5.55935 + 15.2742i −0.236836 + 0.650702i
\(552\) 0 0
\(553\) 17.9647 + 25.6563i 0.763938 + 1.09102i
\(554\) 0 0
\(555\) 1.87046 + 31.6106i 0.0793967 + 1.34179i
\(556\) 0 0
\(557\) −4.17484 5.96229i −0.176894 0.252630i 0.720908 0.693031i \(-0.243725\pi\)
−0.897801 + 0.440401i \(0.854836\pi\)
\(558\) 0 0
\(559\) −1.63568 + 4.49398i −0.0691817 + 0.190075i
\(560\) 0 0
\(561\) 6.24702 + 1.17305i 0.263749 + 0.0495263i
\(562\) 0 0
\(563\) −4.91180 + 1.31611i −0.207008 + 0.0554676i −0.360833 0.932631i \(-0.617507\pi\)
0.153825 + 0.988098i \(0.450841\pi\)
\(564\) 0 0
\(565\) −29.3296 50.8003i −1.23390 2.13718i
\(566\) 0 0
\(567\) 14.6575 11.2308i 0.615559 0.471649i
\(568\) 0 0
\(569\) 9.84441 + 2.63780i 0.412699 + 0.110582i 0.459194 0.888336i \(-0.348138\pi\)
−0.0464945 + 0.998919i \(0.514805\pi\)
\(570\) 0 0
\(571\) 6.38632 + 5.35876i 0.267259 + 0.224257i 0.766562 0.642171i \(-0.221966\pi\)
−0.499302 + 0.866428i \(0.666410\pi\)
\(572\) 0 0
\(573\) −0.208514 + 18.8119i −0.00871081 + 0.785877i
\(574\) 0 0
\(575\) 4.50324 9.65724i 0.187798 0.402735i
\(576\) 0 0
\(577\) −32.9324 + 2.88121i −1.37099 + 0.119946i −0.748737 0.662867i \(-0.769340\pi\)
−0.622257 + 0.782813i \(0.713784\pi\)
\(578\) 0 0
\(579\) −15.7084 + 26.5245i −0.652820 + 1.10232i
\(580\) 0 0
\(581\) 5.98592 + 3.45597i 0.248338 + 0.143378i
\(582\) 0 0
\(583\) 1.19568 + 3.28511i 0.0495201 + 0.136055i
\(584\) 0 0
\(585\) −1.53864 4.53793i −0.0636150 0.187620i
\(586\) 0 0
\(587\) 1.11621 12.7583i 0.0460709 0.526593i −0.937734 0.347353i \(-0.887081\pi\)
0.983805 0.179240i \(-0.0573639\pi\)
\(588\) 0 0
\(589\) 3.47281 + 19.6953i 0.143095 + 0.811530i
\(590\) 0 0
\(591\) 10.2236 + 14.9508i 0.420543 + 0.614994i
\(592\) 0 0
\(593\) 43.3195i 1.77892i −0.457016 0.889459i \(-0.651082\pi\)
0.457016 0.889459i \(-0.348918\pi\)
\(594\) 0 0
\(595\) −27.1504 + 4.78734i −1.11306 + 0.196262i
\(596\) 0 0
\(597\) −37.6350 + 21.1759i −1.54030 + 0.866671i
\(598\) 0 0
\(599\) 27.5928 + 32.8839i 1.12741 + 1.34360i 0.931823 + 0.362912i \(0.118217\pi\)
0.195589 + 0.980686i \(0.437338\pi\)
\(600\) 0 0
\(601\) −17.1544 + 6.24370i −0.699744 + 0.254686i −0.667301 0.744788i \(-0.732551\pi\)
−0.0324422 + 0.999474i \(0.510328\pi\)
\(602\) 0 0
\(603\) 15.7094 12.5991i 0.639736 0.513074i
\(604\) 0 0
\(605\) 13.1165 + 28.1285i 0.533263 + 1.14359i
\(606\) 0 0
\(607\) 3.61651 + 41.3369i 0.146790 + 1.67781i 0.610648 + 0.791902i \(0.290909\pi\)
−0.463858 + 0.885909i \(0.653535\pi\)
\(608\) 0 0
\(609\) 1.67802 + 10.1747i 0.0679968 + 0.412301i
\(610\) 0 0
\(611\) −0.332103 + 0.474292i −0.0134355 + 0.0191878i
\(612\) 0 0
\(613\) 15.7411 18.7595i 0.635778 0.757691i −0.347919 0.937525i \(-0.613112\pi\)
0.983697 + 0.179834i \(0.0575560\pi\)
\(614\) 0 0
\(615\) 1.14560 + 3.25948i 0.0461952 + 0.131435i
\(616\) 0 0
\(617\) 1.14415 6.48878i 0.0460616 0.261229i −0.953077 0.302728i \(-0.902102\pi\)
0.999139 + 0.0414999i \(0.0132136\pi\)
\(618\) 0 0
\(619\) 19.4010 11.2012i 0.779793 0.450214i −0.0565636 0.998399i \(-0.518014\pi\)
0.836357 + 0.548185i \(0.184681\pi\)
\(620\) 0 0
\(621\) 6.46438 + 12.1093i 0.259407 + 0.485930i
\(622\) 0 0
\(623\) −24.3742 + 24.3742i −0.976531 + 0.976531i
\(624\) 0 0
\(625\) −27.1554 9.88374i −1.08621 0.395350i
\(626\) 0 0
\(627\) −7.45292 2.80657i −0.297641 0.112084i
\(628\) 0 0
\(629\) 13.1929 + 23.7797i 0.526036 + 0.948158i
\(630\) 0 0
\(631\) 24.9886 17.4972i 0.994780 0.696552i 0.0416557 0.999132i \(-0.486737\pi\)
0.953124 + 0.302580i \(0.0978478\pi\)
\(632\) 0 0
\(633\) −27.8671 + 7.13688i −1.10762 + 0.283666i
\(634\) 0 0
\(635\) −4.38649 4.38649i −0.174073 0.174073i
\(636\) 0 0
\(637\) −0.383801 1.43236i −0.0152067 0.0567523i
\(638\) 0 0
\(639\) −0.217866 1.41881i −0.00861865 0.0561273i
\(640\) 0 0
\(641\) 4.52602 + 0.798059i 0.178767 + 0.0315214i 0.262315 0.964982i \(-0.415514\pi\)
−0.0835480 + 0.996504i \(0.526625\pi\)
\(642\) 0 0
\(643\) 6.56104 24.4861i 0.258742 0.965639i −0.707228 0.706986i \(-0.750055\pi\)
0.965970 0.258653i \(-0.0832788\pi\)
\(644\) 0 0
\(645\) 46.6225 + 4.60018i 1.83576 + 0.181132i
\(646\) 0 0
\(647\) −6.04811 4.23493i −0.237776 0.166492i 0.448615 0.893725i \(-0.351917\pi\)
−0.686391 + 0.727232i \(0.740806\pi\)
\(648\) 0 0
\(649\) 7.66665 + 3.57502i 0.300943 + 0.140332i
\(650\) 0 0
\(651\) 8.04737 + 9.80926i 0.315401 + 0.384455i
\(652\) 0 0
\(653\) −28.7466 + 13.4047i −1.12494 + 0.524568i −0.893851 0.448364i \(-0.852007\pi\)
−0.231090 + 0.972932i \(0.574229\pi\)
\(654\) 0 0
\(655\) 3.15665 5.46748i 0.123341 0.213632i
\(656\) 0 0
\(657\) 30.7640 + 0.682071i 1.20022 + 0.0266101i
\(658\) 0 0
\(659\) 24.4178 20.4890i 0.951182 0.798137i −0.0283140 0.999599i \(-0.509014\pi\)
0.979496 + 0.201462i \(0.0645694\pi\)
\(660\) 0 0
\(661\) 22.1606 + 1.93880i 0.861946 + 0.0754105i 0.509550 0.860441i \(-0.329812\pi\)
0.352395 + 0.935851i \(0.385367\pi\)
\(662\) 0 0
\(663\) −2.87734 2.94184i −0.111747 0.114252i
\(664\) 0 0
\(665\) 34.5422 1.33949
\(666\) 0 0
\(667\) −7.66579 −0.296821
\(668\) 0 0
\(669\) 9.06286 + 9.26602i 0.350390 + 0.358245i
\(670\) 0 0
\(671\) −5.29748 0.463469i −0.204507 0.0178920i
\(672\) 0 0
\(673\) 11.9739 10.0473i 0.461561 0.387295i −0.382144 0.924103i \(-0.624814\pi\)
0.843705 + 0.536807i \(0.180370\pi\)
\(674\) 0 0
\(675\) −17.5589 + 11.4442i −0.675841 + 0.440489i
\(676\) 0 0
\(677\) −0.733041 + 1.26966i −0.0281730 + 0.0487971i −0.879768 0.475403i \(-0.842302\pi\)
0.851595 + 0.524200i \(0.175636\pi\)
\(678\) 0 0
\(679\) 10.3609 4.83136i 0.397615 0.185411i
\(680\) 0 0
\(681\) 18.6973 + 22.7909i 0.716482 + 0.873348i
\(682\) 0 0
\(683\) 21.4712 + 10.0122i 0.821572 + 0.383105i 0.787500 0.616314i \(-0.211375\pi\)
0.0340715 + 0.999419i \(0.489153\pi\)
\(684\) 0 0
\(685\) 40.0040 + 28.0111i 1.52847 + 1.07025i
\(686\) 0 0
\(687\) −12.4355 1.22700i −0.474446 0.0468129i
\(688\) 0 0
\(689\) 0.585782 2.18617i 0.0223165 0.0832863i
\(690\) 0 0
\(691\) 7.36540 + 1.29872i 0.280193 + 0.0494056i 0.311979 0.950089i \(-0.399008\pi\)
−0.0317856 + 0.999495i \(0.510119\pi\)
\(692\) 0 0
\(693\) −4.99390 + 0.766841i −0.189702 + 0.0291299i
\(694\) 0 0
\(695\) 15.1970 + 56.7161i 0.576456 + 2.15136i
\(696\) 0 0
\(697\) 2.09803 + 2.09803i 0.0794685 + 0.0794685i
\(698\) 0 0
\(699\) −42.7326 + 10.9440i −1.61630 + 0.413941i
\(700\) 0 0
\(701\) 25.2999 17.7152i 0.955563 0.669092i 0.0118748 0.999929i \(-0.496220\pi\)
0.943688 + 0.330837i \(0.107331\pi\)
\(702\) 0 0
\(703\) −11.1049 32.2119i −0.418830 1.21489i
\(704\) 0 0
\(705\) 5.30810 + 1.99889i 0.199915 + 0.0752826i
\(706\) 0 0
\(707\) 32.9275 + 11.9846i 1.23836 + 0.450728i
\(708\) 0 0
\(709\) −9.93812 + 9.93812i −0.373234 + 0.373234i −0.868654 0.495420i \(-0.835014\pi\)
0.495420 + 0.868654i \(0.335014\pi\)
\(710\) 0 0
\(711\) 45.5226 + 5.00169i 1.70723 + 0.187578i
\(712\) 0 0
\(713\) −8.16820 + 4.71591i −0.305901 + 0.176612i
\(714\) 0 0
\(715\) −0.227666 + 1.29116i −0.00851421 + 0.0482865i
\(716\) 0 0
\(717\) 11.7474 + 33.4239i 0.438716 + 1.24824i
\(718\) 0 0
\(719\) −31.4445 + 37.4740i −1.17268 + 1.39755i −0.272429 + 0.962176i \(0.587827\pi\)
−0.900252 + 0.435370i \(0.856618\pi\)
\(720\) 0 0
\(721\) 12.7808 18.2529i 0.475982 0.679773i
\(722\) 0 0
\(723\) 2.70906 + 16.4265i 0.100751 + 0.610908i
\(724\) 0 0
\(725\) −1.02014 11.6602i −0.0378869 0.433049i
\(726\) 0 0
\(727\) −0.0465379 0.0998008i −0.00172600 0.00370141i 0.905443 0.424468i \(-0.139539\pi\)
−0.907169 + 0.420767i \(0.861761\pi\)
\(728\) 0 0
\(729\) 1.79424 26.9403i 0.0664534 0.997790i
\(730\) 0 0
\(731\) 37.8069 13.7606i 1.39834 0.508954i
\(732\) 0 0
\(733\) −1.53203 1.82580i −0.0565867 0.0674374i 0.737009 0.675883i \(-0.236238\pi\)
−0.793595 + 0.608446i \(0.791793\pi\)
\(734\) 0 0
\(735\) −12.6601 + 7.12341i −0.466976 + 0.262751i
\(736\) 0 0
\(737\) −5.42623 + 0.956791i −0.199878 + 0.0352438i
\(738\) 0 0
\(739\) 20.5046i 0.754275i 0.926157 + 0.377137i \(0.123092\pi\)
−0.926157 + 0.377137i \(0.876908\pi\)
\(740\) 0 0
\(741\) 2.91027 + 4.25592i 0.106911 + 0.156345i
\(742\) 0 0
\(743\) −4.98791 28.2878i −0.182989 1.03778i −0.928512 0.371301i \(-0.878912\pi\)
0.745524 0.666479i \(-0.232199\pi\)
\(744\) 0 0
\(745\) 2.59546 29.6663i 0.0950905 1.08689i
\(746\) 0 0
\(747\) 9.57134 3.24529i 0.350197 0.118739i
\(748\) 0 0
\(749\) −12.0175 33.0178i −0.439110 1.20644i
\(750\) 0 0
\(751\) −26.5841 15.3484i −0.970069 0.560070i −0.0708118 0.997490i \(-0.522559\pi\)
−0.899257 + 0.437420i \(0.855892\pi\)
\(752\) 0 0
\(753\) −15.7793 + 26.6441i −0.575029 + 0.970965i
\(754\) 0 0
\(755\) −46.0302 + 4.02712i −1.67521 + 0.146562i
\(756\) 0 0
\(757\) −0.292104 + 0.626420i −0.0106167 + 0.0227676i −0.911545 0.411201i \(-0.865109\pi\)
0.900928 + 0.433969i \(0.142887\pi\)
\(758\) 0 0
\(759\) 0.0416279 3.75561i 0.00151100 0.136320i
\(760\) 0 0
\(761\) 23.9478 + 20.0946i 0.868108 + 0.728429i 0.963699 0.266992i \(-0.0860297\pi\)
−0.0955911 + 0.995421i \(0.530474\pi\)
\(762\) 0 0
\(763\) 0.555415 + 0.148823i 0.0201074 + 0.00538776i
\(764\) 0 0
\(765\) −20.9245 + 34.4553i −0.756528 + 1.24573i
\(766\) 0 0
\(767\) −2.73827 4.74282i −0.0988731 0.171253i
\(768\) 0 0
\(769\) −42.5558 + 11.4028i −1.53460 + 0.411195i −0.924516 0.381142i \(-0.875531\pi\)
−0.610084 + 0.792337i \(0.708864\pi\)
\(770\) 0 0
\(771\) −43.0277 8.07966i −1.54960 0.290982i
\(772\) 0 0
\(773\) 13.2483 36.3993i 0.476506 1.30919i −0.435933 0.899979i \(-0.643582\pi\)
0.912439 0.409212i \(-0.134196\pi\)
\(774\) 0 0
\(775\) −8.26022 11.7968i −0.296716 0.423754i
\(776\) 0 0
\(777\) −16.1612 14.3554i −0.579778 0.514998i
\(778\) 0 0
\(779\) −2.13227 3.04520i −0.0763966 0.109106i
\(780\) 0 0
\(781\) −0.134331 + 0.369071i −0.00480674 + 0.0132064i
\(782\) 0 0
\(783\) 12.8003 + 7.96911i 0.457447 + 0.284793i
\(784\) 0 0
\(785\) 53.6184 14.3670i 1.91372 0.512780i
\(786\) 0 0
\(787\) −0.833331 1.44337i −0.0297051 0.0514507i 0.850791 0.525505i \(-0.176123\pi\)
−0.880496 + 0.474054i \(0.842790\pi\)
\(788\) 0 0
\(789\) 7.25408 + 16.0176i 0.258252 + 0.570240i
\(790\) 0 0
\(791\) 38.6783 + 10.3638i 1.37524 + 0.368495i
\(792\) 0 0
\(793\) 2.63727 + 2.21293i 0.0936522 + 0.0785835i
\(794\) 0 0
\(795\) −22.1701 0.245737i −0.786291 0.00871540i
\(796\) 0 0
\(797\) −14.4621 + 31.0141i −0.512274 + 1.09857i 0.464749 + 0.885442i \(0.346144\pi\)
−0.977023 + 0.213133i \(0.931633\pi\)
\(798\) 0 0
\(799\) 4.85250 0.424539i 0.171669 0.0150191i
\(800\) 0 0
\(801\) 3.27881 + 50.2953i 0.115851 + 1.77710i
\(802\) 0 0
\(803\) −7.29154 4.20977i −0.257313 0.148560i
\(804\) 0 0
\(805\) 5.57168 + 15.3081i 0.196376 + 0.539538i
\(806\) 0 0
\(807\) 15.7419 + 4.40559i 0.554140 + 0.155084i
\(808\) 0 0
\(809\) 3.02028 34.5220i 0.106187 1.21373i −0.736919 0.675981i \(-0.763720\pi\)
0.843107 0.537747i \(-0.180724\pi\)
\(810\) 0 0
\(811\) −5.52768 31.3490i −0.194103 1.10081i −0.913691 0.406411i \(-0.866780\pi\)
0.719588 0.694402i \(-0.244331\pi\)
\(812\) 0 0
\(813\) −1.79858 + 1.22990i −0.0630788 + 0.0431343i
\(814\) 0 0
\(815\) 55.3083i 1.93737i
\(816\) 0 0
\(817\) −49.6434 + 8.75348i −1.73680 + 0.306245i
\(818\) 0 0
\(819\) 2.93313 + 1.44774i 0.102492 + 0.0505881i
\(820\) 0 0
\(821\) −17.3014 20.6191i −0.603824 0.719610i 0.374375 0.927277i \(-0.377857\pi\)
−0.978199 + 0.207667i \(0.933413\pi\)
\(822\) 0 0
\(823\) 31.8100 11.5779i 1.10883 0.403580i 0.278265 0.960504i \(-0.410241\pi\)
0.830563 + 0.556924i \(0.188019\pi\)
\(824\) 0 0
\(825\) 5.71809 0.436464i 0.199078 0.0151957i
\(826\) 0 0
\(827\) −1.41813 3.04118i −0.0493131 0.105752i 0.880107 0.474774i \(-0.157470\pi\)
−0.929421 + 0.369022i \(0.879693\pi\)
\(828\) 0 0
\(829\) 1.96317 + 22.4392i 0.0681838 + 0.779345i 0.950912 + 0.309461i \(0.100149\pi\)
−0.882728 + 0.469884i \(0.844296\pi\)
\(830\) 0 0
\(831\) −18.1364 + 2.99106i −0.629144 + 0.103759i
\(832\) 0 0
\(833\) −7.15551 + 10.2191i −0.247924 + 0.354072i
\(834\) 0 0
\(835\) 17.3049 20.6232i 0.598862 0.713696i
\(836\) 0 0
\(837\) 18.5418 + 0.616764i 0.640897 + 0.0213185i
\(838\) 0 0
\(839\) −2.80818 + 15.9260i −0.0969492 + 0.549826i 0.897183 + 0.441658i \(0.145610\pi\)
−0.994133 + 0.108168i \(0.965502\pi\)
\(840\) 0 0
\(841\) 17.8223 10.2897i 0.614562 0.354818i
\(842\) 0 0
\(843\) −3.78566 + 4.41134i −0.130385 + 0.151935i
\(844\) 0 0
\(845\) −27.0284 + 27.0284i −0.929804 + 0.929804i
\(846\) 0 0
\(847\) −19.9088 7.24621i −0.684075 0.248983i
\(848\) 0 0
\(849\) 3.72196 9.88376i 0.127737 0.339210i
\(850\) 0 0
\(851\) 12.4841 10.1172i 0.427950 0.346812i
\(852\) 0 0
\(853\) 36.9564 25.8771i 1.26536 0.886016i 0.268354 0.963320i \(-0.413520\pi\)
0.997008 + 0.0773048i \(0.0246315\pi\)
\(854\) 0 0
\(855\) 33.3150 37.9616i 1.13935 1.29826i
\(856\) 0 0
\(857\) −28.5571 28.5571i −0.975493 0.975493i 0.0242136 0.999707i \(-0.492292\pi\)
−0.999707 + 0.0242136i \(0.992292\pi\)
\(858\) 0 0
\(859\) −1.99195 7.43407i −0.0679645 0.253647i 0.923582 0.383402i \(-0.125248\pi\)
−0.991546 + 0.129755i \(0.958581\pi\)
\(860\) 0 0
\(861\) −2.12631 1.02036i −0.0724646 0.0347738i
\(862\) 0 0
\(863\) −41.6134 7.33757i −1.41654 0.249774i −0.587616 0.809140i \(-0.699934\pi\)
−0.828921 + 0.559366i \(0.811045\pi\)
\(864\) 0 0
\(865\) 8.47158 31.6164i 0.288042 1.07499i
\(866\) 0 0
\(867\) −0.508043 + 5.14898i −0.0172540 + 0.174869i
\(868\) 0 0
\(869\) −10.2645 7.18726i −0.348198 0.243811i
\(870\) 0 0
\(871\) 3.23294 + 1.50755i 0.109544 + 0.0510813i
\(872\) 0 0
\(873\) 4.68317 16.0463i 0.158501 0.543084i
\(874\) 0 0
\(875\) 5.40118 2.51861i 0.182593 0.0851446i
\(876\) 0 0
\(877\) −2.30100 + 3.98545i −0.0776994 + 0.134579i −0.902257 0.431199i \(-0.858091\pi\)
0.824558 + 0.565778i \(0.191424\pi\)
\(878\) 0 0
\(879\) −35.7506 25.6280i −1.20584 0.864412i
\(880\) 0 0
\(881\) −18.2480 + 15.3119i −0.614791 + 0.515871i −0.896161 0.443728i \(-0.853656\pi\)
0.281370 + 0.959599i \(0.409211\pi\)
\(882\) 0 0
\(883\) 43.0509 + 3.76646i 1.44878 + 0.126752i 0.784219 0.620485i \(-0.213064\pi\)
0.664558 + 0.747236i \(0.268620\pi\)
\(884\) 0 0
\(885\) −38.3536 + 37.5126i −1.28924 + 1.26097i
\(886\) 0 0
\(887\) −3.94986 −0.132623 −0.0663117 0.997799i \(-0.521123\pi\)
−0.0663117 + 0.997799i \(0.521123\pi\)
\(888\) 0 0
\(889\) 4.23468 0.142027
\(890\) 0 0
\(891\) −3.97373 + 6.22785i −0.133125 + 0.208641i
\(892\) 0 0
\(893\) −6.07982 0.531915i −0.203453 0.0177999i
\(894\) 0 0
\(895\) −35.1602 + 29.5029i −1.17528 + 0.986175i
\(896\) 0 0
\(897\) −1.41667 + 1.97623i −0.0473012 + 0.0659844i
\(898\) 0 0
\(899\) −5.18025 + 8.97245i −0.172771 + 0.299248i
\(900\) 0 0
\(901\) −17.2566 + 8.04688i −0.574900 + 0.268080i
\(902\) 0 0
\(903\) −24.7250 + 20.2840i −0.822796 + 0.675010i
\(904\) 0 0
\(905\) −40.1280 18.7120i −1.33390 0.622007i
\(906\) 0 0
\(907\) 3.66185 + 2.56405i 0.121590 + 0.0851380i 0.632789 0.774324i \(-0.281910\pi\)
−0.511200 + 0.859462i \(0.670799\pi\)
\(908\) 0 0
\(909\) 44.9286 24.6282i 1.49019 0.816866i
\(910\) 0 0
\(911\) −5.41644 + 20.2144i −0.179455 + 0.669734i 0.816295 + 0.577635i \(0.196024\pi\)
−0.995750 + 0.0920991i \(0.970642\pi\)
\(912\) 0 0
\(913\) −2.72329 0.480190i −0.0901278 0.0158920i
\(914\) 0 0
\(915\) 14.5908 30.4056i 0.482357 1.00518i
\(916\) 0 0
\(917\) 1.11543 + 4.16283i 0.0368347 + 0.137469i
\(918\) 0 0
\(919\) −16.9048 16.9048i −0.557639 0.557639i 0.370996 0.928635i \(-0.379016\pi\)
−0.928635 + 0.370996i \(0.879016\pi\)
\(920\) 0 0
\(921\) 0.571873 + 2.23297i 0.0188439 + 0.0735789i
\(922\) 0 0
\(923\) 0.208288 0.145845i 0.00685589 0.00480055i
\(924\) 0 0
\(925\) 17.0503 + 17.6429i 0.560609 + 0.580094i
\(926\) 0 0
\(927\) −7.73304 31.6504i −0.253986 1.03954i
\(928\) 0 0
\(929\) −27.3266 9.94606i −0.896556 0.326320i −0.147684 0.989035i \(-0.547182\pi\)
−0.748872 + 0.662715i \(0.769404\pi\)
\(930\) 0 0
\(931\) 11.0525 11.0525i 0.362230 0.362230i
\(932\) 0 0
\(933\) 20.9230 + 17.9554i 0.684990 + 0.587835i
\(934\) 0 0
\(935\) 9.55207 5.51489i 0.312386 0.180356i
\(936\) 0 0
\(937\) −2.44992 + 13.8942i −0.0800353 + 0.453903i 0.918283 + 0.395926i \(0.129576\pi\)
−0.998318 + 0.0579772i \(0.981535\pi\)
\(938\) 0 0
\(939\) 0.538228 0.189170i 0.0175644 0.00617333i
\(940\) 0 0
\(941\) 9.84466 11.7324i 0.320927 0.382466i −0.581328 0.813669i \(-0.697467\pi\)
0.902254 + 0.431204i \(0.141911\pi\)
\(942\) 0 0
\(943\) 1.00561 1.43615i 0.0327470 0.0467676i
\(944\) 0 0
\(945\) 6.61017 31.3535i 0.215029 1.01993i
\(946\) 0 0
\(947\) −2.19983 25.1441i −0.0714847 0.817074i −0.944313 0.329047i \(-0.893272\pi\)
0.872829 0.488027i \(-0.162283\pi\)
\(948\) 0 0
\(949\) 2.30363 + 4.94015i 0.0747790 + 0.160364i
\(950\) 0 0
\(951\) −1.50419 19.7064i −0.0487769 0.639022i
\(952\) 0 0
\(953\) −5.79831 + 2.11041i −0.187826 + 0.0683630i −0.434221 0.900807i \(-0.642976\pi\)
0.246395 + 0.969170i \(0.420754\pi\)
\(954\) 0 0
\(955\) 20.9843 + 25.0082i 0.679037 + 0.809245i
\(956\) 0 0
\(957\) −2.02310 3.59556i −0.0653975 0.116228i
\(958\) 0 0
\(959\) −32.8305 + 5.78891i −1.06015 + 0.186934i
\(960\) 0 0
\(961\) 18.2527i 0.588796i
\(962\) 0 0
\(963\) −47.8769 18.6376i −1.54281 0.600589i
\(964\) 0 0
\(965\) 9.28903 + 52.6807i 0.299024 + 1.69585i
\(966\) 0 0
\(967\) −1.44229 + 16.4855i −0.0463809 + 0.530136i 0.937092 + 0.349082i \(0.113507\pi\)
−0.983473 + 0.181054i \(0.942049\pi\)
\(968\) 0 0
\(969\) 11.6899 41.7699i 0.375534 1.34184i
\(970\) 0 0
\(971\) 8.45036 + 23.2172i 0.271185 + 0.745075i 0.998285 + 0.0585431i \(0.0186455\pi\)
−0.727100 + 0.686532i \(0.759132\pi\)
\(972\) 0 0
\(973\) −34.7121 20.0411i −1.11282 0.642487i
\(974\) 0 0
\(975\) −3.19451 1.89186i −0.102306 0.0605882i
\(976\) 0 0
\(977\) 12.0089 1.05064i 0.384197 0.0336129i 0.106579 0.994304i \(-0.466010\pi\)
0.277619 + 0.960691i \(0.410455\pi\)
\(978\) 0 0
\(979\) 5.82822 12.4987i 0.186271 0.399459i
\(980\) 0 0
\(981\) 0.699238 0.466861i 0.0223250 0.0149057i
\(982\) 0 0
\(983\) −24.5583 20.6069i −0.783288 0.657257i 0.160786 0.986989i \(-0.448597\pi\)
−0.944074 + 0.329733i \(0.893041\pi\)
\(984\) 0 0
\(985\) 30.3586 + 8.13457i 0.967307 + 0.259189i
\(986\) 0 0
\(987\) −3.52705 + 1.59734i −0.112267 + 0.0508439i
\(988\) 0 0
\(989\) −11.8868 20.5886i −0.377979 0.654678i
\(990\) 0 0
\(991\) 1.65108 0.442405i 0.0524482 0.0140535i −0.232500 0.972597i \(-0.574690\pi\)
0.284948 + 0.958543i \(0.408024\pi\)
\(992\) 0 0
\(993\) −3.53002 + 18.7989i −0.112022 + 0.596564i
\(994\) 0 0
\(995\) −25.6294 + 70.4161i −0.812506 + 2.23234i
\(996\) 0 0
\(997\) 0.991003 + 1.41530i 0.0313854 + 0.0448230i 0.834538 0.550950i \(-0.185735\pi\)
−0.803153 + 0.595773i \(0.796846\pi\)
\(998\) 0 0
\(999\) −31.3635 + 3.91557i −0.992297 + 0.123883i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 444.2.bg.b.209.10 yes 144
3.2 odd 2 inner 444.2.bg.b.209.8 yes 144
37.17 odd 36 inner 444.2.bg.b.17.8 144
111.17 even 36 inner 444.2.bg.b.17.10 yes 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.bg.b.17.8 144 37.17 odd 36 inner
444.2.bg.b.17.10 yes 144 111.17 even 36 inner
444.2.bg.b.209.8 yes 144 3.2 odd 2 inner
444.2.bg.b.209.10 yes 144 1.1 even 1 trivial