Properties

Label 4410.2.du
Level 4410
Weight 2
Character orbit du
Rep. character \(\chi_{4410}(109,\cdot)\)
Character field \(\Q(\zeta_{42})\)
Dimension 1680
Sturm bound 2016

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4410.du (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 245 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(2016\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4410, [\chi])\).

Total New Old
Modular forms 12288 1680 10608
Cusp forms 11904 1680 10224
Eisenstein series 384 0 384

Decomposition of \(S_{2}^{\mathrm{new}}(4410, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(4410, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4410, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1470, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2205, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database